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Abstract: In this article we present an “explicit RTO” approach for achieving optimal steady
state operation without requiring expensive online calculations. After identifying regions of
constant active constraints, it is shown that there exist some optimally invariant variable
combination for each region. If the unknown variables can be eliminated by measurements and
system equations, the invariant combinations can be used for control. Moreover, we show that
the measurement invariants can be used for detecting changes in the active set and for finding
the right region to switch to. This explicit RTO approach is applied to a CSTR described by a
set of rational equations. We show how the invariant variable combinations are derived, and use
polynomial reduction to eliminate the unknown variables to obtain the measurement invariants
which are used for control.
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1. INTRODUCTION

Optimal operation of chemical processes becomes increas-
ingly important in order to be able to compete in the
international markets and to minimize environmental im-
pact. A well established tool to achieve this goal is real-
time optimization (RTO), where the optimal set-points are
computed on-line, based on measurements taken at given
sample times. This involves setting up and maintaining a
real-time computation system, which can be very expen-
sive and time consuming.

An alternative approach is to use off-line calculations and
analysis to minimize or avoid complex on-line compu-
tations for example by finding optimally invariant mea-
surement combinations (’self-optimizing’ variable combi-
nations, (Narasimhan and Skogestad (2007)). Controlling
these combinations to their setpoints guarantees to operate
the process optimal or close to optimal, with a certain
acceptable loss (Skogestad (2000)). The combinations can
be controlled by a simple control structure based on PI
controllers. The conventional real-time optimization prob-
lem can either be replaced completely or partially by con-
trolling invariant variable combinations. In practice, many
processes are operated by something similar to this alter-
native approach, although not always consciously. That
is, the optimization problem is not formulated explicitly
and the control variables are chosen from experience and
engineering intuition.

This publication presents two main results. The first
one is extending the idea of self-optimizing control from
unconstrained linear problems to constrained nonlinear
problems. To the authors knowledge, optimally invariant
variable combinations have been considered systematically
only for linear plants with quadratic performance index
(see e.g. Alstad et al. (2009)). A second contribution is

the proof that using controlled variable to identify new
sets of active constraints will always identify the correct
active set. Although measurement invariants have been
used before for active set identification (Manum et al.
(2007)), it has not been proved that this holds for nonlinear
problems, too.

2. GENERAL PROCEDURE

We consider a plant at steady state and assume the plant
performance can be modelled as an optimization problem
with a performance index J together with equality and
inequality constraints, g(u,x,d) and h(u,x,d):

min
u,x

J s.t

{
g(u,x,d) = 0
h(u,x,d) ≤ 0

(1)

The variables u, x, d denote the manipulated input vari-
ables, the internal states, and the disturbance variables,
respectively. In addition, we assume that there are mea-
surements y(x,u,d), which provide information about the
internal states and the disturbances of the process.

In order to obtain optimal operation we do not optimize
the model on-line at given sample times. Instead, we use
the structure of the problem to find optimally invariant
variable combinations for the system. Since the available
number of degrees of freedom changes when an inequality
constraint becomes active, we have to find a new set
of invariant measurement combinations for each set of
constraints that becomes active during operation of the
plant. This makes it necessary to define separate control
structures for each region. Therefore, the first step is to
partition the operating space into regions defined by the
set of active constraints, i.e. the system is optimized for all
possible disturbances d and the active constraints in each
region are identified.



In the second step, we determine (nonlinear) variable
combinations which yield optimal operation when kept
at their constant setpoint. The variables resulting from
this step cannot be used for control directly, because they
contain unknown disturbance variables and internal states
which are not known. To be able to control the system, we
attempt to “model” the variable invariants by expressions
which only contain known variables. These can then be
used for control in feedback loops.

The last step in this procedure is to define rules for de-
tecting and switching regions when the active constraints
change. In many cases this can be done by monitoring
the controlled variables of the neighbouring region and
switching when the controlled variable of the neighbouring
region reaches its optimal value.

3. DETERMINING INVARIANT VARIABLE
COMBINATIONS

3.1 Invariants for systems with quadratic objective and
linear inequality constraints and linear measurements

To illustrate the idea of finding invariant variable combina-
tions we first consider a problem with a quadratic objective
and linear constraints. After having identified nr regions
of active constraints, we can define an equality constrained
optimization problem for each region.

Given z ∈ R
nz×1 and d ∈ R

nd×1, consider the constrained
optimization problem:

min
z

J = min
z

[zT dT]

[
Jzz Jzd

Jzd
T Jdd

] [
z
d

]
(2)

subject to

Azz + Add = Ã

[
z
d

]
= 0 (3)

where we have Az ∈ R
nc×nz has rank nc, Ad ∈ R

nc×nd ,
Ã = [Az Ad], and Jzz > 0.

Eq. (3) may include the model equations as well as active
(equality) constraints. Instead of using (3) to eliminate
nc internal states to obtain an unconstrained problem,
we keep the constraints explicit in the formulation as
this more general formulation will be used later when
presenting the nonlinear case (where the internal states
are not easily substituted). The Karush-Kuhn-Tucker first
order optimality conditions give

∇zL = ∇zJ + AT
z λ = J̃

[
z
d

]
+ AT

z λ = 0, (4)

where J̃ = [Juu Jud], and λ is the vector of Lagrangian
multipliers. Therefore, from (4) we have that

AT
z λ = −J̃

[
z
d

]
. (5)

Az is not full column rank, so let Nz be a basis for the
null space of Az with dimension nDOF = nz − nc. Then
NT

z AT
z = 0, and at the optimum we must have

cv(z,d)
�
= NT

z J̃

[
z
d

]
= 0 (6)

for the system (5) to be uniquely solvable for λ. Keeping
cv(z,d) at zero (in addition to the active constraints), is

always optimal. However, it cannot be used for control
directly, as it contains unknown (unmeasured) variables.
For control, we need a function of measurements c(y),
such that the difference between the invariant and the
measurement combination is minimal. Here, we want to
“model” cv(z,d) perfectly, such that

c(y) = cv(z,d). (7)

Then controlling c(y) = 0 yields optimal operation. If we
have nz + nd independent linear measurements

y = Gy

[
z
d

]
, (8)

where Gy is invertible, we can use them with (6) to give

c(y) = NTJ̃ [Gy]−1y. (9)

However, note that we actually only need nz − nc +
nd = nDOF +nd measurements, since the model equations
(3) can be used to eliminate the constrained degrees of
freedom (internal states). This is shown in Appendix A.

Remark 1. In the unconstrained case, the optimal invari-
ant variable combination is simply the gradient, such that
we have c(y) = Hy = ∇uJ , and H = J̃ [G̃y]−1.

3.2 Invariants for polynomial and rational systems

An analog approach may be taken for obtaining invariant
variable combinations for more general systems described
by polynomials. Since rational equations can be trans-
formed into polynomials by multiplying with the common
denominator, the method is applicable to rational systems,
too.

Initially, all regions defined by constant active constraints
are determined. For each region we then have:

Theorem 1. (Nonlinear invariants). Given z,d as in sec-
tion 3.1, consider the nonlinear optimization problem

min
z

J(z,d) s.t gi(z,d) = 0, i = 1 . . . ng, (10)

and implicit measurement relations

mj(y, z,d) = 0 j = 1 . . . ny, (11)

where y is the measured variable. If the Jacobian
Az(z,d) = [∇zg] has full rank ng at the optimum through-
out the region, following holds:

(1) There exist nDOF = nz − ng independent invariant
variable combinations cv with

cv = [Nz(z,d)]
T
∇zJ(z,d), (12)

where Nz(z,d) denotes the null space of the Jacobian
of the active constraints g(z,d).

(2) If there exist polynomials αi(z,d) and βj(z,d), such
that element of cv can be expressed by

cv =
∑
i,j

(αi(z,d)gi(z,d) + βj(z,d)mj(y, z,d))+c(y),

(13)
then the term c(y) is the desired self-optimizing
variable which when controlled to zero yields optimal
operation.

Proof. Calculate the Jacobian of the constraints:

Az(z,d) =
[
[∇zg1(z,d)]T, · · · , [∇zgng

(z,d)]T
]T

(14)



Since Az(z,d) has full rank, the null space has a constant
dimension and there exist a unique vector λ which satisfies
the KKT conditions (Nocedal and Wright (2006)):

∇zJ(z,d) + [Az(z,d)]
T

λ = 0

gi(z,d) = 0, i = 1 . . . ng

(15)

For the existence and uniqueness of λ, we always must
have, that

[Nz(z,d)]
T
∇zJ = − [Nz(z,d)]

T
[A(z,d)]

T
λ, (16)

where Nz(z,d) is chosen as a basis for the nz − ng-
dimensional null space of Az(z,d). The optimal invariant
variable combination to be kept at cv = 0 is then given
by:

cv = [Nz(z,d)]
T
∇zJ(z,d) (17)

The second statement follows from the implicit relations
gi(z,d) = 0 and mj(y, z,d) = 0. �

Remark 2. This variable combination (17) is not unique in
the sense that it can be premultiplied by any nonsingular
matrix while still yielding optimal operation. However,
since the variable combination is derived from the KKT
conditions, it is unique in the sense that for a convex
optimization problem cv = 0 if the system is operated
optimally, because the stationary point is unique.

Remark 3. The full rank assumption for Az(z,d) at the
optimum is valid in most practical cases, as rank deficiency
at the optimum implies that the degrees of freedom in the
problem change.

Remark 4. The functions α and β can be found using
Gröbner theory (Cox et al. (1992)), and the condition for
the existence of polynomial functions αi and βi is that
every variable to be eliminated must appear in the initial
ideal generated by all gi and mj in lower or equal degree
than in cv.

To illustrate the concept, we present a toy example.

Example 1. (Nonlinear invariants). We consider a cost func-
tion J(z1, z2, d) = z2

1 + z2
2 subject to the constraint

g = (z1 − 1)2 + (z2 − d)2 − 5. (18)

In addition to the known z1, z2, the system has one
measurement y with the measurement relation

m = z1z2 + z1d − y = 0. (19)

First we calculate the Jacobian of (18) with respect to z

A(z1, z2, d) = [ 2(z1 − 1) 2(z2 − d) ] , (20)

and the basis of its null space:

N(z1, z2, d) = [−(z2 − d) (z1 − 1) ]
T

. (21)

After computing the gradient of the cost function J

∇J = [ 2z1 2z2 ]
T

, (22)

we obtain the invariant variable combination as in (17):

cv = [−(z2 − d) (z1 − 1) ]︸ ︷︷ ︸
[N(z,d)]T

[
2z1

2z2

]
︸ ︷︷ ︸

∇J

= 2(z1d − z2)
(23)

However, cv contains the unmeasured disturbance d, so it
cannot be used for control. Using the measurement relation
(19) and equation (13) we see by inspection that α = 0 and
β = 2 yield a c(y) which satisfies (7):

cv = 2(z1d − z2)︸ ︷︷ ︸
cv

= 0︸︷︷︸
α

g + 2︸︷︷︸
β

(z1z2 + z1d − y)︸ ︷︷ ︸
m

+ 2y − 2z2 − 2z1z2︸ ︷︷ ︸
c(y)

.
(24)

Since m = 0, we have that cv = c(y). In more complex
cases, α and β have to be determined by computing a
Gröbner basis for the constraint and measurement rela-
tions and by reducing cv modulo the Gröbner basis.

4. SWITCHING OPERATING REGIONS

After the controlled variables for all regions are identified,
the remaining issue is to determine how to switch between
operating regions. Under certain assumptions, the switch-
ing points can be found using the already defined invariant
variable combinations.

Theorem 2. (Switching regions). Assume the system (10)
convex and at the optimum ∇zJ(z,d) �= 0 wherever a
constraint is active. If a disturbance moves the system
continuously from one region of active constraints to an-
other, (i.e. the system does not jump over regions) the
exact switching points can be detected by monitoring the
controlled variables and the constraints of the neighbour-
ing regions.

Proof. We consider to type of changes, denoted type I
and II. In changes of type I, a constraint is replaced
or added to the current active set. This change is eas-
ily detected by monitoring the active constraints of the
neighbouring regions. As the system is operated optimally
and the disturbance moves the system gradually to the
new region, the region boundary is reached, when the
constraint is hit.

In changes of type II, a constraint becomes inactive
and the released degree of freedom is controlled using
a measurement invariant. Detecting a type II change is
done by monitoring the invariant variable combinations
of the neighbouring regions. If if an invariant variable
combination hits the zero value, the region is switched. The
invariant variable combinations assume the value zero only
at the switching points. This can be seen by contradiction.
Consider two regions with cv

1 and cv
2. Let the system be

operated optimally at (z0,d0) in the constrained region 1
(cv

1(z0,d0) = 0), and let cv
2(z0,d0) = 0. The Jacobians of

the set of constraints g1(z,d) and g2(z,d) are denoted as
A1(z,d) and A2(z,d).

Since cv
1(z0,d0) = cv

2(z0,d0) = 0 we have[
N1(z0,d0)

]T
∇zJ(z0,d0)︸ ︷︷ ︸

=0

=
[
N2(z0,d0)

]T
∇zJ(z0,d0)︸ ︷︷ ︸

=0

.

(25)

Since ∇zJ(z,d) �= 0, this implies that A1 and A2 are
row equivalent and the null spaces of A1(z0,d0) and
A2(z0,d0) have the same basis. However, this is not
possible, because by assumption, A1 and A2 have different
ranks. Therefore the invariant variable combination of
a “less constrained” region cannot become zero in a
region which is “more constrained”. Thus, the active
constraints and the measurement combinations can be
used for determining when to switch region. �
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Fig. 1. CSTR with two reactions

Table 1. Variables relevant for control

Measurements y F, cB , q

Manipulated variables u FA, FB

Unknown disturbance d Rate constant k1

Internal states zunknown cA, cC

5. APPLICATION

We consider an isothermal CSTR with two parallel re-
actions, Fig. 1, from Srinivasan et al. (2008). Two feed
streams FA and FB with the concentrations cA and cB

react in a tank to the desired product C and the undesired
side product D. The tank is equipped with one outflow
in which all components are present. In order to enable
isothermal reaction conditions a temperature loop is closed
such that the correct amount of heat is removed from the
system. The temperature control is assumed to be perfect.
The products C and D are formed by the reactions:

A + B
k1

−→ C

2 B
k2

−→ D
(26)

The optimization objective is to maximize the desired
product (FA + FB)cC weighted by a yield factor (FA +
FB)cC/(FAcA,in). The amount of heat to remove and the
maximum flow rate are limited. This lets us formulate the
optimization problem of the system as follows:

max
FA,FB

(FA + FB)cC

FAcAin

(FA + FB)cC (27)

subject to

FAcAin
− (FA + FB)cA − k1cAcBV = 0

FBcBin
− (FA + FB)cB − k1cAcBV − 2k2c

2
BV = 0

−(FA + FB)cC + k1cAcBV = 0

FA + FB − F = 0

k1cAcBV (−ΔH1) + 2k2cBV (−ΔH2) − q = 0

q − qmax ≤ 0

F − Fmax ≤ 0

(28)

The variables k1 and k2 are the rate constants for the
two reactions, (−ΔH1) and (−ΔH2) are the corresponding
reaction enthalpies, q the heat produced by the reactions,
V the reactor volume, and F the total flow rate. The
measured variables (y), the manipulated variables (u), the
disturbance variables (d), and the internal states are listed
in table 1, and the parameter values of the system are given
in table 2. The combined vector of states and manipulated
variables is

z = [ cA, cB , cC , FA, FB ]
T

. (29)

5.1 Identifying operational regions

The first step of the procedure, optimizing the system off-
line for all possible values shows that the system operation

Table 2. Parameters

k1 l/(mol h) 0.3-1.5
k2 l/(mol h) 0.0014
(−ΔH1) j/mol 7 × 104

(−ΔH2) j/mol 5 × 104

cA,in mol/l 2
cB,in mol/l 1.5
V l 500
Fmax l 22
qmax kJ/h 1000
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Fig. 2. Optimal values of the constrained variables

space can be partitioned into three regions defined by the
set of active constraints. In region 1, for values of k1 below
about k1 = 0.65 only the flow constraint is active (Fig. 2).
In region 2 for values between k1 = 0.65 and k1 = 0.8 both
constraints are active, and in region 3 above k1 = 0.8 only
the heat constraint is active.

After satisfying the active constraints in the regions we are
left with NDOF,1 = 1 for region 1, NDOF,2 = 0 for region
2, and NDOF,1 = 1 for region 3.

In region 1, one of the manipulated variables (flow rates)
is used to control the active constraint (maximum flow)
and the other manipulated variable is used to control
the invariant measurement combination of the region. In
region 2 we simply control the active constraints, keeping
q at qmax and F at Fmax. In region 3, again one of
the manipulated variables is used to control the active
constraint (maximum heat removal) and the other one is
used to control the invariant measurement combination of
region 3.

5.2 Determining the invariant variable combinations

Using the information from the previous section, we deter-
mine the invariant variable combinations in each region.
First, we calculate the null space of Jacobian of the active
set NT

z and multiply it with the gradient of the objective
function ∇zJ(z,d), as in (17) to obtain the invariant vari-
able combination. Generally this is a fractional expression,
but since we are controlling it to zero, it is sufficient to
consider only the numerator of NT

z ∇zJ . For region 1 we
obtain the invariant



cv
1(z,d) = −(FA + FB)2cC

[
−3cCF 2

BFA − 3cCF 2
AFB

− 4cCcBF 2
Ak2V − 4cCk2V

2k1c
2
BFA − cCF 3

A

− cCF 3
B − 4cCk2V

2k1c
2
BFB − cCcBF 2

Ak1V

− 4cCcBF 2
Bk2V − cCcBF 2

Bk1V − cCF 2
AcAk1V

− cCF 2
BcAk1V − 8cCFAcBFBk2V

− 2cCFAcBFBk1V − 2cCFAFBcAk1V

+ 8FAk1V
2cA,ink2c

2
B + 2F 2

Ak1V cBcA,in

+ 2FAk1V FBcBcA,in − 2F 2
Ak1V cB,incA

−2FAk1V FBcB,incA]
(30)

which should be controlled to zero. This invariant can be
simplified somewhat further, since we know that (FA +
FB)2cC �= 0. It is therefore sufficient to control the second
term in the square brackets in (30) to zero.

As mentioned above, region 2 does not have any uncon-
strained degree of freedom, so satisfying all active con-
straints yields optimal operation. In region 3 we obtain an
expression similar to (30) for cv

3(z,d).

5.3 Eliminating unknown variables

The invariant variable combination cv
1(z,d) and cv

3(z,d)
still contain the unknown and internal variables k1, ca and
cC , so they cannot be used for feedback control directly. In
the next step the unknown variables have to be replaced
by expressions in the measured variables, so that this
invariant can be used for control. Depending on the type of
the system equations, different methods may be applied in
this step. The general idea is that we use the measurements
together with the equations that are satisfied in the active
set to express the invariant. As all equations in this case
study are polynomial (rational expressions equal to zero
can transformed to polynomials by multiplication with the
denominator), we attempt to reduce the invariants modulo
the active set with a variable ordering that eliminates the
unknowns. To simplify the elimination procedure, k1 is
eliminated by solving the third equality constraint for k1.

k1 = (FA + FB)cC/(cAcBV ) (31)

and inserting it into (30). The other unknown variables cA

and cC are eliminated using polynomial reduction and the
resulting measurement invariant in region 1 becomes:

c1(y) = −Fmax(FmaxcB + 2c2
Bk2V − FBcB,in)2

(4c4
Bk2

2V
2 + 4Fmaxc3

Bk2V − 6k2V c2
BFBcA,in

− 4k2V FmaxcB,inc2
B + 6k2V c2

BFmaxcA,in

+ F 2
maxc2

B − 2F 2
maxcB,incB + 2cBF 2

maxcA,in

− 2cBFmaxFBcA,in − F 2
Bc2

B,in + 3FmaxFBcA,incB,in

− F 2
BcA,incB,in + 2FmaxFBc2

B,in − 2F 2
maxcA,incB,in)

(32)

This expression depends only on known variables and
parameters. The measurement invariant for region 3 is
found in the same way:

c3(y) = −(FAcB + cBFB + 2c2
Bk2V − cB,inFB)2

(−3F 2
BqmaxcB,incB + 8c4

Bqmaxk2
2V

2

+ F 2
Bqmaxc2

B,in + 2c2
BF 2

Bqmax + 2F 2
Aqmaxc2

B

+ 4c4
BFBk2

2cB,inV 2ΔH2 + 8c3
BFBqmaxk2V

+ 2c3
BF 2

Bk2cB,inV ΔH2 − 6c2
BFBqmaxk2cB,inV

− 2c2
BF 2

Bk2c
2
B,inV ΔH2 − F 2

AqmaxcB,incB

+ 4FAc2
BFBqmax + FAFBqmaxc2

B,in + 2F 2
AcBqmaxcA,in

+ 6F 2
Ak2cB,inV ΔH2c

3
B + 12FAk2

2cB,inV 2ΔH2c
4
B

+ 8FAc3
BFBk2cB,inV ΔH2 + 8FAc3

Bqmaxk2V

− 2FAc2
Bqmaxk2cB,inV − 6FAc2

BFBk2c
2
B,inV ΔH2

− 4FAFBqmaxcB,incB + 2F 2
Ac2

Bk2cA,incB,inV ΔH2

− F 2
AqmaxcA,incB,in + 4F 2

Ac3
Bk2cA,inV ΔH2

+ 4FAc3
BFBk2cA,inV ΔH2 − 2FAc2

BFBk2cA,incB,inV ΔH2

+ 4FAc2
Bqmaxk2cA,inV + 2FAcBFBqmaxcA,in

− FAFBqmaxcA,incB,in)
(33)

Although these expressions seem complicated, they con-
tain only known variables and can therefore be easily
evaluated and controlled to their setpoint using a PI con-
troller. In both invariants, the term in the first bracket is
never zero (to see this, compare it with the second equality
constraint in (28)), so it is sufficient to control the term in
the second bracket to zero.

The values of these polynomials vary over order of magni-
tudes, so they are scaled to avoid numerical problems. The
invariant of region 1 was scaled by 105 and the invariant
of region 3 was scaled by 106.

5.4 Using measurement invariants for control and region
identification

We use the controlled variables of the neighbouring regions
for determining when to switch. Starting in region 1
optimal operation is achieved by using the two inputs
FA and FB to control c1(y) = 0 and FA + FB = Fmax.
If k1 increases, the amount of heat to be removed (the
controlled variable of region 2) increases until it reaches the
maximum possible value, qmax (Fig 3). When this value is
reached, the control structure has to be changed to region
2. Now the inputs are used to control q = qmax and FA +
FB = Fmax. While operating in region 2 the controlled
variables of the neighbouring regions, c1(y) and c3(y) are
monitored. If k1 increases further, c3(y) approaches its
optimal setpoint for region 3 and we switch region when
the optimal value is reached. Switching back from the
different regions is done in an analog manner.

6. DISCUSSION

The invariant variable combinations above are obtained
by a two-step method, in which first the Lagrangian
multipliers are eliminated, and subsequently the unknown
variables (disturbances and internal states) are replaced
by measurement relations. However, for systems which can
be described by rational functions, as the CSTR example,
there exists possibilities to eliminate both, the Lagrangian
multipliers and the unknown variables simultaneously.
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This is done by defining an ideal which is generated
by the polynomials describing the Karush-Kuhn-Tucker
conditions and choosing an appropriate term order to
eliminate the unknown disturbance and state variables
(Cox et al. (1992)) Applying the chosen order to generate
the elimination ideal gives a set of equations which are
fulfilled at all times when the KKT conditions hold, but
which do not contain any of the unknown variables.

Choosing a polynomial from this set which is not a (poly-
nomial) combination of the equality constraints (i.e. which
is not in the ideal generated by the equality constraints),
gives a candidate for the measurement invariant. However,
presently there are two challenges with the simultaneous
method. First, the system with the chosen invariant mea-
surement combinations may have (many) more roots than
the KKT system. If we use them for control, we might
control to “solutions” which do not satisfy the first order
optimality conditions. Second, it is generally difficult to
determine a term ordering a priori which eliminates the
unknown variables and, at the same time ensures that
the equations in the elimination ideal are not polynomial
combinations of the equality constraints. If this is the case,
the chosen variable combination is in the ideal generated
by the equality constraints and the invariant will always be
zero when the equality constraints are satisfied. This leads
to an infinite number of solutions for the system. So far
we are not aware of a method to handle these challenges
in a systematic way, but we have found invariants in the
elimination ideals which yield optimal operation in for the
CSTR case study shown above.

The two step method presented in this work fundamentally
shows the existence of invariant variable combinations for
nonlinear systems and gives an easy way to compute and
to use them. Additionally, in contrast to the elimination
ideal method, the two-step method is principally not
restricted to polynomial or rational models, provided that
the unknowns can be eliminated.

7. CONCLUSION

The procedure presented in this paper is applicable to
nonlinear steady state optimization problems and consists
of four steps. First, regions of constant active constraints

are defined. Second, optimally invariant nonlinear vari-
able combinations are determined for each of the regions.
Third, the unknown internal variables and disturbances
are eliminated from the invariants to obtain variable
combinations containing only known variables (measure-
ments). It is proven that these variables can be used to
uniquely identify a new active set. This makes the method
applicable over a wide disturbance range with changing
active sets. Finally, we have applied the method to a case
study with a four component isothermal CSTR.

Although designing a self-optimizing control structure may
require more work in advance, its implementation and
maintenance is easy in practice. After the control structure
is designed, optimal operation can achieved by simple PI
controllers and there is no need to invest in expensive real-
time equipment to operate the process optimally.
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Appendix A. ELIMINATING INTERNAL STATES

We define the combined input and internal state vector as

z =
[
xT uT

]T
. (A.1)

It is assumed that we have nu + nd independent measure-
ments for system 3.

y = G̃y
[
uT dT

]
(A.2)

with G̃y invertible. Then[
z
d

]
=

[
x
u
d

]
=

⎡
⎣−A−1

x Au −A−1
x As

I 0
0 I

⎤
⎦ [

u
d

]
︸ ︷︷ ︸

=[G̃y]−1y

, (A.3)

and we derive the optimal measurement combination
which satisfies (7) as

c(y) = Hy (A.4)

with

H = NT
z J̃

⎡
⎣−A−1

x Au −A−1
x As

I 0
0 I

⎤
⎦ [

G̃y
]−1

. (A.5)


