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Abstract: A methodology is proposed for designing robust nonlinear model predictive controllers based
on a Volterra series model with uncertain coefficients. The objective function of the on-line optimization
is formulated in terms of a Structured Singular Value (). The proposed formulation considers a penalty
on the manipulated variables actions and manipulated variables and terminal condition constraints.
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1. INTRODUCTION

Linear model predictive control is a widely accepted control
strategy in the chemical industry. Many theoretical studies
and industrial applications of linear MPC have been reported
elsewhere (Qin and Badgwell, 2003). On the other hand, the
nonlinear behaviour of chemical processes has motivated
researchers and practitioners to consider predictive control
strategies based on nonlinear process models referred to as
nonlinear model predictive controllers (NMPC) (Findeisen
and Allgéwer, 2002).

Some of the challenging requirements related to the industrial
implementation of NMPC are: (1) a reliable nonlinear model
of the process is needed that can be effectively used for real
time control and (2) ensuring robustness to model error.

Both first principles as well as empirical input-output models
have been used in the past for nonlinear predictive control
strategies. Although first principles models have the
advantage of formally satisfying basic energy and mass
balances of the process, they are often too complex for real
time control and their structure is generally not amenable for
formal robust analysis and design. NMPC strategies based on
empirical models such as Hammerstein and Volterra series
(Hérnandez and Arkun, 1993; Maner et al., 1996; Parker and
Doyle III, 2001) have been reported but their robustness with
respect to model error have not been thoroughly studied.

The need to address robustness arises from the fact that the
models used for predictive control are never exact. Although
a good amount of research work has been conducted on
robustness of linear predictive controllers, the robustness of
nonlinear predictive controllers has not been extensively
studied. The lack of robustness guarantees is currently
perceived as one of the key obstacles for wide industrial
acceptance of NMPC strategies (Nagy and Braatz, 2003a).

The current work investigates the design of a robust NMPC
algorithm based on an empirical Volterra series model.
Volterra series models have been shown to efficiently

describe general nonlinear systems (Schetzen, 1980). A key
idea for this study is that based on the Volterra model it is
possible to formulate the robust predictive control problem as
a p-Structured Singular Value test that can be used on-line to
calculate optimal control actions. The p (Structured Singular
Value, Doyle, 1982) norm is used, at each sampling instant,
to calculate a bound on the norm of a vector containing both
output and input predictions along a predefined prediction
time horizon in the presence of disturbances and uncertainty
in the Volterra model coefficients. Then, the calculated
bound is minimized with respect to the optimal control
actions to be sent to the process.

The paper is organized as follows. In section 2 the
formulation of the p test and the optimization problem based
on the calculated bound is presented. In the same section
terminal conditions to enforce stability as well as conditions
to enforce manipulated variable constraints are also
presented. Section 3 presents two case studies and
conclusions are presented in Section 4. Mathematical details
are presented in Appendix A.

2. METHODOLOGY

2.1 Model Predictive Control

MPC minimizes a cost function that considers the future
errors whit respect to the manipulated variables. For
simplicity of notation a single input single output (SISO) case
is shown but the formulation can be easily extended to the
multivariable case. Considering that y ”" is the predicted value
of the controlled variable and y** is the controlled variable set
point, a vector of predictions can be written as follows:
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where kj is the initial sampling instant, p is the prediction
horizon and d is a measured disturbance. The objective
function of the controller proposed in this work minimizes
the maximum absolute value of each element of the Y vector
with respect to the manipulated variables u as follows:

min ||Y|| )
wit u(kg )yt (kg +m) ©
where m is the control horizon. In principle norms other than
the infinity norm of the output may be considered in the
formulation but are beyond the scope of the current study. It
will be also shown in subsections 2.4 to 2.6 that the vector Y
in (2) may be augmented by additional variables, other than
predicted outputs, to enforce a terminal condition and
manipulated variables constraints. The following subsection
discusses the Volterra models used to calculate the prediction
Y.

2.2 Volterra series

The general structure of a Volterra series model is given as
follows:
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where u is the manipulated variable, y is the controlled
variable and /; are the coefficients of the Volterra series. For
practical purposes the series is truncated and the resulting
expression is
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without loss of generality it can be consider that /;=0. For
example, for N=2, the value of the controlled variable is
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where M is the memory of the system. The linear 4,”, and
nonlinear /", Volterra series coefficients can be obtained
by least squares regression using process input-output data by
imposing an appropriate input sequence. For a system with
polynomial degree N, it has been shown that is necessary to
use a N+1 level pseudorandom multilevel sequence (Nowak
and Van Veen, 1994). Confidence intervals for the
coefficients, to be used in the calculations as uncertainty
bounds associated to these coefficients, can be obtained using
least squares regression.

2.3 Calculation of the worst predicted output

The worst predicted output calculation can be performed by a
Structured Singular Value (SSV) test (Nagy and Braatz,

2003b). The main motivation to use the SSV test is that it
allows finding the worst ||Y||oc when uncertainty in the
Volterra coefficients is considered. Accordingly, (5) can be
modified to include parameter uncertainty as follows where
ht and h,-,jNL are the nominal value of the coefficients and
ohl and oh JNL are the uncertainty associated to the
coefficients:
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w is a feedback term that considers the current difference
between the actual process output and the predicted output:

W(ko): yml(ko _1)_ypr(k0 _1) ™
By selecting an appropriate interconnection matrix M and
uncertainty block structure A, the worst value of a variable in
the presence of model error can be calculated by the
following SSV test (Braatz et al., 1994; Nagy and Braatz,
2003b)
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Thus, a bound on the worst deviation of || Y||w, i.e. the norm
of the prediction vector can be obtained by the following
skew p problem:

o max Y], = fﬁai(k”) ©)
sty (M) 2 kg,

A key idea in (9) is that the feedback term in (7) is also
treated as an uncertainty and the maximization in (9) is
carried out with respect to both this feedback error and the
uncertainties in coefficients. Accordingly, the uncertainty
block A is as follows:

A =diag(A,,A,,A,) (10)

where A; is a complex scalar square matrix of dimensions
pxp related to performance and A; and A, are real scalar
square matrices related to the uncertainty in feedback and
Volterra series coefficients respectively with the following
dimensions:

p-l i p-l i

A, (P+2Zl+22]j (p+221+221j (11)

i=1 j=1 i=1 j=1

2 :diag[Azl Azp] (12)
=[pxp Ix1]"i<2 (13)
A, =l(p+2-i)x(p+2-i) Ix1]"i>2 a4

The problem stated in (8) and (9) can be used within the
predictive control problem defined in (2) as follows:
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The vector Y can be modified, as mentioned in section 2.1 to
include additional terms as follows: (1) a penalty term to
prevent an excessive movement of the manipulated variables,
(2) manipulated variables to enforce constraints and (3) a
terminal condition to ensure convergence. These terms are
explained in the following subsections.

2.4 Manipulated variables movements penalization

Define:
W, kg ) — ko ~1)]
y¥ = 3 (16)
WA (ulkey +m)—ulky +m—1)]
Redefining: Y=[y?" y*]" it is ensured by (9) that the
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elements of y** satisfy max(y/*)< kg, for i=1,...,m. Thus,
the maximum weighted manipulated variable movement is
bounded at each sampling instant by k..

2.5 Manipulated variables constraints

Define:

u(ko) (k +m)
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Redefining: Y=[ y?" y** y“]" it is ensured by (9): that the
elements of y" satisfy max(kgu(i)/tma(i)) < kg, for
i=ky,...,korm which can be simplified to: max(u(7)) < vpmax(?)
for i=ky,...,kg*m. Thus, the manipulated variables are
bounded at each sampling instant by ,,,(7) for i=ky,. .. kytm.

2.6 MPC terminal condition

A terminal condition is used to ensure that at steady state the
predicted output stays within a neighborhood ¢ near the
origin (Chen and Allgower, 1998). Although not shown here
for brevity, it can be shown that the use of the terminal
condition together with the manipulated variables constraints
ensures stability providing that the terminal condition is
feasible with respect to constraints. Define:
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¢ can be selected by the user but a smaller value results in

more conservative control. Redefining: Y=[y” y* y“y”“]"

it is ensured by (9) that
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which can be simplified to:
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Details on the construction of M for a Volterra series model
NMPC strategy considering the additional terms of
subsections 2.4, 2.5 and 2.6 can be found on Appendix A at
the end of this paper.

3. CASE STUDIES

Different case studies are presented to show the more
important features of the proposed algorithm. For simplicity a
SISO case is presented where an approximated Volterra
model describing the effect of coolant temperature on reactor
concentration for a CSTR is as follows (Gao, 2004):

J’(ko ) = hlL”(ko )+ th”(ko - 1)+ h;”(ko - 2)""
hﬁL”Z(ko)"‘ hlj,VzL”(ko )”(ko _1)+
hlj,v;”(ko )"’(ko 2)+ hzj\,%uz(ko - 1)+
hzj\,%“(ko - 1)”(1% 2)+ hgzLuz(ko - 2)

= 02835, h'=0.1445, hs"=0.0594, h; "= —0.0072,
ot =-0.049, BN =-0.0281, 7y, =—0.0379,
I3 =—0.017, h33""=—0.0081. The MPC prediction and
control horizons are p=3 and m=2.

The first study is intended to illustrate the possibility of
tuning the proposed algorithm through the value of W;*", i.e
the weight used to penalize manipulated variables from
sampling instant (ky—1) to sampling instant (ko). The response
of the process to a pulse disturbance is studied and the set
point is equal to zero. The disturbance is as follows: from
0<ko<20 d=5, then from 20<k;<40 d4=0. For this case it is
considered that there is no uncertainty in the Volterra model
coefficients.

Figures 1 and 2 show that the weight imposed on the
movement on the manipulated variables can be effectively
used to tune the closed loop response. To illustrate the
significance of the nonlinear terms, a simulation is carried on
with a controller based solely on the linear part of the
Volterra model. The results (dotted line in Figures 1 and 2)
illustrate that the nonlinear model based controller provides
as expected, a better and more consistent performance than
the linear model based one.

To illustrate the constraint handling capabilities of the
algorithm, the response to a pulse disturbance is studied. The
disturbance is: for 0<ko<5 d=5, for 5<ky<10 4=50 and for



10<ko<15 d=5. The value of the manipulated variable is
restricted to |u(ko)| < 5.5 and W,2'=2. For this case it was
considered that the Volterra series coefficients are known
accurately, i.e. there is no model uncertainty. It can be seen
from Figure 3 that the controller keeps the value of the
manipulated variable within the allowed limits.
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Fig. 2. Controlled variable profile for case study 1.

A key feature of the proposed MPC is that it allows
considering that the Volterra series coefficients are not
exactly known. To illustrate this feature of the algorithm it is
assumed that certain coefficients are uncertain as follows:
" =0.2551£0.0383, hy,"" =-0.0360+0.0072 and hs3"" =—
0.0089+0.0018. In this case the Volterra series coefficients of
the plant are the same as those used for case study 1 and 2.
Furthermore, the disturbance affecting the process is the same
as that of case study 1. Figures 4 and 5 show the manipulated
and controlled variable profile when W,*‘=2. The response
obtained with the uncertain model MPC is more oscillatory
but still acceptable. The figures show that the control variable
converges to a value very close to zero and the manipulated
variables are kept within limits. The small offset observed in
the manipulated variable with respect to #=0 arises from the

requirement of the terminal condition in the presence of
model uncertainty.
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Fig. 3. Manipulated variable profile for case study 2.
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Fig. 4. Manipulated variable profile for case study 3.
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4. CONCLUSIONS

A novel robust NMPC controller based on a Volterra model
was presented. The methodology uses p analysis to calculate,
for an uncertain plant model, the worst possible norm of a
vector of inputs and outputs. The interconnection matrix can
include terms to account for manipulated variables movement
weighting, manipulated variables constraints and robust
stability properties enforced through a terminal condition.
The application of this technique to MIMO problems is
currently being investigated.
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Appendix A. CONSTRUCTION OF THE MATRIX M

The use of an appropriate interconnection matrix M allows
quantifying the effect that an input has on the system’s output
in the presence of uncertainty through a linear fractional
transformation (LFT). If M is built according to the following
structure

LFT LFT
_ |:M11 M, }
LFT LFT
M;, M,
the effect that the input has on the output in the presence of
uncertainty is:

(22)

vie)=preral-mra] w0 s

where w(k) = [w(k), ..., w(k)]Tp. The interconnection matrix
M that considers manipulated variables movement
penalization, manipulated variables constraints and terminal
condition has the following structure:

Mll M12 M13 M14

M = M21 M22 M23 M24 (24)
M31 M32 M33 M34
M41 M42 M43 M44

In (24) My, My, M3, Myy, My, My, Ms;, M3, Msy and
M., are matrices of appropriate dimensions that have all its
elements equal to zero. M4, M4, M3,, My, My, and My; are
defined as:

M,, =diag[D A] (25)
. U*

M,, = diag {UCP} B (26)

M,, =E @7

M, =diagll, C] 28)
HL 0 HCP

M, = (29)

* [ 0 F 0

M 5= [V Lac \Y NLac \Y% CPac ] (30)

The rest of the matrices are defined as follows:

A :diag[All’An’AB] G

A,y =k d(k, + p) (32)
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In order to obtain the matrix E it is necessary to build a
column vector that contains the Volterra series coefficients
according to the following structure:

VE=|VE, .. VE |’ (58)
The matrix VE has the following dimensions:
p-1
VE=(p+p+Zp—iJ><l (59)
i=1
The rule to construct VE is as follows:
VE, = [hf h{f]T (60)
VE, :[h{vf Ak ©1)
[hm hjlep]T i>3 (62)

F 1na11y the matrix E is constructed according to the following
program:

p-1
for i:1,...,p+p+2p—q
g=1
forir=1,...,p
p-1
for ic =1,...,p+p+2p—iq
iq=1
if[HLHCP]ir,ic =VE,,
index;, = ic (63)
end
end
end
end

The elements of the matrix E are zero except the following:

forir =1,.. 2Zl+zzi:j

i=1 j=1
Eir,index(ir,l) = kssv (64)
end



