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1. INTRODUCTION

Advanced techniques for multivariable control like model pre-
dictive control (MPC) have become widespread in the indus-
try, but they are still complex, time-consuming to set-up, and
consequently expensive. Further, the centralized approach may
not be suitable to the operation of large dynamic networks,
either by the communication difficulty between sensors and the
central unit, or by the computational limitation to solve opti-
mization problems. Some petrochemical plants are examples of
large systems composed by distributed, however coupled sub-
systems.

An alternative is distributed predictive control (Camponogara
et al., 2002), which breaks the static optimization problem
into smaller sub-problems to be solved by a network of con-
trol/optimization agents. It aims to solve the sub-problems in
the most simple form while the final performance is preserved
or even improved.

Many studies about distributed formulations are being devel-
oped. Mercangöz and Doyle III (2007) propose a distributed
formulation that ensures self-sufficient state estimation in each
node. Motee and Jadbabaie (2006) present a study of receding
horizon control applied to physically decoupled systems with
input and state constraints, where the couplings appear through
the finite horizon cost function. Li et al. (2005) and Giovanini
and Balderud (2006) propose MPC strategies based on Nash
optimality to decoupled sub-systems.

Besides this, many algorithms to ensure convergence of dis-
tributed problems are being proposed. Dunbar (2007) presents
distributed algorithms for dynamically coupled nonlinear sys-
tems subject to decoupled input constraints. An iterative pro-
cedure based on cooperation that ensures convergence to the
global optimum for linear systems with constraints on the local
controls is presented by Venkat et al. (2008). Camponogara
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and Talukdar (2007) present synchronous and asynchronous
solutions of optimization problems, proposing a high level
optimization framework and safety margins for meeting con-
straints. Recently, distributed predictive control was specialized
to linear dynamic networks and applied to traffic light control,
in which the dynamics of the sub-systems are coupled and
the constraints are on the local controls (Camponogara and
de Oliveira, 2009).

This paper proposes a problem decomposition and distributed
algorithm for predictive control of linear networks with dy-
namic couplings and restrictions on output and control-input
signals. Further, it reports on a comparison with existing ap-
proaches for the control of a distillation column.

The end result of this research is a distributed predictive con-
trol technique for programming control agents which can be
deployed to perform regulatory control of linear dynamic net-
works. Each agent would be responsible for solving a problem
of control action, exchanging its local sensor data and control
actions with the other agents. The resulting control action is
obtained after resolving conflicts with neighboring agents.

Because the algorithms embedded in the agents are much sim-
pler than the centralized one, the distributed approach makes it
simpler to modify and reconfigure the plant. Instead of modify-
ing the complex centralized algorithm, it would suffice to add
new agents and update only the nearby agents with whom the
new agents would have relation. Further, maintenance would be
facilitated since the distributed agents are much simpler.

2. DYNAMIC MODEL AND CONTROL PROBLEM

A linear dynamic network is obtained by interconnecting de-
coupled sub-systems that have local dynamics and controls.
The couplings arise from the dynamic interconnections and the
constraints on the network’s output equations. M = {1, . . . ,M}
denotes the set of sub-systems. Each sub-system m is governed
by the following discrete-time linear dynamic equation:

xm(k + 1) = Amxm(k)+ Bmum(k) (1)



where xm ∈ R
nm is the state, um ∈ R

pm is the control input, and
Am and Bm are matrices of appropriate dimensions. The output
from sub-system m depends on the state of the sub-systems in
set I(m) ⊆ M such that m ∈ I(m):

ym(k) = ∑
i∈I(m)

Cm,ixi(k) (2)

and is subject to the output constraints:

ymin
m ≤ ym(k) ≤ ymax

m (3)

with Cm,i being matrices of suitable dimensions.

The regulation problem for the overall system subject to output
and control-input constraints is:

min
1

2

M

∑
m=1

∞

∑
k=0

[

ym(k + 1)′Qmym(k + 1)+ um(k)′Rmum(k)
]

(4a)

S.to : For m = 1, . . . ,M, k = 0, . . . ,∞ :

xm(k + 1) = Amxm(k)+ Bmum(k) (4b)

ym(k + 1) = ∑
i∈I(m)

Cm,ixi(k + 1) (4c)

umin
m ≤ um(k) ≤ umax

m (4d)

ymin
m ≤ ym(k + 1)≤ ymax

m (4e)

where Qm are symmetric positive semi-definite and Rm are
symmetric positive definite matrices.

Model predictive control solves an optimization problem that
approximates the regulation problem for a finite-time horizon.
Given the state x(k) = (x1, . . . ,xM)(k) of the system at time k,
the MPC regulation problem is defined as:

P : min f =
1

2

M

∑
m=1

T−1

∑
j=0

[

ŷm(k + j + 1|k)′Qmŷm(k + j + 1|k)

+ûm(k + j|k)′Rmûm(k + j|k)
]

(5a)

S.to : For m = 1, . . . ,M, j = 0, . . . ,T −1 :

x̂m(k + j + 1|k) = Amx̂m(k + j|k)+ Bmûm(k + j|k)
(5b)

ŷm(k + j + 1|k) = ∑
i∈I(m)

Cm,ix̂i(k + j + 1|k) (5c)

umin
m ≤ ûm(k + j|k) ≤ umax

m (5d)

ymin
m ≤ ŷm(k + j + 1|k)≤ ymax

m (5e)

x̂m(k|k) = xm(k) (5f)

where ûm(k + j|k) is the prediction for the control input to sub-
system m at time (k + j) as predicted at time k, and similarly
ŷm and x̂m are output and state predictions respectively. The
variable T is the length of the prediction and control horizons,
that have the same length to make the developments simpler.

The term “|k” is dropped from all variables for the sake of sim-
plification. Before continuing with the MPC formulation, some
terminology will be introduced to simplify the representation.
First, it is possible to obtain the state of sub-system m at time
(k + t) by using the initial state and the past controls. The future
states and outputs are represented as:

x̂m (k + t) = At
mxm (k)+

t

∑
j=1

A j−1
m Bmûm (k + t − j)

ŷm (k + t) = ∑
i∈I(m)

Cm,i

(

At
ixi (k)+

t

∑
j=1

A
j−1
i Biûi (k + t − j)

)

By defining the vectors x̂m, ûm, and ŷm to represent the predic-
tions over the entire horizon of the states, controls, and outputs,
respectively, and the matrices CAm,i and CBm,i for the dynamics:

x̂m =







x̂m (k + 1)
...

x̂m (k + T )






, ûm =







ûm (k)
...

ûm (k + T −1)







ŷm =







ŷm (k + 1)
...

ŷm (k + T)






, CAm,i =











Cm,iAi

Cm,iA
2
i

...

Cm,iA
T
i











CBm,i =









Cm,iBi 0 · · · 0
Cm,iAiBi Cm,iBi · · · 0

...
...

. . . 0

Cm,iA
T−1
i Bi Cm,iA

T−2
i Bi · · · Cm,iBi









the prediction of the outputs over the entire horizon is written
in a compact form as:

ŷm = ∑
i∈I(m)

(

CAm,ixi (k)+CBm,iûi

)

(6)

Defining the matrices Q̄m and R̄m with proper dimensions:

Q̄m =









Qm 0 · · · 0
0 Qm · · · 0
...

...
. . . 0

0 0 0 Qm









, R̄m =









Rm 0 · · · 0
0 Rm · · · 0
...

...
. . . 0

0 0 0 Rm









and the vectors ûmin
m , ûmax

m , ŷmin
m , and ŷmax

m :

ûmin
m =







umin
m
...

umin
m






, ûmax

m =







umax
m
...

umax
m







ŷmin
m =







ymin
m
...

ymin
m






, ŷmax

m =







ymax
m
...

ymax
m







problem P is expressed as:

P : min
1

2

M

∑
m=1

(

ŷ′mQ̄mŷm + û′
mR̄mûm

)

(7a)

S.to : For m = 1, . . . ,M :

ŷm = ∑
i∈I(m)

(

CAm,ixi (k)+CBm,iûi

)

(7b)

ûmin
m ≤ ûm ≤ ûmax

m (7c)

ŷmin
m ≤ ŷm ≤ ŷmax

m (7d)

The next step is to represent problem P using only the current
state and the control predictions. First, let us define fm as the
portion of problem P for a specific m and replace (6) in the
objective function:



fm =
1

2

(

∑
i∈I(m)

(CAm,ixi(k)+CBm,iûi)

)′

Q̄m

·

(

∑
i∈I(m)

(

CAm,ixi(k)+CBm,iûi

)

)

+
1

2
û′

mR̄mûm

=
1

2

(

∑
i∈I(m)

CAm,ixi (k)

)′

Q̄m

(

∑
i∈I(m)

CAm,ixi (k)

)

+

(

∑
i∈I(m)

CAm,ixi (k)

)′

Q̄m

(

∑
i∈I(m)

CBm,iûi

)

+
1

2

(

∑
i∈I(m)

CBm,iûi

)′

Q̄m

(

∑
i∈I(m)

CBm,iûi

)

+
1

2
û′

mR̄mûm

(8)

Defining vectors gm,i, j, matrices Hm,i, j, and a constant cm to
represent the terms of fm:

gm,i, j = CB
′
m,iQ̄mCAm, jx j (k) for i, j ∈ I (m) (9a)

Hm,m,m = CB
′
m,mQ̄mCBm,m + R̄m (9b)

Hm,i, j = CB
′
m,iQ̄mCBm, j (9c)

for i, j ∈ I (m) , i 6= m or j 6= m

cm =
1

2 ∑
i∈I(m)

∑
j∈I(m)

xi (k)
′
CA

′
m,iQ̄mCAm, jx j (k) (9d)

it is possible to redefine problem P as:

P : min
1

2

M

∑
m=1

∑
i∈I(m)

∑
j∈I(m)

[

û′
iHm,i, jû j + g′m,i, jûi

]

+
M

∑
m=1

cm

(10a)

S.to : For m = 1, . . . ,M :

ûmin
m ≤ ûm ≤ ûmax

m (10b)

ŷmin
m ≤ ∑

i∈I(m)

(

CAm,ixi (k)+CBm,iûi

)

≤ ŷmax
m (10c)

This quadratic programming formulation will be used to solve
the problem of control calculation in the centralized approach.

2.1 Logarithmic Barrier Method

The logarithmic barrier method is an interior-point method
for solving convex optimization problems with inequality con-
straints (Boyd and Vandenberghe, 2004),

minimize f (x) (11a)

subject to Ax ≤ b, (11b)

It is assumed that the problem is solvable, i.e., an optimal
solution x⋆ exists, and the constraints delimit a closed set. A
barrier function is any function B(x) : ℜn → ℜ that satisfies

• B(x) ≥ 0 for all x that satisfy Ax < b, and
• B(x) → ∞ as x approaches the boundary of {x|Ax ≤ b}

Being a′i the i-th row of A, the idea of the method is to treat the
constraints using a logarithmic barrier function as follows:

φ (x) = −
m

∑
i=1

log
(

bi −a′ix
)

(12)

where the domain of φ is dom φ = {x|Ax < b}.

With (12), problem (11) can be approximated by:

P(ε) : min g(x) = f (x)+ εφ(x) (13)

where ε > 0 is a parameter that sets the accuracy of the approx-
imation. As ε decreases, more accurate the approximation P(ε)
becomes, whose optimal solution is x(ε). The optimal solution
is reached by solving (13) for a decreasing sequence of ε → 0+,
i.e., limε→0+ x(ε) = x⋆. The pseudo-code of the barrier method
for solving problem (11) appears in Algorithm 1.

Newton’s method can be used to compute the optimal solution
to P(ε) using the gradient and the Hessian of φ (x) and f (x).
Algorithm 2 shows how to use Newton’s method with a back-
tracking line search to choose the step size of each iteration. The
gradient and the Hessian of the logarithmic barrier function φ
are given by:

∇φ (x) =
M

∑
i=1

1

(bi −a′ix)
ai, ∇2φ (x) =

M

∑
i=1

1

(bi −a′ix)2
aia

′
i

Algorithm 1: Barrier method

given: strictly feasible x, ε := ε0, 0 < µ < 1, tolerance e > 0
repeat

compute x(ε) by minimizing g(x), starting at x;
update x := x(ε) ; ε := µε;

until ε ≤ e ;

Algorithm 2: Newton’s method

given: a starting point x ∈ dom g, tolerance e > 0
repeat

compute the Newton step: ∆xnt := −∇2g(x)−1 ∇g(x) ;
choose step size

given: a descent direction ∆xnt , α ∈ (0,0.5), β ∈ (0,1)
t := 1;
while g(x + t∆xnt) > g(x)+ αt∇g(x)′∆xnt do

t := β t;

end
update: x := x + t∆xnt;
compute the decrement: λ 2 := ∇g(x)′∇2g(x)−1∇g(x);

until λ 2/2 ≤ e ;

By approximating problem P given in (10) to the equivalent
unconstrained form P(ε), where the constraints on outputs and
controls are put together in φ (û), unconstrained minimization
algorithms like those described in this section can be used to
solve the problem.

3. DISTRIBUTED OPTIMIZATION AND CONTROL

This paper focuses now on the distributed solution of P, dis-
cussing how to perform a decomposition of the problem into
a network of coupled sub-problems Pm that will be solved by
a network of distributed agents (Camponogara and Talukdar,
2005, 2007), and the use of a distributed iterative algorithm to
solve these sub-problems.

Each agent will compute a control vector ûm. So, for a perfect
decomposition, each agent m must have all the information on
problem P that depends on ûm. Before giving the decomposi-
tion, let us define some special sets:

• O(m) = {i : m ∈ I (i) , i 6= m} to represent the set of output
neighbors of m;



• C (m) = {(i, j) ∈ I (m)× I (m) : i = m or j = m} for the
sub-system pairs of quadratic terms in the cost function
of sub-system m that depend on ûm;

• O(m,k) = {(i, j) ∈ I (k)× I (k) : i = m or j = m} for the
pairs of quadratic terms in the cost function of sub-system
k, k ∈ O(m), that depend on ûm;

• N(m) = (I(m)∪O(m)∪{i : (i, j) ∈ O(m,k),k ∈ O(m)})−
{m}, which defines the neighborhood of agent m, includ-
ing input and output neighbors;

• ω̂m = (ûi : i ∈ N(m)), for the set of control signals of the
neighbors of agent m;

• ẑm = (ûi : i ∈ M −N(m)∪{m}), for the set of all control
signals that are not in ω̂m and ûm.

The problem P from the view of agent m is defined as:

Pm : min
1

2 ∑
(i, j)∈C(m)

û′
iHmi jû j + ∑

i∈I(m)

gmmiûm + cm

+
1

2 ∑
k∈O(m)

∑
(i, j)∈O(m,k)

û′
iHki jû j (14a)

+ ∑
k∈O(m)

∑
(m, j)∈O(m,k)

gkm jûm

S.to :

ûmin
m ≤ ûm ≤ ûmax

m (14b)

ŷmin
i ≤ ∑

j∈I(i)

(

CAi, jx j (k)+CBi, jû j

)

≤ ŷmax
i , (14c)

for all i ∈ O(m)∪{m}

It is possible to simplify the representation of problem Pm by
grouping some terms as follows:

Hm = Hmmm + ∑
k∈O(m)

Hkmm (15a)

gm =
1

2 ∑
(i,m)∈C(m):i6=m

(

H ′
mim + Hmmi

)

ûi + ∑
i∈I(m)

gmmi

+
1

2
∑

k∈O(m)
∑

(i,m)∈O(m,k):i6=m

(

H ′
kim + Hkmi

)

ûi (15b)

+ ∑
k∈O(m)

∑
(m, j)∈O(m,k)

gkm jûm

Using the terms defined above, problem Pm is represented as:

Pm (ω̂m) : min fm (ûm) =
1

2
û′

mHmûm + g′mûm + cm (16a)

S.to :

ûmin
m ≤ ûm ≤ ûmax

m (16b)

ŷmin
i ≤ ∑

j∈I(i)

(

CAi, jx j (k)+CBi, jû j

)

≤ ŷmax
i , (16c)

for all i ∈ O(m)∪{m}

This quadratic form will be used by each agent m to compute
the control signal ûm in the distributed approach.

Some properties about the decomposition are:

• Pm(ω̂m) consists of problem P with all the objective terms
and constraints that depend on ûm;

• each sub-problem Pm(ω̂m) is convex.

3.1 Distributed Algorithm

This section describes briefly the distributed algorithm for the
agent network to reach a solution. Let Pm(ε) be the centering
problem for Pm(ω̂m) with a given ε:

Pm(ε) : min fm (ûm)+ εφm (ûm) (17)

where φm (ûm) is the logarithmic barrier function of the con-
straints given in (16). It is important to note that the problem
to be solved by each agent is much simpler than the one used
in the centralized formulation. So, the distributed solution must
encompass a sequence of steps before the optimal control se-
quence is reached (de Oliveira and Camponogara, 2008).

First, define the vector ûk =
(

ûk
1, . . . , û

k
M

)

with the set of all
control variables of P at iteration k. For a given ε , all agents
have to negotiate to find a solution for each Pm (ε) in the
network. And this process is repeated for a decreasing sequence
of ε → 0+. The convergence to a stationary solution is ensured
by respecting two assumptions:

(1) Synchronous Work: if agent m revises its decisions at
iteration k, then:
(a) agent m uses ω̂k

m to produce an approximate solution
of Pm (ε);

(b) all the neighbors of agent m keep their decisions at

iteration k: ûk+1
i = ûk

i for all i ∈ N (m).

(2) Continuous Work: if ûk is not a stationary point for prob-
lems Pi (ε) , i∈M , then at least one agent m for which ûk

m

is not a stationary point for Pm (ε) produces a new iterate

ûk+1
m .

Condition (a) of Assumption 1 and Assumption 2 hold by
arranging the agents to iterate repeatedly in a sequence
〈S1, . . . ,Sr〉, where Si ⊆ M , ∪r

i=1Si = M , and all distinct pairs
m,n ∈ Si are non-neighbors for all i. The pseudo-code of the
distributed barrier method for solving the problem network
{Pm(ε)} is given in Algorithm 3.

Algorithm 3: Distributed barrier method

given: strictly feasible û0 = (û0
1, . . . , û

0
M), ε = ε0 > 0,

0 < µ < 1, tolerance e > 0, and a sequence 〈S1, . . . ,Sr〉
repeat

Define the initial group of decoupled agents, i := 1;
Define a flag for the stationary test, δ := f alse;
repeat

each agent m ∈ Si receives ω̂k
m and computes ûk+1

m by

solving Pm(ε) starting at ûk
m;

each agent j computes ûk+1
j = ûk

j for j /∈ Si;

ûk+1 := (ûk+1
1 , . . . , ûk+1

M );

if ûk+1 is a stationary point for Pi(ε), ∀i ∈ M then
δ := true;

else
k := k + 1;
i := (i mod r)+ 1;

until δ = true ;
ε := µε;

until ε < e ;



4. COMPUTATIONAL ANALYSIS

4.1 Distillation Column

This section presents the application of model predictive con-
trol to a benchmark problem, comparing the performance of the
centralized and distributed approaches. The model of the heavy
oil fractionator utilized is referred in the literature as the Shell
Oil’s heavy oil fractionator (Prett and Morari, 1987; Camacho
and Bordons, 2004). It relates the controlled variables y1, y2,
and y3 that correspond to the top endpoint composition, side
end composition, and bottom reflux temperature, respectively,
with the manipulated variables u1, u2, and u3, corresponding
to top draw, side draw, and bottom reflux duties. The discrete
model is obtained with a sampling time of 4 minutes, and it is
possible to obtain a state space representation in the form:

















x11 (k + 1)
x21 (k + 1)
x31 (k + 1)
x12 (k + 1)

...
x33 (k + 1)

















=









A11

A21 Ø

Ø
. . .

A33

















x11 (k)
x21 (k)

...
x33 (k)









+



















B11 0 0

B21

...
...

B31 0
0 B12 0
...

...
...

0 0 B33



















[

u1 (k)
u2 (k)
u3 (k)

]

[

y1 (k + 1)
y2 (k + 1)
y3 (k + 1)

]

=







C11 0 0 C12 · · · 0

0 C21 0 0
. . .

...
0 0 C31 0 · · · C33















x11 (k)
x21 (k)

...
x33 (k)









where each group xi j, Ai j, Bi j, and Ci j represents the couplings
among the outputs and controls of the transfer function located
in line i and column j of the transfer function matrix (Camacho
and Bordons, 2004).

This formulation makes the distillation column a special case of
the theory developed in the previous sections. For this special
case, because the column is fully coupled, the set I (m) is equal
to {1,2,3} for any m, and the neighborhood is equal to the
output for each agent m. Other sets are given in Table 1.

Table 1. Sets used in the problem decomposition

m O(m) C(m) O(m,k)

1 {2,3} {(1,1),(1,2),(2,1),(1,3),(3,1)} O(1,2) = O(1,3) = C(1)
2 {1,3} {(1,2),(2,1),(2,2),(2,3),(3,2)} O(2,1) = O(2,3) = C(2)
3 {1,2} {(1,3),(3,1),(2,3),(3,2),(3,3)} O(3,1) = O(3,2) = C(3)

Three different algorithms were used to solve the problem for
the purpose of comparison:

• Centralized Quadratic Programming (centQP): the solu-

tion of P is obtained using a specific solver in Matlab R©

for problems in the quadratic form with constraints;
• Centralized Barrier (centBr): the solution of P is reached

using the logarithmic barrier method and the centralized
formulation;

Table 2. Numerical results

distBr centBr centQP

T time objective time objective time objective

1 0.0332 5.6188 0.0133 5.6188 0.0099 5.6188

2 0.0386 11.5680 0.0200 11.5680 0.0096 11.5680

5 0.0553 40.5596 0.0243 40.5596 0.0096 40.5596

10 0.0857 73.1869 0.0423 73.1868 0.0109 73.1868

15 0.1417 85.9801 0.0670 85.9797 0.0157 85.9797

20 0.2527 91.2292 0.1211 91.2284 0.0197 91.2284

25 0.3880 93.7129 0.2004 93.7115 0.0361 93.7115

30 0.6258 95.0680 0.2657 95.0660 0.0302 95.0660

• Distributed Barrier (distBr): each problem Pm is solved by
a different agent and the constraints are treated with the
logarithmic barrier method.

The criteria of convergence in Newton’s method, which is used
in centBr and distBr to solve centering problems, is λ 2/2 ≤
10−5. The convergence criterion for the logarithmic barrier
method is ε ≤ 10−4, while the stationary test is satisfied with
e ≤ 10−4. The weights on control action and output deviation
were set equal because their adjustment is not the focus of this
work, but it is clear that the choice of weights affects directly
the compromise between performance and robustness.

Ten different feasible start points were chosen at random in the
experiments and the initial ε was defined as 103. The previous
solution was not used as an initial approximation for reop-
timization to induce worst-case scenarios. The analyses con-
sidered each type of algorithm, different lengths of prediction
horizon (T ), and rate of decrease µ ∈ {0.05, 0.1, 0.3, 0.5} for
the interior-point methods.

4.2 Numerical Results

The objective function given in (7) is used for comparison as the
cost of the computational experiments. Table 2 has the results of
the accumulated cost obtained with the ten start points and the
four different values for µ . The cost difference between distBr

and the centralized approach is less than 3×10−3, proving that
solving the set of distributed problems, {Pm}, and solving the
centralized problem, P, is equivalent. The gap in cost is due to
the acceptance range of the convergence criteria.

Table 2 also contains the results about the time spent in the
experiments, comparing centQP, centBr and distBr. A computer

with an AMD TurionTM 64x2 1.60 GHz processor and 2048
MB of memory was used to perform the experiments. Time is
given in seconds and represents the mean time spent to compute
the control actions of forty different experiments with each
algorithm. As expected, the greater the value of T , more time
is necessary to reach the solution, but the time used was always
less than one second, which is a very good result, considering
real applications.

The iterations between agents to exchange information were
also counted. Fig. 1 depicts the average number of iterations for
the experiments with varying prediction horizon and decrease
rate of the barrier method.

The convergence criterion can be relaxed to minimize the num-
ber of iterations between agents. In this case, due to the strong
couplings among the variables, the information exchange is
considerable. More scattered models will be used in future ex-
periments, which are more suitable for a distributed approach.
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Fig. 1. Algorithm iterations varying T and µ , respectively.

Ending the analyses, it can be said that a network of distributed
agents can solve the set of sub-problems {Pm}, rather than
having a single agent solve P in centralized MPC, without
incurring great loss of performance. Other adjustments can be
made in the algorithm, such as the limit on the number of
iterations, to guarantee the fulfillment of the deadlines, but all
modifications have a compromise between speed and quality.

5. CONCLUSION

This work presented a distributed MPC framework with con-
straints on output and control-input signals. The methodology
of problem decomposition was outlined and the barrier method
was used to deal with the constraints, replacing the constrained
minimization problem by a sequence of unconstrained mini-
mization problems. Centralized MPC algorithms and the dis-
tributed MPC algorithm were applied to solve a regulation
problem in a distillation column model.

The performance of distributed MPC in the distillation column
scenario was comparable to the performance obtained with
centralized MPC. The computational cost necessary to solve
each agent problem was less than the centralized case. This
advantage might allow the use of the distributed algorithm in
machines with less computational resources.

It is worth emphasizing that distributed predictive control is
more appropriate for multivariable problems where the cou-
plings are scattered, which does not happen with the model of
the distillation column.

Future works will focus on the implementation of reference
tracking and state observers. As well as the whole study of
how to introduce these extensions in a distributed algorithm.
Another goal is to look into other scenarios that can be more
appropriate for the application of distributed algorithms.
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