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Abstract: Fuel cell systems can produce clean energy and have attracted the interest of both industrial 
and basic research in the recent years. They are part of a promising benign and environmentally friendly 
technology and they can be used both in mobile and stationary applications. A dynamic model was 
constructed and validated using experimental data based on a specific application, consisting of a high 
temperature PEM Fuel Cell (FC) working at a constant pressure and a Power Conversion Device that 
controls the current drawn from the FC. An integrated framework that consists of an online maximum 
power point prediction algorithm and a non-linear model based control scheme is presented. The 
proposed framework aims to maintain the fuel cell close to the optimum power point and the 
corresponding oxygen excess ratio level. Simulation studies show that the proposed control framework 
results in improved performance regarding the efficient and safe fuel cell operation under varying 
operating conditions. 
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1. INTRODUCTION 

Fuel cells are electrochemical devices that convert the 
chemical energy of a fuel directly into electricity and are 
under intensive development by several manufacturers. They 
are categorized according to the type of electrolyte used, 
operating conditions or fuel. The Polymer Electrolyte 
Membrane or Proton Exchange Membrane fuel cells 
(PEMFC) are currently considered by many to be in a relative 
more developed stage for ground vehicle applications and 
portable devices.  PEMFC’s have high power density, solid 
electrolyte, long cell and stack life, as well as low corrosion. 
Lately PEM fuel cells working at higher temperatures of up 
to 200°C have appeared such as those that use phosphoric 
acid doped polybenzimidazole (PBI) membrane, which is 
considered one of the most successful membrane systems so 
far [Jensen, 2007]. The benefits of operation at elevated 
temperature are mainly the tolerance to carbon monoxide 
concentration at the hydrogen feed, commonly present when 
operating with reformate streams, that can be increased by 
many orders of magnitude compared to that of a common 
PEM and also the water management which is a lesser issue, 
since the water is in vapor state. Additionally, the PBI 
membranes are conductive at very low relative humidity and 
consequently no moisture management is needed. Moreover, 
the high working temperature eliminates the possibility of 
water condensation in pores or channels of the fuel cell. Due 

to the higher temperature difference to the surroundings 
thermal management can be satisfactorily performed by a 
smaller cooling system [Jensen, 2007]. However, due to 
material limitations, the power of the fuel cell cannot be 
arbitrary used without prior consideration on the internal 
effects such as the provision for fuel and oxidant supply, 
temperature gradients, condition of the membrane (humidity) 
and so forth. The choice of the operating region leads to 
different characteristics for the unit regarding its profitability, 
effectiveness and safety. The dynamic response of a fuel cell 
is affected when the power demand fluctuates or when the 
fuel cell does not operate at its optimal steady-state design 
point [Golbert, 2007]. An optimization algorithm is used to 
search off-line for the optimum excess oxygen ratio level and 
the corresponding near maximum power. The primary 
objective of this paper is to demonstrate that model-based 
predictive control (MPC) is a suitable approach for efficient 
and safe fuel cell operation. The paper is organized as 
follows: Section 2 gives an overview of the dynamic fuel cell 
mathematical model. In section 3, the model validation 
procedure is presented. Section 4 presents the model-based 
predictive control structure along with the conventional 
control that is present for the pressures of the anode and the 
cathode compartments of the FC. Section 5 discusses the 
maximum power targeting algorithm The simulated results of 
the proposed MPC framework are presented and discussed in 
section 6. 

     



 
 

 

2. MODELING AND ANALYSIS 

The application is consisting of a high temperature PEM Fuel 
Cell working at a constant pressure and a Power Conversion 
Device capable of controlling the current drawn from the FC. 
In order to define a model based control strategy it is 
important to have an accurate model that reflects the transient 
dynamics and fuel cell system behavior and in the same time 
fast in execution in order to be useful for a real-time 
application. The mathematical model equations that describe 
the operation of the fuel cell consists of the voltage-current 
characteristics and a relationship for the consumption of the 
reactants as a function of the current drawn from the fuel cell. 
The main purpose of the detailed model is to describe the 
dynamic behavior in a way that the fundamental operating 
parameters current and pressure are established as 
manipulated variables and temperature as disturbance and 
power and excess oxygen ratio as controlled variable. 

2.1 General 

The main components of a PEM fuel cell are three - an 
anode, typically featuring platinum-containing catalyst, a 
thin, solid polymeric layer which acts as electrolyte, and a 
cathode, also coated with platinum [Mann, 2000]. In the PEM 
fuel cell the only reaction that takes place is the production of 
water from hydrogen and oxygen. In order to accurately 
describe the fuel cell behavior the mass balance and the 
equations that affect the voltage calculation are analyzed in 
the following section. The development of the fuel cell model 
is based on some assumptions. The gases are ideal and 
uniformly distributed inside anode and cathode. The stack is 
fed with hydrogen and air. The temperature is constant and 
uniform for each experiment. The gas channels along the 
electrodes have a fixed volume with small lengths, so that it 
is only necessary to define one single pressure value in their 
interior. 

2.2 Electrochemistry and Voltage Calculation  

Typical characteristics of FC are normally given in the form 
of polarization curve, which is a plot of cell voltage versus 
cell current density. To determine the voltage-current 
relationship of the cell, the cell voltage has to be defined as 
the difference between an ideal, Nernst voltage and a number 
of voltage losses and it is described in the current section. 
The main losses are categorized as activation, ohmic and 
concentration losses. The activation losses are caused by the 
slowness of the reactions taking place on the surface of the 
electrodes. A portion of the voltage generated is lost in 
driving the chemical reaction that transfers the electrons to or 
from the electrodes. The activation losses are described by 
the Tafel equation, which can be calculated as [Mann, 2000]: 

21 2 3 4ln( ) ln( )act OV T T C T iξ ξ ξ ξΔ = + + +   (1) 

where ξ(i = 1–4) are parametric coefficients for each cell 
model. The term is the concentration of oxygen on the 

electrolyte membrane at the gas/liquid interface (mol/cm3), 
which can be expressed as [Zhong, 2008]: 
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The ohmic losses are caused by the resistance to the flow of 
electrons through the material of the electrodes and the 
various interconnections, as well as by the resistance to the 
flow of protons through the electrolyte. The ohmic losses are 
given by: 

ohm memV R iΔ = ⋅      (3) 

The ohmic resistance is described by: 
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where is membrane resistivity (Ωcm) to proton 
conductivity, is the membrane thickness (cm) and A 
is the active cell area (cm2). Membrane resistivity depends 
strongly on membrane humidity and temperature, and can be 
described by an empirical expression given by Mann et. al. 
[Mann, 2000]. Finally the mass transport or concentration 
losses result from the change in concentration of the reactants 
at the surface of the electrodes as the fuel is used [Larminie 
J., 2003]:  
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where m and n are constants that can be estimated to give 
better fit to measured results. Thus, the actual voltage will be 
less due to the aforementioned losses that occur because of 
the various electrochemical phenomena. The Nernst voltage 
or open circuit voltage falls as the current supplied by the 
stack increases. The reversible thermodynamic potential is 
calculated using the Nerst equation and can be expressed as: 
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where F is the Faraday’s constant (C/kmol) and pi are the 
partial pressures (atm) (with i=H2, O2, H2O). The equation 
that combines the above irreversibilities expresses the actual 
cell voltage: 

cell act ohm concV E V V V= − − −    (7) 

The above equation is able to predict the voltage output of 
PEM fuel cells of various configurations. Depending on the 
amount of current drawn the fuel cell produces the output 
voltage according to (7). The electric power delivered by the 
system equals the product of the stack voltage  and the 
current drawn I: 

cellV

cellP I V= ⋅      (8) 

     



 
 

 

2.3 Mass Balance Equations 

The model equations consist of the standard material balance 
of each component. Every individual gas follows the ideal 
gas equation. Therefore mass is described through partial 
pressures of each gas in the material balances: 

in out r
g g g g

d R Tp q q
dt V

⋅ ⎡= − −⎣ q ⎤⎦    (9) 

where R is the universal gas constant (J (kmol K)−1)), T is the 
temperature (K), V is the anode or cathode volume (1). For 
each gas in

gq  is the input flow, out
gq is the output flow and r

gq  
is the consumption or production due to the reaction. The 
same expression is used for oxygen, hydrogen and the 
produced water by replacing the term g with the 
corresponding gas. The amount of hydrogen consumed due to 
reaction is calculated as: 
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and for the oxygen : 
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while the water production can be described by : 
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The water production rate is the same as the hydrogen’s 
reaction rate, since water is produces as hydrogen is 
consumed. The oxygen reaction rate is the half of that of the 
hydrogen due to the stoichiometry of the reaction. As the load 
draws current, the reactants become depleted in the fuel cell 
and partial pressure of oxygen and hydrogen drop 
accordingly. A common practice to protect the fuel cell from 
reactants starvation is to supply it with excessive amounts of 
hydrogen and oxygen.  

2.4 Oxygen Excess Ratio 

There are two phenomena that can deteriorate or even destroy 
the fuel cell, flooding and oxygen starvation. Flooding is 
related to temperature and humidity, which are assumed 
constant and stable in the developed model since it is a high 
temperature FC where flooding is rather avoidable. The 
second one, the oxygen starvation, when it occurs the 
operation of the FC must be stopped in order to prevent fuel 
cell malfunction. The lack of oxygen is a complicated 
phenomenon that occurs when oxygen falls below a critical 
level at any location within the cathode. This phenomenon 
entails a rapid decrease in cell voltage, which in severe cases 
can cause a hot spot, or even burn-through on the surface of a 
membrane. To prevent this catastrophic event, the system 
must either remove the current from the stack or trigger a 
shut-down procedure. For all these reasons in a PEM fuel cell 
it is considered important to control the amount of available 
oxygen in the cathode.  The air flow needs to be controlled 

rapidly and efficiently to avoid oxygen starvation and extend 
the life of the stack [Pukrushpan, 2004]. Although the oxygen 
concentration is not homogenous throughout the cathode, the 
control can be achieved by defining a parameter that indicates 
the oxygen level status in the cathode, named excess oxygen 
ratio level 2Oλ . The excess ratio level is an unmeasured but 
observable variable that can be expressed as the inlet flow 

 to the rate of oxygen consumption : 2
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As can be observed by (11) and (13) the oxygen excess ratio 
level depends on the current drawn from the cell. This 
relationship can cause an abrupt and momentarily drop of the 

2Oλ , while it is related to the fuel consumption High values 
of 2Oλ , and thus higher partial oxygen pressure improves the 
overall power. Low values of 2Oλ indicate low oxygen 
concentration that could lead to oxygen starvation. Moreover, 
the temperature within the fuel cell may rapidly increase 
when oxygen concentration is too low. Therefore, the oxygen 
should be replenished quickly as it is depleted in the cathode 
[Vahidi, 2006].  

3. PARAMETER IDENTIFICATION 

The dynamic process model described in the previous section 
is validated using experimental data from a high temperature 
PEMFC. Nonlinear regression techniques are used to 
estimate the model parameters. The selected estimated 
parameters are the following: the parametric coefficient in 
activation losses ( 1ξ ) and the parameters in concentration 
losses (m, n). The characteristic cell voltage and the applied 
current density were measured through an on-line supervisory 
control and data acquisition system. Experiments were 
performed at the single cell system at constant temperatures 
between 170°C to 200°C. The activation area of the cell is 
25cm2. The estimated values of the parameters are presented 
in Table 1. 

Table 1 Estimated parameters 

Parameter Estimated value 

1ξ  -1.771 

m   7.04E-05 V 

n  9.44 E-03 cm2 mA 

Fig 1 compare the model predictions with the experimental 
data for various operating temperature levels for the 
polarization curves Fig 1 reveal that model predictions are in 
good agreement with the experimental data. As can be 
observed in the experimental results, a temperature increase 
raises cell voltage and consequently the fuel cell power 
output. 
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Fig.  1 Model predicted and experimental polarization curves  

4. MAXIMUM POWER TARGETING 

The power of the fuel cell depends nonlinearly on the applied 
current. As it is observed from the power curve there exists a 
unique operating point for each set of operating conditions, 
where the delivered power reaches a maximum power point 
(MPP). The operation of the system beyond MPP is not safe 
and should be avoided. The purpose of the control strategy is 
to deliver a near optimum power and at the same time to 
choose the proper operating region to ensure high fuel cell 
efficiency and avoid oxygen starvation. Thus a MPP tracking 
algorithm is developed that calculates the highest possible 
power as operating conditions vary. Fuel cell operation at the 
MPP is not very beneficial because the corresponding fuel 
efficiency is at best 50%. [Zhong, 2008]. As illustrated in 
Fig. 2 there exists an area where the power is near its MPP 
and the corresponding oxygen excess ratio level guarantees a 
safe and efficient fuel cell operation. The calculation of the 
MPP from process measurements is not possible as it 
depends on numerous factors that change during operation 
(e.g., relative humidity, gas mole fractions) and furthermore 
the entire power curve needs to be inferred to identify its 
maximum. Therefore, the fuel cell mathematical model is 
used in order to determine a desired trajectory towards the 
near MPP. 
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of operation is shadowed. 

Numerous methods have been proposed for maximum power 
tracking such as the perturbation and observe, adaptive 
extremum seeking algorithm, artificial intelligence methods 
and model-based methods to name a few [Zhong 2008, 
Krstic, 2000]. The current approach utilizes the developed 
non-linear dynamic model to determine off-line the near 
optimum region of operation and calculate the corresponding 
oxygen concentration level at the specific operating point 
usually defined as a function of temperature and pressure. 
The higher oxygen excess ratio level leads to a safer 
operation. The resulting strategy aims to an operation where a 
compromise between the maximum achievable power output 
and the optimal oxygen excess ratio is sought.  

5. MODEL PREDICTIVE CONTROL FRAMEWORK 

A Model Predictive Control (MPC) framework is formulated 
for the satisfaction of the control objectives described in the 
previous section. The fuel cell system presents a number of 
control challenges, the most significant of which is the 
nonlinearity in the area of the maximum power. Also an 
important control objective is the effective regulation of the 
oxygen concentration in the cathode. Furthermore, it is of 
interest to ensure safe operation during transients and sudden 
load changes. MPC is able to satisfy multiple control 
objectives under the presence of changes in process 
characteristics. Another important feature is its ability to deal 
with constraints. When a fuel cell operates near the MPP and 
consequently close to its operation limits constraints 
violations are critical in the achieved control performance.  

5.1 Anode and Cathode Pressure Control 

To regulate the anode and the cathode pressure a fast 
proportional-integral (PI) controller is implemented as used 
in the real system. The conventional PI controllers are used 
independently of the MPC scheme, which assumes that the 
anode and cathode pressure is held at a constant level as the 
dynamics of the PI control system are relatively fast. In the 
performed experiments it is assumed that the cathode and 
anode pressure is at 2 barg. These secondary loops are tightly 
controlled and assumed not to interact with the main control 
objectives of the system. 

5.2 Model Predictive Control 

Model predictive control (MPC) is part of a family of 
optimization-based control methods, which are based on on-
line optimization of future control moves. Also MPC is based 
on the fact that past and present control actions affect the 
future response of the system. Using a process model, the 
optimizer predicts the effect of past inputs on future outputs. 
The deviation of the model prediction from the actual 
response is recorded and considered as the error of the 
process model, as shown in the block diagram of the MPC 
framework. The calculated error defines a bias term that is 
used to correct future predictions and it is constant for the 
entire prediction horizon. The block diagram describing the 
MPC scheme and the near optimum power targeting scheme 
is illustrated in Fig. 3.  
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Fig.  3 Block diagram of the MPC control framework 

The control structure utilizes two instances of the 
aforementioned dynamic model; the one corresponds to the 
Virtual Process (VP) and the second one to the Process 
Simulator (PS) or Model, and they are concurrently executed. 
Successive iterations between the optimizer, that evaluates 
the optimum value for the manipulated variable, and the 
model, that calculate the response of the process to the 
imposed control action are performed. The mathematical 
representation of the MPC algorithm is as follows: 

2 2

1 1
min

P

Np
SP SP

k j k j k j k jk j j w w

J P P
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λ λ
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+ + + ++ −
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( ) /c c kN T T t= − Δ     (17) 

( ) /p p kN T T t= − Δ     (18) 

Where vectors and SP
kP
∧

SP
kλ
∧

 denotes the desired response 
trajectories. The difference between the measured 
variables  and their predicted values at time 
instance k is assumed to persist constant for the entire number 
of time intervals  of the prediction time horizon . 
While  denotes the control horizon reached through  
time intervals. Also this minimization is subject to constraints 
on the manipulated and controlled variables: 

ke
measy predy

pN pT

cT cN

min 1 maxk jI I I+ −≤ ≤     (19) 

2 2 2,min ,maxO O Oλ λ λ≤ ≤     (20) 

Eq (19) imposes a constraint to the input variables that 
corresponds to their physical limits. Eq (20) imposes a 
constraint on lamda to avoid starvation. Tuning parameters of 
the algorithm are the weight factors in the objective function 
( ,pw wλ ) and the length of the prediction and control horizon. 
The selection of the appropriate prediction horizon is mainly 
dictated by the time scale characteristics of the system. The 
computational time to reach a solution of the nonlinear 
dynamic program may affect the duration of the control 
interval.  

6. SIMULATION RESULTS 

The performance of the proposed MPC framework is 
evaluated through a number of simulated examples for a high 
temperature PEMFC. In all cases, unless otherwise stated, the 
system operates at constant temperature 
( ) and constant cathode pressure 
(

180sim processT T= = C
2bargan catp p= = ). The influence of the controller tuning 

parameters on the closed-loop performance of the MPC is 
investigated. The main parameters are the control and the 
prediction horizons and the weighting factors of the power 
and oxygen concentration terms. Both prediction and control 
horizons were chosen equal to 15 seconds while the intervals 
of the control actions were chosen equal to 5 seconds. The 
length between two consecutive control actions ( ctΔ ) was 
selected according to the required computational time of the 
optimization problem. 
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Fig. 4 Power response with unequal weights 
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Fig. 5 Oxygen excess ratio level with unequal weights 
0.8,  0.2pw wλ= =  

Fig 4-7 show the sensitivity of the MPC performance on the 
weighting factors in the objective function. In the first case 
(Fig 4-5) more importance is given on the tracking of the 
power output while in the second case (Fig 6-7) an equal 
importance to both control objectives is imposed. In both 

     



 
 

 

cases the desired setpoints were followed satisfactorily. 
However, in the first case excess O2 is quite low which may 
cause difficulties in the fuel cell operation (i.e. oxygen 
starvation). The power output offset is small in the first case 
where a larger weight is used for the power output difference 
term. A better compromise is achieved in the second case 
with the excess oxygen closer to the desired level. 
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Fig. 6 Power response with equal weights  0.5,  0.5pw wλ= =
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Fig. 7 Oxygen excess ratio level with equal weights 
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Fig. 8 Power response with altered process temperature  

In another case study (Fig 8), significant mismatch in the fuel 
cell temperature between the Virtual Process and Process 
Model ( , ) is deliberately 
introduced in order to asses the robustness of the proposed 
strategy to a significant disturbance. Fig. 8 illustrates the 
ability of the nonlinear MPC scheme to compensate for the 
temperature variation and successfully satisfy the control 
objective by close tracking of the desired power output level. 
The application of the constrained MPC framework allowed 
for an accurate targeting of the desired oxygen concentration 
and was able to give a near maximum power. 

180simT C= 140processT = C

7. CONCLUSIONS 

In this work a dynamic model for a high temperature PEM 
fuel cell stack based on single cell was developed and an 
advanced constrained predictive control framework was 
implemented. Having tested and verified some selected 
operational parameters a  reliable MPC scheme was resulted. 
The MPC framework that combines two contradictive 
operational objectives, can safely lead to an operation that 
maximizes the power of a given size FC. The proposed MPC 
will be implemented and verified in the experimental fuel cell 
system. In order to improve the overall efficiency and safe 
operation, the controller would further include mathematical 
models for the auxiliary subsystems.  

REFERENCES 

Bordons Carlos, et. al (2006), Constrained Predictive Control 
Strategies for PEM fuel cells, Proceedings of the 2006 
ACC, Minnesota, USA, June 14-16, 2486-2491 

Jensen Jens Oluf, et al. (2007), High temperature PEMFC 
and the possible utilization of the excess heat for fuel 
processing, International Journal of Hydrogen Energy, 
32 2007, 1567 – 1571 

Golbert J., Lewin, D.R. (2007) Model-based control of fuel 
cells: optimal efficiency, Journal of Power Sources, 173 
(1), 298-309 

Krstic M., H.-H. Wang (2000), Stability of extremum seeking 
feedback for general nonlinear dynamic systems, 
Automatica, 36 (4) 2000, 595–601 

Larminie J, Dicks A. (2003), Fuel Cell Systems Explained, 
2nd Edition, John Wiley & Sons Ltd 

Mann Ronald F., et. Al (2000), Development and application 
of a generalized steady-state electrochemical model for a 
PEM fuel cell, Journal of Power Sources, 86,173–180 

Pukrushpan J., et. al (2004), Control of Fuel Cell Breathing, 
IEEE Control Systems Magazine, 0272-1708/04, 30-46 

Vahidi Α., et. al (2006), Current Management in a Hybrid 
Fuel Cell Power System: A Model-Predictive Control 
Approach, IEEE Transactions on Control Systems, vol. 
14, no 6 2006, 1047-1057 

Zhong Zhi-dan, et. al (2008), Adaptive maximum power 
point tracking control of fuel cell power plants, Journal 
of Power Sources, 176 2008, 259–269 

     


