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Abstract:  The pharmaceutical industry has entered a new era.  Attention is now being paid to real time 
process monitoring, real time process control, continuous improvement of processes, and quick product 
technology transfer.  Terms like Quality by Design, Design Space, Control Strategy, Process Analytical 
technology, Process Signature reflect the current state.  Multivariate Statistical Analysis has played an 
integral part in several industries, enabling process understanding, process monitoring, utilization of real 
time analysers and real time product release.  It is therefore appropriate to see it as an integral part of the 
pharmaceutical industry effort to address issues like Design Space, Control Strategy, real time process 
signature monitoring, process understanding and correct technology transfer.  In this work it is 
demonstrated that multivariate, data based statistical methods play a critical role in providing solutions to 
these issues.  From determining the acceptability of raw material entering the plant to ensuring quality of 
the product that leaves the plant, the multivariate analysis philosophy should govern all the operations 
that take that raw material and convert it to a final product in a cost efficient way, while meeting safety 
and environmental constraints, from development to manufacturing to site transfer. 

Keywords: Multivariate Process Monitoring, Design Space, process analytical technology, multivariate 
statistical process control, scale  up, latent variables, process understanding 

1. INTRODUCTION 

The pharmaceutical industry has a little secret: Even as it 
invents futuristic new drugs, its manufacturing techniques lag 
far behind those of potato-chip and laundry-
proclaimed the Wall Street Journal in 2003 (Abboud and  
Hensley, 2003).  The article went on to expla n other 
industries, manufacturers constantly fiddle with their 
production lines to find improvements.  But FDA regulations 
leave drug- manufacturing processes virtually frozen in time. 
As part of the drug- approval process, a company's detailed 
manufacturing plan -- and even the factory itself -- must pass 
FDA muster. After approval, even a tiny change to how a 
drug is made requires another round of FDA review and 
authorization, requiring time and paperwork. The process 
discourages updating by the companies, which worry they 
will face a production delay that could cost them heavily .  
The article mentioned FDA as a regulatory agency because it 
was published in the USA, but similar were the situations 
with Pharmaceutical companies and other regulatory bodies 
around the world. 
 

A lot of changes have happened since that article was 
published and the pharmaceutical industry has entered a new 
era.   The FDA guidance on Process Analytical Technology 
(PAT) was introduced in 2004 which aims to improve 
product quality and process performance (manufacturing 
efficiency) in the pharmaceutical industry; it describes PAT 

as: systems for the analysis and control of manufacturing 
processes based on timely measurements during processes of 
critical quality parameters and performance attributes of raw 
and in-process materials and processes to assure acceptable 
end product quality at the completion of the process.  
(Guidance for Industry: PAT  A Framework for Innovative 
Pharmaceutical Development, Manufacturing, and Quality 
Assurance. FDA. September 2004)  

The introduction of concepts like Quality by Design, Design 
Space and Control Strategy are also examples of this change. 
These terms are defined as follows by the International 
Conference on Harmonisation of Technical Requirements for 
Registration of Pharmaceuticals for Human Use (ICH is a 
unique project that brings together the regulatory authorities 
of Europe, Japan and the United States and experts from the 
pharmaceutical industry in the three regions to discuss 
scientific and technical aspects of product registration): 

Quality-by-Design (QbD) is defined as a systematic approach 
to development that begins with predefined objectives and 
emphasizes product and process understanding and process 
control, based on sound science and quality risk management 
(ICH, 2008a). 

Design Space is the multidimensional combination and 
interaction of input variables (e.g., material attributes) and 
process parameters that have been demonstrated to provide 
assurance of quality (ICH, 2008b).  



 
 

     

 

Control Strategy: a planned set of controls, derived from 
current product and process understanding that ensures 
(good) process performance and product quality. The controls 
can include parameters and attributes related to drug 
substance and drug product materials and components, 
facility and equipment operating conditions, in-process 
controls, finished product specifications, and the associated 
methods and frequency of monitoring or control (ICH 2008a, 
2008b). 

 
The above definitions and actions indicate that the regulatory 
framework for the Pharmaceutical industry is changing.   
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Figure 1. Projection space.  Raw material properties, 
micronization properties and filling performance are 
projected on a latent variable space.  Product batches 
produced from similar raw material (red) have similar 
filling performance.    

 

 

 

 

 

 

 

Figure 2.  Tablet Product.  Batches produced from raw 
material with similar characteristics, have similar final 
quality.  

 
The ICH definition of the design space reflects a well known 
concept, namely that variability in the input of a process will 
be transferred to the quality of the final product (output) if the 
process is not controlled to compensate for such variability.  
Despite the fact that the concept is well known, it requires 
new ways of thinking in the pharmaceutical industry that was 
used to d  
above mentioned Wall Street Journal article. 

In this work the role of multivariare statistical methods in 
modelling, process control and monitoring under this new 
regulatory framework will be discussed.   Multivariate latent 

variable methods are shown to be most suitable for process 
understanding, modelling for Design Space, multivariate 
statistical process control (MSPC), process control and 
product transfer. The use of these methods for the 
development of the Design Space for multi-unit operations 
will be illustrated in a case where the Tablet Quality is related 
to API, Excipients, Granulation, Drying and Compression 
parameters.  Examples of how the Control Strategy can be 
derived from such models will also be shown.   

Other topics like Process Signature and MSPC, application of 
soft sensors, relation of design space to clinical relevance as 
well as quality by design for analytical methods will be 
discussed. 

 

2. LATENT VARIABLE METHODS 

Latent variables exploit the main characteristic of process 
databases, namely that although they consist of 
measurements on a large number of variables (hundreds), 
these variables are highly correlated and the effective 
dimension of the space in which they move is very small 
(usually less than 10 and often as low as 2).  Typically only a 
few process disturbances or independent process changes 
routinely occur, and the hundreds of measurements on the 
process variables are only different reflections of these few 
underlying events.  For a historical process dataset consisting 
of a (n  k) matrix of process variable measurements X and a 
corresponding (n  m) matrix of product  quality data Y, for 
linear spaces, latent variable models have the following 
common framework :   

 E  P T  X T           (1) 

 F  Q T  Y T         (2) 
where E and F are error terms, T is an (n  A) matrix of 
latent variable scores, and P (k  A) and Q  (m  A) are 
loading matrices that show how the latent variables are 
related to the original X and Y variables. The dimension A of 
the latent variable space if often quite small and determined 
by cross-validation or some other procedure.  
 
Latent variable models assume that the data spaces (X, Y) are 
effectively of very low dimension (i.e., non-full rank) and are 
observed with error.  The dimension of the problem is 
reduced by these models through a projection of the high-
dimensional X and Y spaces onto the low-dimensional latent 
variable space T, which contains most of the important 
information.  By working in this low-dimensional space of 
the latent variables (t1, t2, ... tA), the problems of process 
analysis, monitoring, and optimization are greatly simplified. 
 
Multivariate Statistical Process Control is possible utilizing 
latent variable methods. The following charts are used: 

2 for scores (derived either from PCA or 
PLS models on typical production) is calculated as:  
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where sti 

2  is the estimated variance of the corresponding 
latent variable ti. This chart essentially checks if a new 
observation vector of measurements on k process variables 
projects on the hyper-plane within the limits determined by 
the reference data.   
 
As mentioned above the A principal components explain the 
main variability of the system.  The variability that cannot be 
explained forms the residuals (Squared Prediction Error, 
SPE).  This residual variability is also monitored and a 
control limit for typical operation is being established.  By 
monitoring the residuals we test that the unexplained 
disturbances of the system remain similar to the ones 
observed when we derived the model.  When the residual 
variability is out of limit, it is usually an indication that a new 
set of disturbances have entered the system; it is necessary to 
identify the reason for the deviation and it may become 
necessary to change the model.  

 SPEX  is calculated as : 

 2
,

1
, )( inew

k

i
inewX xxSPE              (4) 

where newx  is computed from the reference PLS or PCA 
model. Notice that SPEx is the sum over the squared elements 
of a row in matrix E in equation (1). This latter plot will 
detect the occurrence of any new events that cause the 
process to move away from the hyperplane defined by the 
refence model. The calculation of the limits for the charts is 
discussed in Kourti (2009). 
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Figure 3. The quality can be modelled as a function of 
input material and process parameters 

 
These two charts (T2 and SPE) are two complementary 
indices; together they can give a picture of the state of the 
system at a glance.  With this methodology, the hundreds of 
measurements collected from the process variables at each 
instant in real time are translated into one point for the T2 
chart and one point for the SPE chart (these two points 
summarize the process at that instant).  As long as the points 
are within their respective limits everything is in order. Once 
a point is detected out of limit, then the so called contribution 

plots can be utilized that give us a list of all the process 
variables that mainly contribute to the out of limit point, and 
hence allow us to diagnose the process problem immediately. 
Contribution plots can be derived for out of limit points in 
both charts.   
 
A detailed discussion on latent variable methodology for 
modelling and process monitoring can be found in Kourti 
(2002, 2005, 2009).  Experiences from industrial practitioners 
can be found in Miletic et al (2004, 2008). 

 

3. PROCESS UNDERSTANDING - EFFECT OF RAW 
MATERIAL ON FINAL QUALITY  

The effect of raw material characteristics in the process 
performance, if the process operating conditions remain 
fixed, is demonstrated for an inhaler product utilizing 
multivariate projection space in Figure 1.  The raw material is 
characterized by several physical and chemical properties.  
Raw material is produced at three supplier locations and 
depending on its origin, the data are coloured red, green and 
blue. The raw material properties are within univariate 
specifications, at all locations.  Projected on a multivariate 
space, however, they form three clusters, indicating that in a 
multivariate sense the material possesses slightly different 
characteristics depending on the location it was produced 
(covariance structure changes with location).  The material 
properties after micronization are projected on principal 
components and it can be observed that the material with red 
coloured origin projects on a different location than the green 
and blue.  The filling performance of the material originating 
from the red location is different than the rest of the material.  
A note here that although the control ellipses shown are set 
by default in the vendor software, they are not interpretable 
when there is clustering; the assumptions for the calculation 
of these ellipses are for process monitoring and not for 
process exploration where there is intentional variation such 
that introduced by design of experiments.  
 
 

4. DESIGN SPACE MODELLING  

The effect of raw material on the quality as it propagates 
through different unit operations is shown for a tableting 
process in Figure 2.  When the raw material properties have 
certain characteristics (marked black) the material projects on 
a different area.  The properties of granules produced from 
raw material with such characteristics (black) are different 
from the rest, and the final quality also shows differences. 

The difference in the quality can be theoretically explained 
based on the physical phenomena that govern the whole 
process.  The idea of the design space is to express these 
phenomena by a model. 

The design space can be established as a model that relates 
input material and process parameters to quality.  The model 
may be theoretical (based on first principles) or empirical, 
derived from design of experiments or, a hybrid.   Together 
with the model one has to specify the range of parameters for 



 
 

     

 

which the model has been verified.  The model may cover 
one unit operation or a series of unit operations. 

The design space for the entire tableting process can be 
derived by relating quality to the raw material properties as 
well as to the process parameters of the unit operations 
(Figure 3).  One row in the database depicted in Figure 3 
would include the process conditions and quality experienced 
by the material as it is processed through the units. 
Multivariate projection methods can be used for the empirical 
modelling. 

It should be emphasised here that the Design Space is a 
collection of models that relate 1) the final quality to all 
previous units, raw material and intermediate quality 2) 
intermediate quality to previous unit operations and raw 
material. 

The empirical models derived are causal and based on 
carefully designed experiments (DOE) l 
also be necessary to estimate parameters even if mechanistic 
models are used. 

Batch processes are very common in the pharmaceutical 
industry.  Empirical methods for modelling and monitoring 
batch processes are discussed in Nomikos and MacGregor 
(1994) and in Kourti (2003).    

Foundations for multiblock analysis necessary for multi unit 
operation systems can be found in Westerhuis et al (1998). 

The level of detail in the models varies depending on the 
depth of process understanding one wishes to achieve.  For 
example the variable trajectories of a granulation may be 
described by summary data (min, max, slopes, etc) or by the 
full variable trajectories aligned against time or another 
indicator variable (Kourti, 2003). 

 

 

 

Fig. 4 Control Strategy using Projection Space.  

 

5. CONTROL STRATEGY 

Based on the process understanding derived from the design 
space, control strategy can be derived to assure final quality.  

An example in Figure 4 is used to illustrate the new concepts. 
Control Strategy is devised once the Design Space is 
established.  The example here illustrates a feed forward 
control scheme for Unit N+1 based on input information on 

-of-the-
settings are calculated and adjusted such that the target value 
for Quality Y is met. 

A multivariate model was built (from batch data) to relate 
product quality to the process parameters of unit N+1 and the 

-of-the-intermediate product from Unit N.  From this 
model, a quantitative understanding was developed showing 
how process parameters in N+1 and the state-of-the-
intermediate product from N interact to affect Quality.   

Control of batch processes on multivariate space is discussed 
by Flores-Cerrillo and MacGregor (2004), while product 
transfer is discussed by García-Muñoz et al (2005). 

 

6. PROCESS SIGNATURE AND MSPC. 

It is known from other industries, that sometimes it is not 

  The reason is that for some products we do 
not measure all the possible quality properties (example, 
downstream processability).   T
properties may sometimes be achieved by taking different 
process paths.  In these situations, these different paths may 
affect the properties that are not measured (i.e. 
processability).    To achieve consistency in all the product 
properties (measured quality and ability to process down the 
stream) the process conditions (path to end point) must also 
be kept in statistical control.  When this is not the case, 
although the measured product properties are on target, the 
properties that determine other characteristics (i.e., the 
processability of the product) may not be within acceptable 

also be examined.  
also discussed in the European Regulatory Perspective 

within the industry, the term process signature has been 
understanding of 

this, the EU PAT Team had invited public comments on the 

information that shows that a batch has been produced within 

as examples of process signatures the amount of water added 
in relation to time (wet massing), air flow rate, and bed 
temperature during fall rate drying (fluidized bed drying). 
They concluded that their understanding is that there is no 
unique process signature, but instead a family of process 
signatures with common characteristics (salient features). 

It should be pointed out here that the process signature in the 
multivariate statistical process control context is nothing else 
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but the two multivariate indices Hotel 2 and SPE. As a 
matter of fact, these indices take it to account not one feature 
(e.g., water addition rate or, drying rate) but the combination 
of all the variables affecting the process and product and their 
correlations both at each time interval but also their time 
correlations for the duration of the process (auto and cross 
correlations for the entire batch).  They are therefore a more 

 

Furthermore, these indices can be directly related to the 
concept of the design space, as outlined here. The design 
space model relates raw material characteristics, process 
conditions and quality. Given the characteristics of the raw 
material and the desired quality, the design space model can 
be solved to determine appropriate operating conditions. 
Maintaining T2 and SPE within their good operation limits 
for these appropriate process conditions is nothing more than 
ensuring that the operation is within the design space.  

  

7.  PAT and SOFT SENSORS 

Accurate on-line measurements of quality variables are 
essential for the successful monitoring and process control. 
However, due to measurement difficulties, sometimes 

real time and therefore replace an analyzer.  This is the idea 
of soft sensors.  In many monitoring and control situations 
we are often lacking real time sensors capable of measuring 
many of the responses of interest, because the measurement 
equipment for such quality variables may be very expensive, 
or difficult to put on-line, or costly to maintain.  As a result 
we often try to develop soft sensors or inferential models 
which use other readily available on-line measurements such 
as temperatures, and can be used to infer the properties of 
interest in a real time manner.  In a recent  paper  it was 
demonstrated through application to a benchmark simulation 
of a fed-batch fermentation process that mutli-way PLS can 
provide accurate inference of quality variables, such as 
biomass concentration, that are often difficult to measure 
using on-line sensors. It was also demonstrated that the same 
PLS model can be used to provide early detection and 
isolation of fault conditions within a fermenter (Zhang and  
Lennox, 2004). 

The soft sensors can either replace the hardware sensor 
(analyzer) or be used in parallel with it to provide redundancy 
and verify whether the hardware sensor is drifting or has 
failed; when used in parallel the soft sensor will either 
estimate the property and compare its value with that of the 
analyser, or it will keep track of the correlation between the 
analyser reading and the process measurements.   An 
example where a soft sensor is used to assess the reliability of 
an analyser was presented in Kourti (2005).  Latent variable 
modeling was used for this purpose.  

This idea of using process measurements as a safety net to 
verify analyser reliability but also to monitor an index of 
wellness for the process, to check for unforeseen 
disturbances, is a crucial and important issue for real time 
release (Kourti, 2006a). 

 

8. INTEGRATION OF CLINICAL TRIALS 

As more complex structures of data are being generated,   the 
multivariate analysis offers great opportunities for 
information integration and analysis. 

Manufacturing Data as well as patient histories can be 
integrated and then incorporate into design space the clinical 
trial responses.  (Kourti 2006b). 

Figure 5 shows an example of the possibilities that can be 
explored.  Quality in product Y can be related to past 
information of raw materials, preprocessing and holding 
times, the type of the vessel used, the operator that run the 
process, and other recipe information as well as process 
measurement trajectories and analyzer information. 

The quality Y (and details of manufacturing) as well as the 
patient medical histories and clinical responses can be used to 
establish a better understanding of the design space. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 : Examples of complex data structures emerging 
in industry, that can be mined for a wealth of information. 
(Kourti, 2006b). 

 

9.  QUALITY BY DESIGN IN ANALYTICAL METHODS  

The methodology described for design space can be applied 
in analytical methods. Chromatography, is a laboratory 
method but also a Unit operation in Bio  Pharmaceuticals.  

Process Transfer ideas can be also applied in method transfer 
ideas, that is method transfer  and site transfer could be 
treated with similar principals  (García-Muñoz et al., 2003) 

 

ACKNOWLEDGEMENTS 

I would like to thank John F. MacGregor, McMaster 
University and Gordon T. Muirhead, GlaxoSmithKline, for 
their support and dedication to innovation. 

Z1 Z2 X1
Y

X2

Lot 

ID

Raw Material, 
Preprocessing, 
Vessel, Shift, 

Other 
Descriptors

Process Measurements vs Time
(Variable Trajectories),

Real Time Analyzer Measurements, 

At Several Process Stages

LAB

Quality

Clinical 
Trial 

Response

Patient 
Medical

Histories

Patient 

ID



 
 

     

 

REFERENCES 

Abboud, L.,  and Hensley. S (2003) Factory Shift: New 
Prescription For Drug Makers: Update the Plants; After 
Years of Neglect, Industry Focuses on Manufacturing; FDA 
Acts as a Catalyst; The Three-Story Blender. Wall Street 
Journal. Eastern edition). New York, N.Y.: Sep 3, 2003. pg. 
A.1, The Wall Street Journal 

Flores-Cerrillo J., and MacGregor J. F. (2004) Control of 
batch product quality by trajectory manipulation using latent 
variable models, Journal of Process Control 14, 539 -553. 

García-Muñoz, S, MacGregor, J.F., Kourti, T.  (2005) 
Product Transfer between Sites using Joint Y_PLS.  
Chemometrics and Intelligent Laboratory Systems, 79, 101-
114. 

Graffner, C (2005). PAT- European Regulatory Perspective, 
The Journal of Process Analytical Technology, 2 (6)  8-11. 

ICH (2008a). International Conference on Harmonization, 
ICH Draft Step 4, Q8 (R1) Pharmaceutical development 
revision 1, 11-November-2008. 

(ICH, 2008b) International Conference on harmonization 
of technical requirements for registration of pharmaceuticals 
for human use, ICH harmonized tripartite guideline, 
pharmaceutical quality system Q10 Step 4, 9-June-2008. 

 Kourti, T. (2002) Process analysis and abnormal situation 
detection: from theory to practice.  IEEE control systems, 22 
issue 5 : 10-25 

Kourti, T. (2003) Multivariate dynamic data modelling for 
analysis and statistical process control of batch processes, 
start ups and grade transitions. J. Chemometrics, 17, 93-109 

Kourti, T. (2005) Application of Latent Variable Methods to 
Process Control and Multivariate Statistical Process Control 
in Industry. International Journal of Adaptive Control and 
Signal Processing; 19,  213-246. 

Kourti, T., (2006a). Process Analytical Technology and 
Multivariate Statistical Process Control. Index of wellness of 
product and process. Part 3. Process Analytical technology, 
volume 3 (3),  18-24. 

Kourti, T. (2006b) Process Analytical Technology Beyond 
Real-Time Analyzers: The Role of Multivariate Analysis 
Critical Reviews in Analytical Chemistry, Critical Reviews in 
Analytical Chemistry, 36:257 278. 

T. Kourti (2009) Multivariate Statistical Process Control and 
Process Control, Using Latent Variables. In: Brown S, Tauler 
R, Walczak R (eds.) Comprehensive Chemometrics, volume 
4, pp. 21-54 Oxford: Elsevier 

Miletic, I., S. Quinn, M. Dudzic, V. Vaculik, M. Champagne. 
(2004) Journal Process Control, 14, 821-836. 

Miletic, I.; Boudreau, F.; Dudzic, M.; Kotuza, G.; Ronholm, 
L.; Vaculik, V.; Zhang, Y. (2008)  Experiences in Applying 

Data-Driven Modelling Technology to Steelmaking 
Processes. Can. J. Chem. Eng. 86, 937 946. 

Nomikos, P. and J.F. MacGregor (1994)
processes using multi-way principal component analy
AIChE Journal,  40 , no. 8: 1361-1375. 

Westerhuis, J.A., Kourti, T., and MacGregor, J.F. (1998) 
Analysis of multiblock and hierarchical PCA and PLS 
models.  Journal of  Chemometrics, 12, 301-321 

Zhang, H., Lennox, B. (2004) Integrated condition 
monitoring and control of fed-batch fermentation processes, 
Journal of Process Control 14, 41 50. 

 

  




