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Abstract: A methodology is proposed for designing robust nonlinear model predictive controllers based 
on a Volterra series model with uncertain coefficients. The objective function of the on-line optimization 
is formulated in terms of a Structured Singular Value (μ). The proposed formulation considers a penalty 
on the manipulated variables actions and manipulated variables and terminal condition constraints. 
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1. INTRODUCTION 

Linear model predictive control is a widely accepted control 
strategy in the chemical industry. Many theoretical studies 
and industrial applications of linear MPC have been reported 
elsewhere (Qin and Badgwell, 2003). On the other hand, the 
nonlinear behaviour of chemical processes has motivated 
researchers and practitioners to consider predictive control 
strategies based on nonlinear process models referred to as 
nonlinear model predictive controllers (NMPC) (Findeisen 
and Allgöwer, 2002). 

Some of the challenging requirements related to the industrial 
implementation of NMPC are: (1) a reliable nonlinear model 
of the process is needed that can be effectively used for real 
time control and (2) ensuring robustness to model error. 

Both first principles as well as empirical input-output models 
have been used in the past for nonlinear predictive control 
strategies. Although first principles models have the 
advantage of formally satisfying basic energy and mass 
balances of the process, they are often too complex for real 
time control and their structure is generally not amenable for 
formal robust analysis and design. NMPC strategies based on 
empirical models such as Hammerstein and Volterra series 
(Hérnandez and Arkun, 1993; Maner et al., 1996; Parker and 
Doyle III, 2001) have been reported but their robustness with 
respect to model error have not been thoroughly studied. 

The need to address robustness arises from the fact that the 
models used for predictive control are never exact. Although 
a good amount of research work has been conducted on 
robustness of linear predictive controllers, the robustness of 
nonlinear predictive controllers has not been extensively 
studied. The lack of robustness guarantees is currently 
perceived as one of the key obstacles for wide industrial 
acceptance of NMPC strategies (Nagy and Braatz, 2003a). 

The current work investigates the design of a robust NMPC 
algorithm based on an empirical Volterra series model. 
Volterra series models have been shown to efficiently 

describe general nonlinear systems (Schetzen, 1980). A key 
idea for this study is that based on the Volterra model it is 
possible to formulate the robust predictive control problem as 
a μ-Structured Singular Value test that can be used on-line to 
calculate optimal control actions. The μ (Structured Singular 
Value, Doyle, 1982) norm is used, at each sampling instant, 
to calculate a bound on the norm of a vector containing both 
output and input predictions along a predefined prediction 
time horizon in the presence of disturbances and uncertainty 
in the Volterra model coefficients. Then, the calculated 
bound is minimized with respect to the optimal control 
actions to be sent to the process. 

The paper is organized as follows. In section 2 the 
formulation of the μ test and the optimization problem based 
on the calculated bound is presented. In the same section 
terminal conditions to enforce stability as well as conditions 
to enforce manipulated variable constraints are also 
presented. Section 3 presents two case studies and 
conclusions are presented in Section 4. Mathematical details 
are presented in Appendix A. 

2. METHODOLOGY 

2.1  Model Predictive Control 

MPC minimizes a cost function that considers the future 
errors whit respect to the manipulated variables. For 
simplicity of notation a single input single output (SISO) case 
is shown but the formulation can be easily extended to the 
multivariable case. Considering that y pr is the predicted value 
of the controlled variable and y sp is the controlled variable set 
point, a vector of predictions can be written as follows: 
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where k0 is the initial sampling instant, p is the prediction 
horizon and d is a measured disturbance. The objective 
function of the controller proposed in this work minimizes 
the maximum absolute value of each element of the Y vector 
with respect to the manipulated variables u as follows: 
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where m is the control horizon. In principle norms other than 
the infinity norm of the output may be considered in the 
formulation but are beyond the scope of the current study. It 
will be also shown in subsections 2.4 to 2.6 that the vector Y 
in (2) may be augmented by additional variables, other than 
predicted outputs, to enforce a terminal condition and 
manipulated variables constraints. The following subsection 
discusses the Volterra models used to calculate the prediction 
Y. 

2.2  Volterra series 

The general structure of a Volterra series model is given as 
follows: 
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where u is the manipulated variable, y is the controlled 
variable and hi are the coefficients of the Volterra series. For 
practical purposes the series is truncated and the resulting 
expression is 
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without loss of generality it can be consider that h0=0. For 
example, for N=2, the value of the controlled variable is 
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where M is the memory of the system. The linear hn
L, and 

nonlinear hi,j
NL, Volterra series coefficients can be obtained 

by least squares regression using process input-output data by 
imposing an appropriate input sequence. For a system with 
polynomial degree N, it has been shown that is necessary to 
use a N+1 level pseudorandom multilevel sequence (Nowak 
and Van Veen, 1994). Confidence intervals for the 
coefficients, to be used in the calculations as uncertainty 
bounds associated to these coefficients, can be obtained using 
least squares regression. 

2.3  Calculation of the worst predicted output 

The worst predicted output calculation can be performed by a 
Structured Singular Value (SSV) test (Nagy and Braatz, 

2003b). The main motivation to use the SSV test is that it 
allows finding the worst �Y�� when uncertainty in the 
Volterra coefficients is considered. Accordingly, (5) can be 
modified to include parameter uncertainty as follows where 
hn

L and hi,j
NL

 are the nominal value of the coefficients and 
�hn

L and �hi,j
NL

 are the uncertainty associated to the 
coefficients: 
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w is a feedback term that considers the current difference 
between the actual process output and the predicted output: 
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By selecting an appropriate interconnection matrix M and 
uncertainty block structure �, the worst value of a variable in 
the presence of model error can be calculated by the 
following SSV test (Braatz et al., 1994; Nagy and Braatz, 
2003b) 
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Thus, a bound on the worst deviation of �Y��, i.e. the norm 
of the prediction vector can be obtained by the following 
skew � problem: 
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A key idea in (9) is that the feedback term in (7) is also 
treated as an uncertainty and the maximization in (9) is 
carried out with respect to both this feedback error and the 
uncertainties in coefficients. Accordingly, the uncertainty 
block � is as follows: 

� �321 ,,diag ���� 
  (10) 

where �3 is a complex scalar square matrix of dimensions 
p×p related to performance and �1 and �2 are real scalar 
square matrices related to the uncertainty in feedback and 
Volterra series coefficients respectively with the following 
dimensions: 
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The problem stated in (8) and (9) can be used within the 
predictive control problem defined in (2) as follows: 
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The vector Y can be modified, as mentioned in section 2.1 to 
include additional terms as follows: (1) a penalty term to 
prevent an excessive movement of the manipulated variables, 
(2) manipulated variables to enforce constraints and (3) a 
terminal condition to ensure convergence. These terms are 
explained in the following subsections. 

2.4  Manipulated variables movements penalization 

Define: 
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Redefining: Y=[ y pr y �u ]T it is ensured by (9) that the 
elements of y �u  satisfy max(yi

�u)� kssv for i=1,…,m. Thus, 
the maximum weighted manipulated variable movement is 
bounded at each sampling instant by kssv. 

2.5  Manipulated variables constraints 

Define: 
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Redefining: Y=[ y pr y �u y uc ]T it is ensured by (9): that the 
elements of y uc  satisfy max(kssvu(i)/umax(i)) � kssv for 
i=k0,…,k0+m which can be simplified to: max(u(i)) � umax(i) 
for i=k0,…,k0+m. Thus, the manipulated variables are 
bounded at each sampling instant by umax(i) for i=k0,…,k0+m. 

2.6  MPC terminal condition 

A terminal condition is used to ensure that at steady state the 
predicted output stays within a neighborhood ! near the 
origin (Chen and Allgöwer, 1998). Although not shown here 
for brevity, it can be shown that the use of the terminal 
condition together with the manipulated variables constraints 
ensures stability providing that the terminal condition is 
feasible with respect to constraints. Define: 
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� can be selected by the user but a smaller value results in 
more conservative control. Redefining: Y=[y pr y�u y uc y tc] T 
it is ensured by (9) that 
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which can be simplified to: 
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Details on the construction of M for a Volterra series model 
NMPC strategy considering the additional terms of 
subsections 2.4, 2.5 and 2.6 can be found on Appendix A at 
the end of this paper.  

3. CASE STUDIES 

Different case studies are presented to show the more 
important features of the proposed algorithm. For simplicity a 
SISO case is presented where an approximated Volterra 
model describing the effect of coolant temperature on reactor 
concentration for a CSTR is as follows (Gao, 2004): 
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h1
L = 0.2835,  h2

L = 0.1445,  h3
L = 0.0594, h1,1

NL = – 0.0072, 
h1,2

NL = – 0.049,     h1,3
NL = – 0.0281,    h2,2

NL = – 0.0379, 
h2,3

NL = – 0.017,  h3,3
NL = – 0.0081. The MPC prediction and 

control horizons are p=3 and m=2. 

The first study is intended to illustrate the possibility of 
tuning the proposed algorithm through the value of W1

�u, i.e. 
the weight used to penalize manipulated variables from 
sampling instant (k0–1) to sampling instant (k0). The response 
of the process to a pulse disturbance is studied and the set 
point is equal to zero. The disturbance is as follows: from 
0<k0�20 d=5, then from 20<k0�40 d=0. For this case it is 
considered that there is no uncertainty in the Volterra model 
coefficients. 

Figures 1 and 2 show that the weight imposed on the 
movement on the manipulated variables can be effectively 
used to tune the closed loop response. To illustrate the 
significance of the nonlinear terms, a simulation is carried on 
with a controller based solely on the linear part of the 
Volterra model. The results (dotted line in Figures 1 and 2) 
illustrate that the nonlinear model based controller provides 
as expected, a better and more consistent performance than 
the linear model based one. 

To illustrate the constraint handling capabilities of the 
algorithm, the response to a pulse disturbance is studied. The 
disturbance is: for 0<k0�5 d=5, for 5<k0�10 d=50 and for 



 
 

     

 

10<k0�15 d=5. The value of the manipulated variable is 
restricted to |u(k0)| � 5.5 and W1

�u=2. For this case it was 
considered that the Volterra series coefficients are known 
accurately, i.e. there is no model uncertainty. It can be seen 
from Figure 3 that the controller keeps the value of the 
manipulated variable within the allowed limits. 
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Fig. 1. Manipulated variable profile for case study 1. 
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Fig. 2. Controlled variable profile for case study 1. 

A key feature of the proposed MPC is that it allows 
considering that the Volterra series coefficients are not 
exactly known. To illustrate this feature of the algorithm it is 
assumed  that certain coefficients are uncertain as follows: 
h1

L = 0.2551"0.0383, h2,2
NL = –0.0360"0.0072 and h3,3

NL = –
0.0089"0.0018. In this case the Volterra series coefficients of 
the plant are the same as those used for case study 1 and 2. 
Furthermore, the disturbance affecting the process is the same 
as that of case study 1. Figures 4 and 5 show the manipulated 
and controlled variable profile when W1

�u=2. The response 
obtained with the uncertain model MPC is more oscillatory 
but still acceptable. The figures show that the control variable 
converges to a value very close to zero and the manipulated 
variables are kept within limits. The small offset observed in 
the manipulated variable with respect to u=0 arises from the 

requirement of the terminal condition in the presence of 
model uncertainty. 
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Fig. 3. Manipulated variable profile for case study 2. 
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Fig. 4. Manipulated variable profile for case study 3. 
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Fig. 5. Controlled variable profile for case study 3. 

 



 
 

     

 

4. CONCLUSIONS 

A novel robust NMPC controller based on a Volterra model 
was presented. The methodology uses μ analysis to calculate, 
for an uncertain plant model, the worst possible norm of a 
vector of inputs and outputs. The interconnection matrix can 
include terms to account for manipulated variables movement 
weighting, manipulated variables constraints and robust 
stability properties enforced through a terminal condition. 
The application of this technique to MIMO problems is 
currently being investigated. 
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Appendix A. CONSTRUCTION OF THE MATRIX M 

The use of an appropriate interconnection matrix M allows 
quantifying the effect that an input has on the system’s output 
in the presence of uncertainty through a linear fractional 
transformation (LFT). If M is built according to the following 
structure 
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the effect that the input has on the output in the presence of 
uncertainty is: 
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where w(k) = [w(k), #, w(k)]T
p. The interconnection matrix 

M that considers manipulated variables movement 
penalization, manipulated variables constraints and terminal 
condition has the following structure: 
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In (24) M11, M12, M13, M21, M22, M23, M31, M33, M34 and 
M44 are matrices of appropriate dimensions that have all its 
elements equal to zero. M14, M24, M32, M41, M42 and M43 are 
defined as: 
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The rest of the matrices are defined as follows: 
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In order to obtain the matrix E it is necessary to build a 
column vector that contains the Volterra series coefficients 
according to the following structure: 
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The matrix VE has the following dimensions: 
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The rule to construct VE is as follows: 
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Finally the matrix E is constructed according to the following 
program: 
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The elements of the matrix E are zero except the following: 
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