
Feedback Controller Design for the
Four-Tank Process using Dissipative

Hamiltonian Realization

Nicolas Hudon ∗ Martin Guay ∗

∗Department of Chemical Engineering, Queen’s University, Kingston,
ON, Canada, K7L 3N6 (e-mail: martin.guay@chee.queensu.ca)

Abstract: This paper considers the problem of stabilizing the quadruple-tank process using an
approximate dissipative Hamiltonian realization. The proposed approach consists in canceling by
feedback the deviation of the system from a Hamiltonian system. First, we obtain a characteristic
one-form for the system by taking the interior product of a non vanishing two-form with respect
to the controlled vector field. We then construct a homotopy operator on a star-shaped region
centered at a desired equilibrium point. The dynamics of the system is then decomposed into an
exact part and an anti-exact one. The exact part is generated by a potential, hence stability of
this part is guaranteed using the generating potential as a Lyapunov function. The stabilizing
feedback controller is designed by canceling the anti-exact part of the characteristic one-form.
Application of the resulting controller is illustrated by numerical simulations.
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1. INTRODUCTION

Application of generalized Hamiltonian systems are an
important approach for stability studies and controller
design of nonlinear control systems (van der Schaft, 2000)
and several physical problems were studied using this
class of dynamical system representations. One exam-
ple in chemical engineering was given recently by Otero-
Muras et al. (2008) who studied the stability of a reaction
network using its dissipative Hamiltonian representation.
However, one limitation associated with the study of non-
mechanical nonlinear systems using dissipative Hamilto-
nian is to derive a suitable Hamiltonian function for the
problem. As discussed in (Johnsen and Allgöwer, 2007)
and (Ortega et al., 1999), applications of Interconnection
and Damping Assignment Passivity-Based Control (IDA-
PBC) techniques is difficult since the concept of “energy”
is usually ill-defined for process control applications, for
example when mass balances are considered. In (Cheng
et al., 2005), it was shown that a nonlinear system of the
form

ẋ = f(x) +G(x)u, (1)
where x ∈ Rn, u ∈ Rm, and G(x) full rank, is trans-
formable to a stable Port-Controlled Hamiltonian (PCH)
system

ẋ = F (x)∇H(x), F (x) = [J(x)−R(x)] (2)
if there exists a feedback β : Rn → Rm such that the
matching equation

f(x) +G(x)β(x) = F (x)∇H(x) (3)
holds. In particular, for a fixed structure matrix F (x) and
a free Hamiltonian function H(x), the problem leads to a

set of PDEs parameterized by the structure matrix and
the feedback controller β(x). Relaxing the need for exact
matching, a non-exact matching IDA-PBC approach was
recently developed and applied successfully to chemical
reactor process stabilization (Ramı́rez et al., 2009).

In this paper, we will address the problem of stabilizing
controllers design using approximate dissipative Hamilto-
nian realization. In (Cheng et al., 2000), conditions for
approximate Hamiltonian realizations were given in terms
of a normal form. Sufficient conditions and a constructive
algorithm for a generalized Hamiltonian realization for
time-invariant nonlinear systems were presented in (Wang
et al., 2003). In particular, the method proposed in (Wang
et al., 2003) proposed a vector field decomposition along
the gradient direction ∇H(x) and the tangential direction
of the energy surfaces of H(x), for a regular positive-
definite function H(x). Following the work in (Maschke
et al., 2000) which related port-controlled Hamiltonian
systems to the construction of Lyapunov functions, it was
shown in (Wang et al., 2007) how k-th degree approximate
dissipative Hamiltonian systems can be used to solve the
realization problem and how associated k-th degree ap-
proximate Lyapunov functions can be used to study the
stability of such systems.

In the following, we propose to use the tools of exterior
calculus to construct the Hamiltonian function and design
a stabilizing controller. It is shown that a stabilizing
controller can be developed by canceling the anti-exact
part of the dynamics (this dynamics acts tangentially to
the dynamics generated by the potential). More precisely,
assuming a controller structure, we obtain a characteristic
one-form for the system by taking the interior product of
a non vanishing two-form with respect to the vector field.
A homotopy operator centered at a desired equilibrium



point for the system is used to obtain an exact one form,
generated by a Hamiltonian function, and an anti-exact
form that generates the tangential dynamics. We design
the controller in such a way that the anti-exact form
vanishes. The stability argument presented in (Hudon
et al., 2008) uses local equivalence between the exact part
of the dynamics and a pre-defined Hamiltonian dissipative
realization, viewed as a reference system to develop a local
change of coordinates to derive the desired local dissipative
potential for the system.

The paper is organized as follows. Section 2 presents the
four-tank system as a motivating example. In Section 3,
mathematical background is presented, recalling the ele-
ments required for the development of the radial homotopy
operator that is used in the sequel. The application of this
operator to discriminate the exact and anti-exact parts of
the dynamics and the development of the stabilizing con-
troller are presented in Section 4. Numerical applications
to the four-tank system are given in Section 5. Conclusions
and future areas of investigation are outlined in Section 6.

2. QUADRUPLE-TANK PROCESS EXAMPLE

To motivate the present paper, we use the four-tank sys-
tem studied in details in (Johansson, 2000). More recently,
Johnsen and Allgöwer (2007) developed an IDA-PBC
controller for the system by introducing error dynamics
and solving the matching equations assuming a perturbed
Hamiltonian function for the closed-loop dynamics.
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Fig. 1. Four-Tank System

The dynamic model for the four-tank system is given as a
control affine nonlinear system of the form

ẋ = f(x) +G(x)u (4)
where x ∈ R4 are the levels in the respective tanks
and u ∈ R2 are the manipulated flows. Using the model

proposed in (Johnsen and Allgöwer, 2007), f(x) and G(x)
are given by

f(x) =
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The parameters Ai represent the cross sections of the
respective tanks i = 1, . . . , 4, such that the volumes are
given by Vi = Aixi. The parameters ai are the cross
section of the outlet holes. The gravitational acceleration
is denoted by g. The parameters γ1, γ2 ∈ [0, 1] are the
valve parameters that determined how much of the flows
ui are re-directed in bottom tanks i = 1, 2. If the levels
of tanks 1 and 2 are the only measured states, it was
shown in (Johansson, 2000) that the condition for stable
zero dynamics is that γ1 + γ2 6= 1.

To stabilize the system at a desired admissible steady-
state, (x∗, u∗), we propose a controller of the form

u1(t) = k11(x) · x1(t) + k12(x) · x2(t) (7)

u2(t) = k21(x) · x1(t) + k22(x) · x2(t). (8)
At this point, we assume that all tanks levels are measured.
In Section 5, we will discuss how this requirement can be
relaxed in the case where only x1 and x2 are measured.

3. EXTERIOR CALCULUS AND HOMOTOPY
OPERATOR

In this section, we show how to construct a homotopy
operator H, i.e., a linear operator on differential forms ω,
that satisfies the identity

ω = d(Hω) + Hdω. (9)
We first recall some notions of exterior calculus on Rn
(Edelen, 1985). We denote a smooth vector field X ∈
Γ∞(Rn) as a smooth map

X : Rn → TRn, X|x =
n∑
i=1

vi(x)∂xi |x. (10)

The cotangent (dual) space T ∗xRn is the set of all linear
functionals on TxRn,

T ∗xRn = {ω|x : TxRn → R} (11)
where each ω|x is linear, i.e.



(aω1|x + bω2|x)(Xx) = aω1|x(X|x) + bω2|x(X|x). (12)

The standard basis of T ∗xRn is given by {dx1, . . . , dxn},
where dxi(∂xj

) = δij , δ
i
j being the Kronecker delta. An

element ω|x in the cotangent space T ∗xRn can be written
as

ω|x =
n∑
i=1

ωidxi, ωi ∈ R. (13)

In the sequel, differential one-forms will be used. We write

ω =
n∑
i=1

ωi(x)dxi, (14)

where ωi are smooth functions on Rn. The exterior (wedge)
product ∧ is defined on Ω1(Rn)× Ω1(Rn) by the require-
ments

dxi ∧ dxj =−dxj ∧ dxi
dxi ∧ f(x)dxj = f(x)dxi ∧ dxj

for all smooth functions f(x) and

α ∧ (β + γ) = α ∧ β + α ∧ γ, (15)

for all α, β, γ ∈ T ∗Rn. If α ∈ Λk(Rn), then we write
degα = k. Notice that Λ1(Rn) = T ∗Rn and Λ0(Rn) =
C∞(Rn).

The differential operator d is the unique operator on
Λ(Rn) =

⊕n
k=0 Λk(Rn) with the following properties:

d : Λk(Rn)→ Λk+1(Rn), 0 ≤ k ≤ n− 1, (16)

1. d(α+ β) = dα+ dβ.
2. d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ.
3. df = ∂fi

∂xi
dxi, ∀f(x) ∈ Λ0(Rn).

4. d ◦ dα = 0.

A k-form α is said to be closed if dα = 0. It is said to be
exact if there exists a (k − 1)-form β such that dβ = α.

The interior product y is a map

y : Γ∞(Rn)× Λk(Rn)→ Λk−1(Rn) (17)

with the following properties ∀X ∈ Γ∞(Rn) and ∀f ∈
Λ0(Rn):

1. Xy f = 0.
2. Xy ω = ω(X),∀ω ∈ Λ1(Rn).
3. Xy (α + β) = Xy α + Xy β,∀α, β ∈ Λk(Rn), k =

1, . . . , n.
4. Xy (α∧β) = (Xy α)∧β+(−1)deg(α)α∧(Xy β),∀α, β ∈

Λ(Rn).

The first step in the construction of a homotopy operator
is to define a star-shaped domain on Rn (Edelen, 1985;
Banaszuk and Hauser, 1996). An open subset S of Rn
is said to be star-shaped with respect to a point p0 =
(x0

1, . . . , x
0
n) ∈ S if the following conditions hold:

• S is contained in a coordinate neighborhood U of p0.
• The coordinate functions of U assign coordinates

(x0
1, . . . , x

0
n) to p0.

• If p is any point in S with coordinates (x1, . . . , xn)
assigned by functions of U , then the set of points
(x0 + λ(x− x0)) belongs to S, ∀λ ∈ [0, 1].

A star-shaped region S has a natural associated vector
field X, defined by

X(x) = [x0
i + λ(xi − x0

i )]∂xi
, ∀x ∈ S. (18)

In this paper, we will consider the case where the star-
shaped domain is centered at the desired equilibrium point
x∗i .

For a differential form ω of degree k on a star-shaped region
S centered at an equilibrium point, the homotopy operator
will be defined, in coordinates, as

(Hω)(x) =
∫ 1

0

X(x)y ω(λx)λk−1dλ, (19)

where ω(λx) denotes the differential form evaluated on the
star-shaped domain in the local coordinates defined above.

The properties of the homotopy operator are as follows
(Edelen, 1985):

H1. H maps Λk(S) into Λk−1(S) for k ≥ 1 and maps
Λ0(S) identically to zero.

H2. dH + Hd = identity for k ≥ 1 and (Hdf)(x) = f(x)−
f(x0) for k = 0.

H3. (HHω)(xi) = 0, (Hω)(x0
i ) = 0.

H4. XyH = 0, HXy = 0.

The first part of the right hand side of (9), d(Hω), is
obviously a closed form, since d ◦ d(Hω) = 0. By property
(H1), for ω ∈ Λk(S), we have (Hω) ∈ Λk−1(S), d(Hω)
is also exact on S. We denote the exact part of ω by
ωe = d(Hω) and the anti-exact part by ωa = Hdω. It
is possible to show that ω vanishes on Rn if and only if ωe
and ωa vanish together (Edelen, 1985).

In the sequel, we will apply the homotopy operator on one-
forms. Since in our applications, ωe is an exact one-form,
(Hω) computed by homotopy is a dissipative potential.
A non dissipative potential is associated with the anti-
exact part, but on the star-shaped domain S, ωa does not
contribute to the dissipative part of the system. In other
words, ωa belongs to the kernel of H, which can be seen
by applying property (H3) from above to the definition of
ωa. In the next section, we will show how stabilization of
the desired equilibrium will be ensured by canceling the
dynamics associated with ωa using feedback.

4. FEEDBACK CONTROLLER DESIGN

4.1 Potential Computation

We now present the central element to the proposed
construction, namely using the homotopy operator to
discriminate the exact and the anti-exact parts associated
to a given autonomous system and then computing a
feedback controller to cancel the anti-exact part of the
dynamics.

Let the vector field X|x =
∑n
i=1 fi(x)∂xi

, i = 1, . . . , n be
known. We assume that X is of class Ck with k ≥ 2. It
is also assumed that X has an equilibrium point, in the



present case, an admissible steady-state for the four-tank
process. First, we define a non vanishing closed two-form
Ω =

∑
1≤i<j≤n dxi ∧ dxj on Rn.

Taking the interior product of Ω with respect to the vector
field X, we compute a one-form ω as follows

ω =Xy Ω (20)

=
∑

1≤i<j≤n

(fidxj − fjdxi) . (21)

Given a star-shaped region centered at the origin, with
associated vector field X(x) = xi∂xi , we have

(Hω)(x) =
∫ 1

0

(Xyω(λx)) dλ. (22)

Letting f̃i denote the values of the components of f after
integration with respect to λ, we have

(Hω)(x) =
∑

1≤i<j≤n

(
f̃i · xj − f̃j · xi

)
:= F̃ (x). (23)

Taking the exterior derivative, we have

ωe =
n∑
i=1

∂F̃

∂xi
dxi. (24)

The anti-exact form is then given by

ωa = ω − ωe

=
∑

1≤i<j≤n

(
fi −

∂F̃

∂xj

)
dxj −

(
fj +

∂F̃

∂xi

)
dxi. (25)

Remark 1. As a special case, if one defines Ω to be the
canonical symplectic two-form and if XH is the vector field
generated by a known Hamiltonian H, ω obtained by the
interior product XHy Ω is closed, and we can show that
ω = ωe = −dH.

For the quadruple-tank system, using our knowledge of the
coupling between the tanks, we define the non-vanishing
two-forms as

Ω = dx1 ∧ dx3 + dx2 ∧ dx4. (26)
The characteristic one-form for the system is thus given
by

ω = −f3dx1 − f4dx2 + f1dx3 + f2dx4. (27)
On a star-shaped region centered at the desired equilib-
rium point (x∗1, x

∗
2, x
∗
3, x
∗
4), we have

X = x∗i + λ(xi − x∗i ). (28)
A net result on our notation for the sequel is that on the
star-shaped domain, x denotes deviation variables from
the center x∗. In (Hudon et al., 2008), the exact part

ωe =
4∑
i=1

fe,i(x)dxi (29)

was used to compute a dissipative potential by equivalence
to a normal form of dissipative Hamiltonian realization.
In the present paper, we are interested in canceling the
anti-exact part ωa by feedback to ensure stability of the
closed-loop dynamics.

4.2 Anti-exact Dynamics Cancelation

As mentioned before, the anti-exact part does not influence
the value of the computed dissipative potential, at least
on the star-shaped domain where the homotopy operator
is defined. However, in order to prove stability, the anti-
exact part must also vanishes at the equilibrium point of
the system (and only there). In the considered example,
we will show that a desired equilibrium can be rendered
attractive provided that ωa(x∗) = 0.

The controlled vector field for the four-tank system is given
as in Johnsen and Allgöwer (2007) by Equations (4-6). We
fixed the controller to be

u1(t) = k11(x) · x1(t) + k12(x) · x2(t) (30)

u2(t) = k21(x) · x1(t) + k22(x) · x2(t). (31)

From Section 4.1, we are left we an anti-exact part of the
form:

ωa =
4∑
i=1

fa,i(x)dxi. (32)

It is desired to make this form closed by using the elements
ki,j(x) of the proposed controller. A one-form is closed if

∂fa,i
∂xj

=
∂fa,j
∂xi

. (33)

For the four-tank system, it leads us to 5 equations with
4 unknown:
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From Equations (36-37), we have that k12 = k21 = 0. From
Equations (35) and (38), we have that

k11(x) =−κ1
A3γ1

√
2x1x3

a3A1
√
gx1 + a1A3

√
gx3

(39)

k22(x) =−κ2
A4γ2

√
2x2x4

a4A2
√
gx2 + a2A4

√
gx4

(40)

where the gains κ1 and κ2 are used to guarantee the first
equality (34).

The stability argument for the closed loop system uses
the Barbashin-Krasovskĭı, hence the requirement that ωa
vanishes only at the desired equilibrium point. In fact,
the condition that ω = ωa + ωe be closed along with the
requirement that ω vanishes at the desired equilibrium is
essentially a convexity condition of a generating potential.
In that sense, decomposition of the dynamics using a char-
acteristic one-form is related to the stability requirements



for IDA-PBC as presented in (Ortega et al., 1999) and
(Ortega et al., 2002). In the next section, we will illustrate
the application of the proposed stabilizing controller.

5. NUMERICAL SIMULATION RESULTS

We now present some numerical applications of the feed-
back controllers derived in the previous section. Simulation
parameters are taken from (Johnsen and Allgöwer, 2007)
and are presented in Table 1. We will look at 3 different
cases parameterized by the values of γ1 and γ2.

Table 1. System Parameters (Johnsen and
Allgöwer (2007))

Ai (cm2) ai (cm2)

i = 1, 2 50.3 0.233
i = 3, 4 28.3 0.127

First, we look at the case where ω1 = ω2 = 0.6. For these
values, an admissible steady-state x∗ is computed to be
approximately x∗ = [9, 9, 4.8, 4.8]T , and we initialize
the system at x = [4, 7, 6.8, 6.8]T . Figures 2 and 3
show that the controller (even with small gains) drives the
trajectory to the desired equilibrium and the controller to
the consistent steady-state value u∗. Hence by canceling
the anti-exact part, the center of the star-shaped domain
is attractive.

Fig. 2. Full state stabilization of case γ1 = 0.6, γ2 = 0.6

We now consider the case where γ1 = γ2 = 0.5. An ad-
missible steady-state x∗ is computed to be approximately
x∗ = [10.9, 10.9, 9.17, 9.17]T . Initializing the simulation
at x = [5.9, 9.9, 11.2, 11.2]T , the proposed controller
drives the system to the desired equilibrium (Figures Fig-
ures 4 and 5). This case is interesting since, as mentioned
in Section 2, if we had considered only output feedback,
the zero dynamics for the system are unstable at those
values.

To consider output feedback for the case γ1 = γ2 = 0.5,
we replace x3(t) and x4(t) in the controller expressions
(39-40) by their desired steady-state values x∗3 and x∗4. In
this particular case, since the zero dynamics is unstable,

Fig. 3. Control variables values for case γ1 = 0.6, γ2 = 0.6

Fig. 4. Full state feedback stabilization of case γ1 =
0.5, γ2 = 0.5

we use the design parameters κ1 and κ2 to make the
dynamics of the system associated with the anti-exact part
dominated by the gradient term. We seek to reach the same
equilibrium point as above x∗ = [10.9, 10.9, 9.17, 9.17]T
from two different initial states: [5.9, 9.9, 7.2, 7.2]T and
[15.9, 11.9, 11.2, 11.2]T . Results are presented in Figure
6. As argued in (Ramı́rez et al., 2009) for a related design
approach, the stabilization results present here still hold
locally since the proposed controller design procedure does
not involve inversion of the dynamics.

6. CONCLUSION

In this paper, a procedure to construct stabilizing con-
trollers using local dissipative Hamiltonian realization for
nonlinear dynamical systems was presented. The proposed
approach can be seen as an extension of the approximate
feedback linearization approach proposed by Banaszuk



Fig. 5. Control variables values for case γ1 = 0.5, γ2 = 0.5

Fig. 6. Output feedback stabilization of case γ1 =
0.5, γ2 = 0.5

and Hauser (1996). Taking the interior product of a non
vanishing two-form with respect to the vector field defin-
ing the system, we first obtained a (possibly) non-closed
characteristic one-form for the system. Constructing a lo-
cally defined homotopy operator on a star-shaped domain
centered at the desired equilibrium point, we presented
how to decompose locally the obtained form into an exact
and an anti-exact one-forms. From (Hudon et al., 2008),
we know that the exact part is associated to a dissipa-
tive (stable) potential. The obtained anti-exact form is
associated to a non dissipative potential which generated
tangential dynamics that do not contribute to the value
of the dissipative potential on the star-shaped domain.
However, using a pre-defined feedback controller to make
this error one-form exact, it was shown, using the four-
tank system example, that the procedure enables us to
construct a stabilizing control. Future research will focus
on the limitations of the technique, especially cases where

the controller information does not appear in the expres-
sion of the anti-exact form, for example the nonisothermal
CSTR system presented in (Ramı́rez et al., 2009).
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