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Abstract: This paper aims to solve the problems of fault diagnosis and variation reduction by using 
multivariate statistical techniques when the quality measurements are scarce. Both single stage process 
and multi-stage process are considered. For the single stage process, the nonparametric statistical method, 
Wilcoxon rank-sum test is used to identify the key variable/step that causes the fault of the un-qualified 
wafers. For the multi-stage process, the most important variables are first picked out by systematic 
statistical analysis, and the specifications of these key variables are designated using nonparametric 
method to improve the product yield. Gene map which gives visual images is used to assist the analysis. 
Industrial examples are given to show the effectiveness of the proposed method. 
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1. INTRODUCTION 

State-of-the-art semiconductor processes are often pushed to 
the limits of current technologies, resulting in processes that 
have little or no margin for error. Advanced process control 
(APC) and fault detection and classification (FDC) are 
widely applied in semiconductor industries to reduce cycle-
time and improve yield. The focus of this paper is on the fault 
detection algorithms to find out the variation source and root-
cause of scrap wafers by using statistical multivariate 
analysis techniques. 

Detection of process and tool faults in the shortest possible 
time is critical for minimizing scrap wafers and improving 
product yields for semiconductor manufacturing. However, 
most of wafer-states lack in situ sensor to provide real time 
information and usually are measured offline and less 
frequently than every wafer, which can lead to a number of 
scrapped wafers before a fault is detected. In the meanwhile, 
fortunately, more and more real time measurements of 
manufacturing equipments like temperature, pressure, power 
and flow rate, etc., are available due to the advances in 
metrology technology. These real time measurements provide 
valuable information about the tool status and can be used to 
predict final wafer characteristics. Further, it also provides a 
way to improve product quality by detecting and identifying 
equipment malfunctions in real time without interrupting the 
normal operations. The difficulty is, with such an abundant 
amount of data available, it is usually not clear which tool-

state variable is critical or closed related with the final 
product quality. 

Principal component analysis (PCA) and partial least squares 
(PLS) have drawn increasing interest and have been studied 
extensively in semiconductor manufacturing industry. PCA 
and PLS are useful tools for data compression and 
information extraction and have the advantages of dealing 
with high dimension and collinearities. PCA/PLS methods 
find linear combinations of variables that describe major 
trends in a data set. Considering the batch nature of 
semiconductor manufacturing, multi-way PCA is usually 
used to unfold three dimensions data into 2-D data array 
(Macgregor, 1994). Yue et al. applied multi-way PCA 
method to optical emission spectra for plasma etchers.  

Most of the methods mentioned above require a large amount 
of training data to build a reliable statistical model to capture 
the key characteristics of the process. However, in real 
practice, many fabs are operating with diversified products of 
small account (Ma, et al., 2008) which means that one has to 
find out the causes of un-qualified wafers with limited quality 
data. Compared with principal components which are 
combined by all process variables, engineers are more eager 
to know which variable exactly, or linear combinations of 
several variables, plays an important role on the product 
quality. It is also of interest to know which step is critical to 
the whole streamline.  

In this paper, a systematic approach is proposed for fault 
diagnosis and variation reduction by using statistical 
multivariate techniques. Both single stage process and multi-



     

stage process are considered. For the single stage process, the 
nonparametric statistical method, Wilcoxon rank-sum test is 
used to identify the key variable/step that causes the fault of 
the un-qualified wafers. For the multi-stage process, 
homogeneous process variables are first grouped by using 
cluster analysis, and representative variables or linear 
combinations of variables of each group are picked out. Then 
the key clusters are selected by stepwise regression method. 
Further, the upper and lower limits of these selected 
representative variables are designated to reduce product 
variation. It is shown that the proposed method improves the 
product yield substantially.  

Recently, combinatory and high throughput experiments have 
received widespread attention in biology.  Synopsis of large 
amount of experiment data and subsequent information 
mining from such data has become a special branch of study 
known as bioinformatics (Baldi and Brunak, 2001).  The key 
experimental technique that is responsible for the 
advancement of bioinformatics is the microarray which 
enables expressions of tens of thousands of genes be 
measured and represented on a small array of colored image 
dots.  In this paper, we demonstrate that quick diagnosis of 
the key variable/step that causes the fault in final quality can 
be achieved by simple statistical analysis of measured values 
of different sensors and graphical synopsis of results of such 
analysis.   Furthermore, specifications for the key variables, 
which are usually far from optimal in original settings, can be 
designated to improve the product yield. 

2. FAULT DETECTION FOR SINGLE STAGE PROCESS 

2.1 Problem statement 

Consider quality data of n wafers are collected from a tool, n1
wafers are qualified, and n2 wafers are un-qualified, hence 
n1+n2=n. Let’s denote that m steps with v variables are 
implemented during the whole process. It is assumed that in 
each step ts seconds are carried out for some certain objective 
(for instance temperature ramped up, current ramped 
down,…,etc.), where s=1,…,m. Suppose that the total time 
for all steps is t, then 1 2 mt t t t� � � �� ; let 1r rT t t� � �� ,
where r=1,…,m. Now, let’s define Xi,j,k,l to be the kth 
independent variable at batch time l of jth wafer, where 
j=1,…,ni, k=1,…,v, l=1,…,t, and i=1 means the wafer is 
qualified, i=2 indicates the wafer is not qualified. Now, the 
problem is what is the p-value of Xi,j,k,l to distinguish the 
wafer is qualified or unqualified in case n1 and n2 are small. 

2.2 Statistical analysis 

It is general to apply t-test to distinguish two set of data 
whether or not their mean is equal to each other. However, in 
this case n1 and n2 are small, a two sample t-test is not 
appropriate since the above two set of data may not be in 
normal distribution. Therefore, a nonparametric analysis, 
Wilcoxon rank-sum test, is used here.  

The Wilcoxon rank-sum test is a nonparametric alternative to 
the two-sample t-test which is based solely on the order in 
which the observations from the two samples fall (Higgins, 
2004). It is valid for data from any distribution, whether 
normal or not, and is much less sensitive to outliers than the 
two-sample t-test. The Wilcoxon test is based upon ranking 
the n1+n2 observations of the combined sample. Each 
observation has a rank: the smallest has rank 1, the 2nd 
smallest rank 2, and so on. The Wilcoxon rank-sum test 
statistic is the sum of the ranks for observations from one of 
the samples.  

In this work, we implement Wilcoxon rank-sum test to find 
the p-value of the hypothesis of  

0 1, , 2, , 1, , 2, ,: . :k l k l a k l k lH vs H� � � �� �     (1) 

where 1, ,k l�  and 2, ,k l�  are the mean of qualified and un-
qualified wafers of the kth variable at time l respectively. It is 
assumed that there is not much prior knowledge of the 
product and no evidence shows that 1, ,k l�  is greater or 
smaller than 2, ,k l� . Therefore, a two-side test is implemented 
here. 

Let ,k lp  be the above p-value of the kth variable at time l,
three different approaches to evaluate the above approach can 
be implemented  

(i) Evaluate the p-value of a process variable by finding the 
average p-value of the process variable in the whole time 
horizon:  
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(ii) Evaluate the average of p-value of each variable at each 
step
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(iii) Direct observe the p-value pk,l of each variable at each 
different time.  

From the statistical analysis of the above approaches, we can 
determine which process variable, which step, plays an 
important role on the quality of the wafers, and more 
specifically, which second is critical for the final product 
quality. All these information is valuable to the engineers for 
their further improvement of the product quality. 

2.3 Illustrative example 

The proposed algorithm is applied to a high-density plasma 
chemical vapor deposition (HDP-CVD) process. HDP-CVD, 
which is used as the gap-filling process for the dielectric in 
semiconductor circuits, features a high gap-fill capability 
compared with conventional plasma CVD by the excitation 



     

of a high-density plasma. The schematic diagram of the 
HDP-CVD reactor is shown in Fig. 1. 

There are 33 process variables for this manufacturing process. 
9 steps are implemented for this process and the processing 
time is shown in Table 1. The quality data obtained from 
WAT test of 25 wafers are collected, among which 21 wafers 
are qualified and 4 wafers are un-qualified.  

Fig. 1. Schematic diagram of the HDP-CVD reactor. 

Table 1 Processing time of each step 

Step 1 2 3 4 5 6 7 8 9 Total
Seconds 5 30 53 3 67 5 10 15 5 193

The proposed statistical method is applied to this process. 
The p-value of hypothesis (1) is calculated for process 
variables. To find out the key process variable that plays an 
important role on the process, equation (2) is implemented 
and the image plot of 1-Pk is shown in Fig. 2. From Fig. 2, we 
can determine which process variable is more influential for 
the product quality. This industrial gene map can help 
engineers to determine which process variable is important 
and which one is less important at a first glance. Engineers 
can grasp as much as information in the shortest time with 
the help of industrial gene map. 

Fig. 2. Image of 1-Pk of total average approach 

To further know which step is critical for the process, 
equation (3) is evaluated for the profile variables of the 
process and the result is shown in Fig. 3. Similarly, Fig. 3 
corresponds to a matrix of dimension 33 by 9. Obviously, the 
industrial gene map is more visual and straightforward. From 
Fig. 3, it is observed that most of critical steps are also related 
with the settings of temperature. The p-value of the profile 
variables in second are shown in Fig. 4. It can help engineers 
know when a fault is most likely to happen. 

Fig. 3. Image plot of 1-Pk,b of step average approach 

Fig. 4. Image plot of 1-pk,l

3. VARIATION REDUCTION FOR MULTI-STAGE 
PROCESS 

3.1 Problem statement 

In this section, a statistical method is proposed to find out the 
key variables that have essential effects on the product 
quality for the multi-stage manufacturing process. Similarly, 
the basic assumption is that there is relatively few quality 
data available compared with process variables. Then, 
specifications for the key variables which are usually far from 
optimal in original settings are designated to improve the 



     

product yield. This framework provides a systematic method 
of drawing inferences from the available evidence without 
interrupting the normal process operation. The proposed 
method is directly illustrated by an industrial example. The 
statistical methods used in the following analysis include 
cluster analysis, canonical correlation analysis and stepwise 
regression. 

3.2 Statistical analysis and illustrative example 

Consider a CVD process. Every wafer must be processed by 
three chambers A, B, and C successively. Denote the process 
variables of chamber A, B and C as XA, XB and XC,
respectively. The final quality variable is denoted as Y which 
may contain wafer thickness measurements and wafer 
electrical measurements. In the following analysis, the 
method is illustrated for the wafer thickness y, which is one 
of the most important characteristics of wafers. 

The numbers of steps and process variables for chamber A, B 
and C are list in Table 2. The data set includes measurements 
of 526 wafers from 22 batches. In this analysis, we want to 
know which variable, of which chamber, on which step, has 
an essential effect on the wafer thickness. Every process 
variable from different chambers on different is treated as an 
independent variable. Therefore, it is still the case that there 
are much more process variables than the quality data. 
Furthermore, process variables are usually highly correlated 
because of physical and chemical principles governing the 
process operation. To pick out the most influential variables 
for the quality variable y, the first step is to reduce the 
redundancy of the original data set. 

Table 2 Number of steps and variables of the three 
chambers 

Chambers Number of steps Number of variables
A 13 79 
B 5 19 
C 12 79 

Cluster analysis is a useful technique used for combining 
observations into groups or clusters such that each group or 
cluster is homogeneous with respect to certain characteristics. 
Simultaneously, each group should be different from other 
groups with respect to the same characteristics (Sharma, 
1996). The definition of similarity or homogeneity varies 
from analysis to analysis, and depends on the objectives of 
the study. In this study, it is desired to combine variables that 
are highly correlated into one group. Therefore, the similarity 
measure is defined as 

1ij ijd r� �     (4) 

where rij is the correlation coefficient of variables xi and xj.
For variables that are highly correlated, dij would be small 
which represents similarity and vice versa. The clustering 
method adopted here is average-linkage method, one of the 
hierarchical clustering methods.  

To determine the number of clusters, the rule that the 
correlation coefficient of the variables from the same groups 
should be greater than 0.9 is used. The result of cluster 
analysis is shown in Fig. 5-7. In these figures, variables that 
are filled with the same color or indicated with the same 
number are of the same group. 

Then, the next step is to select representative variables from 
each group. The variables picked out should give good 
variance explanation which is usually evaluated by the R2

statistics of the wafer thickness y. For example, the R2

statistics of one variable selected from group 8 is 0.352 and 
the total R2 of the whole group is 0.361. In such case, one 
process variable is capable of representing the group. 

Fig. 5. Cluster image of chamber A. 

Fig. 6. Cluster image of chamber B. 

However, in some circumstances, the R2 of each individual 
variable is quite low yet the linear combination of these 
variables contributes a high R2. In this case, it is more 
appropriate to use linear composites of the original variables 
to represent the group. This problem actually belongs to the 
field of canonical correlation analysis. The new variables, the 
linear composites, are called canonical variates. The 
coefficients of the canonical variates are determined to make 
the correlation between the linear composites maximum. For 
this special case, there is only one quality variable, the wafer 
thickness y. Therefore, canonical correlation analysis is 
essentially equal to the linear multiple regression.  



     

Fig. 7. Cluster image of chamber C. 

Then, the question is, when a single variable should be used 
and when a linear composite should be used to represent a 
group. In this application, the following rules are adopted: if 
the R2 of individual variable is more than eighty percent of 
the total R2, then the single variable which has the largest R2

is used to represent the whole group; otherwise, a linear 
composite is used. The number of variables in the canonical 
variate is increased till the R2 of the linear composite is more 
than eighty percent of the total R2. The coefficients of the 
linear composite are obtained from canonical correlation 
analysis.

After picking out the representative variable from each group, 
the next step is to select important representative variables 
from all the groups. The method used is stepwise regression. 
Stepwise regression is a statistical method used for variable 
selection in linear regression. The procedure iteratively 
constructs a sequence of regression models by adding or 
removing variables at each step. The criterion for adding or 
removing a variable at any step is usually expressed in terms 
of a partial F-test Montgomery, et al., 2001). The changes of 
R2 and adjusted R2 of stepwise regression are shown in Fig. 8. 
There are 68 representative variables selected by the stepwise 
regression.  

Fig. 8. Representative variables selected by stepwise 
regression method. 

It is not an easy task to monitor 68 variables online 
simultaneously. Therefore, the first ten representative 
variables selected by stepwise regression are picked out and 
analyzed. The first ten representative variables listed in Table 
8 give a good variance explanation because the R2 and 
adjusted R2 are higher than 0.8 which can be seen from Fig. 8. 

In fact, all the 526 wafers are qualified wafers. To reduce the 
variance of wafer thickness further, we define 

1.5 , 1.5y yy s y s	 
� �� �  as the acceptable region for the wafer 

thickness. Here, y  is the average value of y and sy is the 
standard deviation of y, respectively. The wafers fall out of 
this region is treated as “un-qualified” now. Among all the 
526 wafers, there are 455 wafers fall into the acceptable 
region. Therefore, the yield is 0.865. In the following 
analysis, we will develop a nonparametric method to find out 
the new specifications for the above ten important 
representatives to improve the product yield.  

First, the center point for all the qualified wafers in a space 
defined by the 10 important representative variables is 
determined. The Mahalanobis distance of each qualified 
wafer from the center point is calculated as 


 � 
 �T
i i i iMD X S X c� �� � � �    (5) 

where X is a 10×1 vector of coordinates and S is a 10×10 
covariance matrix, � is the center point. Then, the yield can 
be viewed as an implicit function of the Mahalanobis 
distance. Each value of Mahalanobis distance corresponds to 
a value of yield which is defined as the ratio between the 
number of qualified wafers and the number of all the wafers 
within the Mahalanobis distance. A graphical interpretation 
of this relationship is shown in Fig. 9. In this figure, the solid 
line is the relationship between the yield and the Mahalanobis 
distance and the dashed line is its 95% confidence interval. 

Fig. 9. Plot of Mahalanobis distance versus product yield. 

It can be observed that the yield is not reliable when ci is 
small because the samples within the corresponding 
Mahalanobis distance are few. To get a balance between 
reliability and high yield, the point corresponds to one third 
of the maximum of ci which is marked as a dot in Fig. 9 is 



     

used to derive the specifications of the ten representative 
variables. Once ci is determined, the joint boundary of the ten 
representative variables is also determined. 

However, the joint boundary which is a function of ten 
independent variables can not be easily monitored. Therefore, 
the projections of the joint boundary onto the axes of 
coordinates are used as the new specifications of the ten 
representative variables. The yield increased greatly when the 
upper and lower bounds of the first representative variable 
are designated. A graphical interpretation of the increase of 
the yield is shown in Fig. 10. The increases of the yield are 
not obvious after the designation of the specification of the 
third representative variable. 

Fig. 10. Specifications of the first representative variable. 

It is of interest to study the improvement of process 
capability ratio after the specifications of the ten 
representative variables are designated. The process 
capability ratio (PCR, or Cp) is defined as 

6p
USL LSLC

�
�

�        (6) 

where USL and LSL are the upper and lower specification 
limits, respectively. Since � is unknown, it is replaced by the 
standard deviation s. If the process capability ratio and 
standard deviation are treated as a function of Mahalanobis 
distance, then we can get 

( )
( )

p i

p i

C c s
C s c

�         (7) 

The relationship between ( )p i pC c C  and the Mahalanobis 
distance is shown in Fig. 11. It can be observed that there is 
about 40% improvement of process capability ratio for the 
point we used to designate the specifications of the 
representative variables. The changing trend of ( )p i pC c C  is 
consistent in the area where the point we used also indicates 
that the value of ci we chose is appropriate. 

4. CONCLUSIONS 

Nowadays, many semiconductor manufacturing foundries are 
operating with diversified products of small account which 
makes the fault detection and variation reduction difficult. In 
this paper, systematic statistical methods are proposed to 
solve this difficulty. Both single stage process and multi-
stage process are considered. The effectiveness of the 
proposed methods are illustrated by industrial examples. 

Fig. 11. Plot of Mahalanobis distance versus ( )p i pC c C .
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