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Abstract: Analysis and safety considerations of chemical and biological processes frequently
require an outer approximation of the set of all feasible steady-states. Nonlinearities, uncertain
parameters, and discrete variables complicate the calculation of guaranteed outer bounds. In
this paper, the problem of outer-approximating the region of feasible steady-states, for processes
described by uncertain nonlinear differential algebraic equations including discrete variables and
discrete changes in the dynamics, is adressed.
The calculation of the outer bounding sets is based on a relaxed version of the corresponding
feasibility problem. It uses the Lagrange dual problem to obtain certificates for regions in
state space not containing steady-states. These infeasibility certificates can be computed
efficiently by solving a semidefinite program, rendering the calculation of the outer bounding
set computationally feasible. The derived method guarantees globally valid outer bounds for
the steady-states of nonlinear processes described by differential equations. It allows to consider
discrete variables, as well as switching system dynamics.
The method is exemplified by the analysis of a simple chemical reactor showing parametric
uncertainties and large variability due to the appearance of bifurcations characterising the
ignition and extinction of a reaction.
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1. INTRODUCTION

In the chemical and biochemical processing industry one
frequently has to face large modelling uncertainties and
process disturbances. Precise reaction mechanisms and
kinetic parameters might be unknown and operating con-
ditions, e.g. feed flowrate, or feed temperature, can be
time dependent. Additionally, many of the substances
handled in a chemical plant are potentially dangerous,
e.g. inflammable or explosive. Reactions can lead to the
disposal of large amounts of thermal energy, what makes
safety considerations necessary. Stationary temperature
and pressure have to stay below critical values and for
instance in pharmaceutical processes the variability within
the drug production has to be restricted. Hence, a detailed
analysis of the process uncertainty is essential.

In this paper we address the problem of determining the
set of all feasible steady-states of a process, for a class of
uncertain hybrid nonlinear differential algebraic systems.
Using the set of feasible steady-states the stationary pro-
cess uncertainty can be upper bounded. Furthermore, it
can be used to check whether for all possible disturbances,
parameter variations, and operating conditions the process
operates within previously defined constraints. One exem-

plary question to be asked is whether thermal runaway of
a chemical reactor can be avoided under specific failure
situations.

The physical processes taking place in chemical plants
mostly behave in a continuous fashion. There are, however
important discrete phenomena like changes in the physical
system, e.g. phase transitions, imposed qualitative changes
caused by limitation of the equipment, e.g. limited tank
capacity, discontinuous input signals and process faults
(Engell et al., 2000). To capture continuous as well as
discrete phenomena, regime based approaches are used to
model the process behavior (Seborg et al., 1989; Murray-
Smith and Johansen, 1997; Lennartson et al., 1996). Fre-
quently, one refers to this kind of models as hybrid models,
because they contain both discrete and continuous dynam-
ical components and an interface describing the interaction
of them.

For most nonlinear systems an analytical calculation of
the set of steady-states is impossible. Therefore, during
the last decade several methods have been developed for
approximating the set of feasible states, in the context of
reachability analysis. Those methods are rather efficient
if the considered system is linear time-invariant (Girard



and Guernic, 1996) and also for uncertain linear systems
some results exist (Girard, 2005). However, if the systems
under consideration are nonlinear, the approximation of
the feasible set is more difficult. Asarin and coworkers
developed an approach for two-dimensional systems based
on piecewise linear approximation (Asarin et al., 2003)
and Ramdani et al. (2008) proposed a method for high
dimensional uncertain nonlinear systems using guaranteed
set integration, which yields good results for cooperative
systems. Nevertheless, the performance of these meth-
ods strongly depends on the particular structure of the
nonlinear system and in many cases the results are very
conservative.

Due to this drawback of set-based approaches, for the
analysis of nonlinear systems, often simple Monte-Carlo
type methods are employed (Robert and Casella, 2004).
However, such approaches only provide the complete set of
possible steady states in the limit of infinite many samples,
i.e. important solutions might be left out, especially for
highly nonlinear systems.

The method derived in this paper follows the idea pre-
sented in the work of Waldherr et al. (2008). There, recent
advances in the field of semidefinite programming (SDP)
(Parrilo, 2000; Chesi et al., 2003) are employed to compute
certificates that a given set in state space cannot contain
a steady-state for any feasible model parameterization. A
very similar approach was earlier proposed by Kuepfer
et al. (2007) for parameter estimation and later extended
to dynamical systems by Borchers et al. (2009). How-
ever, all these methods are restricted to systems described
by polynomial vector fields, which is rarely the case for
chemical processes. Furthermore, discrete variables or pa-
rameters, as might occur in the analysis of chemical and
biological processes, have not been considered.

In the following, an approach will be presented, which
overcomes this shortcoming and allows the outer approxi-
mation of the set of all feasible steady-states of a process
described by uncertain hybrid nonlinear differential alge-
braic equations with non-polynomial vector fields. Thus,
systems combining continuous dynamics with logic or dis-
crete components can be studied. Furthermore, a more
elaborate algorithm is proposed to obtain a more precise
approximation of the set of feasible steady-states, in cases
the considered system has multiple steady-states.

The remainder of this paper is structured as follows: In
Section 2 the problem of bounding the set of steady-
states for processes described by non-polynomial hybrid
differential algebraic equations is presented. Section 3 for-
malizes the problem statement. In Section 4 the resulting
feasibility problem is relaxed to a semidefinite program
which is used by the algorithm outlined in Section 5 to
estimate the set of feasible steady-states. In Section 6 we
provide as an example the analysis of a CSTR, before final
conclusions are provided

Mathematical notation: The space of real symmetric n×
n matrices is denoted as Sn. N b

a denotes the discrete
set {1, . . . , nb

a}, where nb
a is the number of considered

variables. The positive semidefiniteness of a quadratic
matrix X ∈ Sn is denoted X � 0 and the trace of X
by tr X. The transposed vector (xd)T is written as xdT .

2. PROBLEM STATEMENT

The processes under consideration are supposed to be
described by hybrid differential algebraic systems which
exhibit both continuous and discrete dynamical behavior.
Such a process description is quite general. It covers for
instance reaction networks which allow phase transitions,
as well as discrete variables/inputs such as the opening of
a valve or the on/off status of a heater. Mathematically,
we assume that the process is described by

0 = F d(ẋd, xd, pd, ud), xd(0) = xd
0 (1)

Here xd ∈ Rnd
x is the state vector, pd ∈ Rnd

p the vector
of parameters, u ∈ Rnd

u the vector of inputs (externally
manipulated variables), and F d : Rnd

x × Rnd
x × Rnd

p ×
Rnd

u → Rnd
x the mapping for a given discrete decision

variable d ∈ N. The decision variable d is assumed to be
time dependent with d(t) ∈ D.

To derive such hybrid differential algebraic descriptions
in which each node captures the dynamics under certain
operating conditions and to define switching surfaces is
often easier than deriving ordinary differential equation
models, holding for all process configurations.

In the following we are interested in the steady-state
behavior of (1). The problem under consideration is to
find all possible, or at least an outer bound of all, steady
states of (1):
Problem 1. (Set of feasible steady states): Given the sets
D ⊂ N, Pd ⊂ Rnd

p and Ud ⊂ Rnd
u , compute the set X ∗s

which contains all feasible steady-states of (1).

Note that the set of feasible steady-states for a given
decision variable d ∈ D is defined by

0 = F d(0, xd, pd, ud). (2)
Hence problem 1 can be split into nd subproblems, where
nd is the cardinality of D. For each subproblem one obtains
a set of feasible steady states

X d,∗
s = {xd ∈ Rnd

x | ∃ pd ∈ Pd,ud ∈ Ud :

fd(xd, pd, ud) = 0},
(3)

in which fd(xd, pd, ud) = F d(0, xd, pd, ud). The whole set
of feasible steady-states is given by the union of all steady-
states

X ∗s =
⋃

d∈D

X d,∗
s . (4)

In the following the problem of computing an outer-
approximation of X ∗s is considered. This was previously
done by Waldherr et al. (2008) for differential equations
with polynomial right hand sides. The main contribution
of this paper is a generalization of these results to hybrid
non-polynomial DAE systems.

3. BOUNDING BY PIECEWISE-POLYNOMIAL
FUNCTIONS

The computational method we propose allows to handle
uncertain systems that are described by polynomial equa-
tions. Therefore, (2) is transformed to a set of uncertain
polynomial equations. In the case that fd is rational, this
can be trivially achieved by multiplying with the denomi-
nator. In cases in which the systems are non-rational, it is
more difficult.
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Fig. 1. Saturation function as example for the partitioning
of piece-wise polynomial functions.

Savageau and Voit (1987) showed that any system with
smooth non-polynomial nonlinearities can be converted
to a polynomial system of larger state dimension, which
is restricted via equality constraints to a manifold of the
dimension of the original system. Unfortunately, in many
cases the equality constraints are non-polynomial and so
their method is not applicable for our approach. Instead,
we apply a different method, which achieves a comparable
result without enlarging the state space.

Piece-wise polynomial functions: In case that fd is piece-
wise polynomial, e.g. piece-wise linear, the state space can
be partitioned into different intervals. This leads to an
increase in the number of decision variables of the hybrid
system and is illustrated in Figure 1 for the saturation
function, which appears for instance if a process contains
flow limiting valves. It has to be emphasized that in cases
like this, the partitioning depends on the state. Thus, for
a given region in state space X only a subset of decision
variables d ∈ D is accessible.

General nonlinear functions: For functions which are not
piece-wise polynomial, e.g. the exponential terms in the
Arrhenius like rate constant, polynomial lower and upper
bounds can be introduced as

gd
1(xd, pd, ud) ≤fd(xd, pd, ud) ≤ gd

2(xd, pd, ud)

∀xd ∈ X d, pd ∈ Pd, ud ∈ Ud,
(5)

in which X d is the set in state space of interest. Using
these bounds it can be shown that
X d,∗

s ⊆{ xd ∈ Rnd
x |∃ pd ∈ Pd, ud ∈ Ud, c ∈ [0, 1] :

cgd
1(xd, pd, ud) + (1− c)gd

2(xd, pd, ud) = 0
}

.
(6)

Hence, the steady-state constraint fd(xd, pd, ud) = 0 can
be substituted by the polynomial constraint
cgd

1(xd, pd, ud)+ (1− c)gd
2(xd, pd, ud) = 0, c ∈ [0, 1], (7)

where c has to be appended to pd. This step corre-
sponds to a constraint relaxation and ||fd(xd, pd, ud) −
gd

i (xd, pd, ud)|| � 1 should be enforced to keep the differ-
ence between X d,∗

s and the set of solutions of the relaxed
problem small.

Combinations of the methods, e.g. rational, polynomial
and nonlinear functions are possible, see Section 6.

4. BOUNDING STEADY STATES

In this section a method to compute an outer approxima-
tion of the state space region containing all steady-states is
derived. For this purpose we define the feasibility problem,

(P ) :

 find d ∈ D, xd ∈ Rnd
x , pd ∈ Rnd

p , ud ∈ Rnd
u

subject to fd(xd, pd, ud) = 0
xd ∈ X d, pd ∈ Pd, ud ∈ Ud,

which is in the following used for the classification of X d.
If (P ) is infeasible, X d cannot contain any equilibrium
points. (P ) is called a mixed integer nonlinear program.
Unfortunately, the feasibility problem (P ) is in general
non-convex and NP-hard.

Kuepfer et al. (2007) proposed a framework for relaxing a
polynomial non-convex feasibility problem to a semidefi-
nite program (SDP). Due to inherent convexity of SDPs,
these problems can be solved computationally efficient, e.g.
via primal-dual interior point methods. In the following,
we present an approach which is based on the work of
Kuepfer et al. (2007) and has been used for analysis of
the set of feasible steady states in the case of biochemical
reaction networks in Waldherr et al. (2008).

For the relaxation of (P ) to a SDP, the original feasibility
problem is at first rewritten as a quadratic feasibility
problem (QP ), for each d. Therefore, the vectors ξd ∈ Rnd

ξ

are introduced, which consists of the monomials of the
model equation (1), i.e.

ξd = (1, xd
i , pd

j , ud
k, xd

i p
d
j , xd

i u
d
k, pd

i u
d
k, . . .)T (8)

for all i ∈ Nd
x , j ∈ Nd

p , and k ∈ Nd
u . Using this monome

vectors ξd, the equality constraints fd(xd, pd, ud) = 0 can
be transformed to

0 = fd
i (xd, pd, ud) = ξdT Qd

i ξ
d, i ∈ Nd

x , (9)
in which Qi ∈ Snξ . Note that for higher order terms,
additional constraints have to be introduced. For instance
if ξd contains the second order term xd

1p
d
1, the constraint

xd
1p

d
1 = xd

1 · pd
1 must be introduced to express the de-

pendency of the higer order monomial on the first order
monomials. This leads to additional constraints of the
form,

ξdT Qd
i ξ

d = 0, i ∈ Nd
c , (10)

in which Qi ∈ Snξ , Nd
c = {nd

x + 1, . . . , nd
x + nd

c}, and nd
c is

the number of dependencies. To simplify the notation we
set Nd

xc = Nd
x ∪Nd

c .

To further simplify the notation we restrict X d, Pd, and
Ud to be generated by the intersection of half-spaces, e.g.
X d, Pd, and Ud can be convex polytopes. In this case,
xd ∈ X d, pd ∈ Pd, and ud ∈ Ud can be written as

Bdξd ≥ 0, (11)

in which Bd ∈ Rnd
b×nd

ξ , and nd
b is the sum of constraints

on xd, pd, and ud.

The original feasibility problem (P ) can then be restated
as

(QP ) :


find ξd ∈ Rnd

ξ , d ∈ D
subject to ξdT Qd

i ξ
d = 0, i ∈ Nd

xc

Bdξd ≥ 0
ξd
1 = 1.

Using the ideas suggested by Parrilo (2003), the (QP ) is
subsequently relaxed to a SDP, for each d, by introducing
the matrices Xd = ξdξdT and dropping the appearing non-
convex constraint rank(Xd) = 1. This leads to the relaxed
feasibility problem



(RP ) :



find Xd ∈ Snd
ξ , d ∈ D

subject to tr(Qd
i X

d) = 0, i ∈ Nd
xc

BdXded
1 ≥ 0

BdXdBdT ≥ 0
tr(ed

1e
dT
1 Xd) = 1

Xd � 0,

in which ed
1 = (1, 0, . . . , 0)T ∈ Rnd

ξ . Note that the relax-
ation may induce additional solutions. To reduce conser-
vatism, the redundant constraint BdXBdT ≥ 0 is added,
which is fulfilled by every solution of the problem (QP )
(Kuepfer et al., 2007).

From (RP ) one can derive the Lagrange dual problem
(DPd) for each d,

(DPd) :


maximize νd

1

subject to ed
1λ

dT
1 Bd + BdT λd

1e
dT
1 + BdT λd

2B
d

+λd
3 + νd

1ed
1e

dT
1 +

∑
i∈Nd

xc

νd
2,iQ

d
i = 0

λd
1 ≥ 0, λd

2 ≥ 0, λd
3 � 0,

in which the Lagrange multipliers are λd
1 ∈ Rnd

b , λd
2 ∈ Snd

b ,
λd

3 ∈ Snd
ξ , νd

1 ∈ R and νd
2 ∈ Rnd

x+nd
c (Waldherr et al., 2008).

Using the dual problem, one can obtain an infeasibility
certificate for the original problem.
Lemma 2. Let νd,∗

1 be the optimal cost of (DPd). If

inf
{

νd,∗
1 | d ∈ D

}
= ∞, (12)

then the original feasibility problem (P ) is infeasible.

This follows directly from weak duality. Only if the La-
grange dual problem is unbounded from above for all d ∈ D
the infeasibility of (P ) can be guaranteed. The advantage
of the formulation using the Lagrange duals is that all
subproblems are convex and can be solved efficiently.

In case that card(D) � 1, checking all the distinct
combinations of decision variables can become very costly.
One possibility to reduce the problem size is to divide
D into subsets Di. The subsets Di can be merged to a
common node and the analysis can be performed for all
subsets instead of for all nodes. This approach can also be
combined with a hierachical refinement of the subsets Di,
which reduces the computational demand significantly.

5. ALGORITHM

Using the Lagrange dual problem (DPd), certificates for
the infeasibility of (4) can be computed. This allows to
exploit (DPd) to determine an outer approximation Xs

of X ∗s . In this work, this is done via simple a multi-
dimensional bisection algorithm (Jaulin et al., 2001). Com-
pared to the work by Waldherr et al. (2008) this allows a
better approximation of X ∗s but is computationally more
demanding. The basic implementation can be summarized
as follows:

Algorithm: Xs = Approximation-X ∗s (X ,P,D)

1. If volume(X ) < ε, return Xs = X
2. Check feasibility of DPd(X ,P,D), ∀d ∈ D
3. If inf

{
νd,∗
1 | d ∈ D

}
= ∞, return Xs = ∅

4. If inf
{

νd,∗
1 | d ∈ D

}
6= ∞:

Q

cAf

Q

cA, cBVR

A→ B

Fig. 2. Schematic of the considered simple CSTR.

4.1. Bisection of X in X1 and X2

4.2. X1,s = Approximation-X ∗s (X1,P,D)
4.3. X2,s = Approximation-X ∗s (X2,P,D)
4.4. Return Xs = X1,s ∪ X2,s

Remark 3. Note that for the application of this algorithm
an initial set X0 must be chosen. If we want to guarantee
that an outer approximation of X ∗s is found containing all
feasible equililbrium points, X ∗s ⊆ X0 must hold. This is
not a restriction because a suitable X0 can often easily be
determined from physical insight into the problem.

6. BOUNDING THE STEADY STATES OF A CSTR

In order to illustrate the proposed scheme the steady-state
behavior of a CSTR is analyzed. The reactor considered
is a simple tank filled with fluid stirred by an impeller, an
inflow and an outflow, as depicted in Figure 2.

6.1 System description

Specifically we consider an adiabatic, constant volume
CSTR in which the first-order, exothermal liquid-phase
reaction

A
k→ B

takes place. The conversion rate is given by R = k(T )cA,
in which the reaction rate constant is modelled using
Arrhenius’ equation,

k(T ) = k∞e−
E

RT . (13)
Simple mass and energy balances lead to the following set
of ordinary differential equations:

dcA

dt
=

1
θ
(cAf − cA) + k(T )cA

dT

dt
=

1
θ
(Tf − T )− ∆HR

Cpρ
k(T )cA,

(14)

which captures the dynamics of the CSTR (Rawlings and
Ekerdt, 2002). The state variables are the concentration
cA of reactant A, and the reactor temperature T . The
parameters are the mean residence time θ = VR/Q, the
reactor volume VR, the flowrate Q, the concentration of A
in the feed stream cAf , the feed stream temperature Tf ,
the reaction enthalpy ∆HR, the heat capacity of the fluid
Cp, and the fluid density ρ. The numerical values of the
nominal parameters are provided in Table 1.

6.2 Analysis of the nominal CSTR

In case that all parameters are known, one can exactly
predict how the reactor behaves in different operating
conditions. Hereby, since the mean residence time θ is the
easiest parameter to manipulate, the operating condition
will be defined in terms of θ. The other parameters are
assumed to be fixed.



Table 1. Parameter values.

Parameter Value Units Uncertainty

Tf 298 K 3K
Cp 4.0 KJ/kg K 5%
cAf 2.0 kmol/m3 5%
k∞ 5.0× 108 min−1 5%
E/R 8.0× 103 K −

ρ 103 kg/m3 −
∆HR −3.0× 105 kJ/kmol 5%

100 101 102
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θ

T
(θ

)

θep θip

extinction
point

ignition
point

Fig. 3. Bifurcation diagram of CSTR without parameter
uncertainties.

Tmin Tmax

T

k
(T

)
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bound
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bound

g1

g2

g3

Fig. 4. Bounding of (−) Arrenhius term with (−−) linear
functions.

Using continuation methods it is possible to numerically
compute the steady-state curve (bifuraction diagramm) for
varying residence times (Dhooge et al., 2003), as shown in
Figure 3. θep and θip denote the mean residence time at
the extinction and the ignition point respectively.

6.3 Analysis of CSTR with parameter uncertainties

If one or more parameters are uncertain, which is in
practice always the case, calculating the set of steady-
state is significantly more challenging. Typically, sampling
based techniques such as Monte-Carlo like methods are
used. These allow the approximation of the union of all
feasible equilibrium points X ∗s . However, as for all Monte-
Carlo like methods no bounds for the obtained sets can
be provided. Our approach overcomes this problem and
enables us to compute an outer approximation of the set
of feasible equilibrium points of the uncertain system.

Approximation of the rate constant: Applying the pro-
posed method requires in a first step to bound the
Arrhenius-like rate constant from below and from above
using polynomial functions. In this paper k(T ) is bounded
via three linear functions,

max(g1, g2) ≤ k ≤ g3, ∀T ∈ [Tmin, Tmax], (15)

0 0.5 1 1.5 2

300

350

400

450

500

cA

T

0 0.2 0.4 0.6 0.8

420

440

460

cA

T

Fig. 5. Region in state space which cannot contain steady-
states for given parameter uncertainties and θ ∈
{1, 10, 100} versus (·) steady-states computed using
Monte-Carlo sampling.

as depicted in Figure 4. This approach is very simple and
has the disadvantage that the approximation of k(T ) is
less precise if the difference of Tmin and Tmax becomes
large. Therefore, we don’t use a static approximation
but rather select g1, g2 and g3 in each interation of the
bisection algorithm dependent on the box X in state space
currently under consideration. This allows to keep the
overestimation of the set of feasible steady-states small
as will be seen later.

One could of course choose other methods to bound k(T ),
for instance based on high order polynomials and the Tay-
lor series expansion, but in many cases the computational
effort to solve the semidefinite program once will increase
significantly and the presented simplistic approach will be
more efficient.

Set of feasible steady-states: The above derived theory
and the bounding of k(T ) allow to compute the set of
feasible steady-states of the CSTR. As decision variable
we consider besides the temperature interval also the
mean residence time θ. Additionally, most parameters are
uncertain. The amounts of uncertainty with respect to the
nominal values are provided in Table 1.
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Fig. 6. Illustration of the nonlinear mapping from param-
eter to steady-states.

The algorithm outlined in Section 5 is in the following used
to estimate the set of all feasible equilibrium points of (14)
for the given parameter uncertainties and θ ∈ {1, 10, 100}.
The results are shown in Figure 5, where the part of the
state space which is certified infeasible is marked light
gray. To compare our results with classical approaches, five
thousand equally distributed Monte-Carlo samples for the
accessible parameter set were taken and the steady-states
were determined.

Computation of the set of feasible steady-states: As one
can see, the results match with each other. However, a
closer look at the results reveals several disadvantages of
the sampling based approach. First of all, the number
of samples in some regions of the state space is small
compared to other regions, where the sampling density
is extremely high. This indicates that many parameters
lead to steady-states in the region with high sampling
density, but there are still some regions that cannot be
explored unless even higher numbers of samples are used.
This might represent a problem, whenever the set of all
feasible steady-states has to be computed, since normally
a homogeneous sampling rate is more desireable. However,
the Monte-Carlo method is not able to guarantee under
such a condition that the whole state space is explored,
due to the highly nonlinear mapping between parameters
and steady-states, illustrated in Figure 6. Therefore, the
set of feasible equilibrium points is always underestimated,
even for exhaustive Monte-Carlo sampling, while the pro-
posed method guarantees that all equilibrium points are
contained in the determined set.

7. CONCLUSION

In this work we studied the problem of outer bounding the
region in state space containing all equilibrium points of
uncertain hybrid differential algebraic systems. The pro-
posed method is based on the formulation as a feasibility
problem and a relaxation to a SDP. It is shown that
guaranteed outer bounds of the feasible set of equilibrium
points can be determined.

The advantage of the proposed methodology in compar-
ison to Monte-Carlo based approaches is explained and
shown considering a simple CSTR process. In particular,
the developed method does not rely on sampling and can
deal with strongly nonlinear and non-unique mappings
from parameters to steady-states.

The computed set is guaranteed to contain all feasible
steady-states, thus worst case scenarios can be analyzed.

This is of certain interest to evaluate controller perfor-
mance in fault situations.
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tivity analysis of biochemical reaction networks via semidefinite
programming. Proceedings of the 17th IFAC World Congress,
9701–9706.


