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Abstract: In this paper, the focus will be on approximating original model of process systems
using block-structured models. The context of model reduction is to improve the computational
efficiency (simulation time). The reduced order models are important for online applications.
Hammerstein structures have been used to approximate a mathematical non-linear model of a
process. Input-Output Hammerstein structure can be defined as classical Hammerstein model
but the technique is extended here to Input-State Hammerstein structure. It is shown that Input-
State Hammerstein structure can be derived from Taylor series. Approximation accuracy has
been improved by approximation for second term. The approximated Input-state Hammerstein
block structure model gives good approximation of the original non-linear system. Over an
operating domain of a process, the Input-State Hammerstein structure provides opportunities for
reducing the computational load by order reduction of states and Jacobians. The methodology
has been applied to a high purity distillation benchmark and satisfactory results are obtained
as far as approximation is concerned. Reduction in states and Jacobian size by 70% is attained.

Keywords: Nonlinear model order reduction, Hammerstein, Taylor series, high purity
distillation column

1. INTRODUCTION

First order principle models (rigorous models) are stiff
and large, thus are computationally inefficient. Since the
(rigorous) NL models are not always exact match of real
processes and there is mismatch at some point between the
two, reduced models can be very useful if they match the
rigorous NL model over a certain operation window. Ad-
vantage of reduced mathematical models for NL processes
include low computational effort, better approximation of
process within the operating window and beneficial for
the real-time applications (e.g; control and optimization
purposes).

The rigorous models available for large industrial processes
can be characterized as a set of differential and algebraic
equations (DAE). DAE class of models is capable to
express the majority of processes. Thus the methodology
to achieve a reduced model should be capable of handling
DAE models. The transformation from DAE to ordinary
differential equation (ODE) format is regarded as a major
model reduction step; but it is not possible generally. A
methodology which involves this step is advantageous for
the process models of DAE class.

There is not much literature available on model reductions
when it comes to model reduction in context of computa-
tional load. Balasubramhanya and Doyle (2000) developed
a reduced order model of batch distillation column using
travelling waves. The closed loop simulation of this re-
duced model was six times faster than original model in
closed loop. Aling et al. (1997) used POD to get reduced

model for rapid thermal processing system. Reduction of
computational load by a factor ten was reported. Hahn and
Edgar (2000) elaborated on model reduction by balancing
empirical Gramians and showed model order reduction but
reduction in computational effort and time was limited.
Perregaard (1993) simplified and reduced chemical pro-
cesses models for simulation and optimization purposes.
He achieved the reduction by simplifying the calculation of
algebraic equations, which resulted in computational effort
reduction. Gani et al. (1990) replaced the true (symbolic)
Jacobian by approximated Jacobian (from local models).
They reported the reduction of computational times by
factor of 20 ∼ 60. Empirical modelling has been one of the
major approaches for achieving low computational com-
plexity (which allows fast simulations). Ling and Rivera
(1998) used a Hammerstein structure for model reduction,
but did not report reduction in computational load (on
polymerization benchmark). Berg (2005) reported that if
computational load has to be reduced, not only model
order reduction is to be targeted but the complexity (and
stiffness) of reduced model has to be lower; as Gani (Gani
et al. (1990)) achieved the computational load reduction
by reducing the complexity (discussed above). Block struc-
ture models have been used for the identification pur-
poses (see Eskinat et al. (1991); Billings and Fakhouri
(1977), Norquay et al. (1999), Harnischmacher and Mar-
quardt (2007) etc.). Though block structure models have
been used for the identification purposes, but the block
structure models have not been used for the model reduc-
tion purposes.



As the literature review shows, there is no reduction tech-
nique available directly related to reduction of computa-
tional load. Each model reduction technique has its specific
purposes which is completely understandable. Not every
model reduction methodology works for every process,
but it is desired to have a model reduction methodology
which is generic and applicable to wide class of processes
(represented by DAE class of models). Moreover the lit-
erature review indicates that there is not much research
material available on model reduction subject; whatever is
available, mostly addresses the model order reduction and
it does not focuses the reduction in complexity of reduced
model (which is major component for computational load).
Not many model reduction methodologies have addressed
the problem of simplification of reduced model. The field
is open for research to achieve reduced models, which are
simple and reduced order to achieve computational load
reduction.

Block structure models have an advantage over other
model approximation methodologies; the structure of ap-
proximation model gives insight to the complexity of the
process and breaks down the complexity of the NL process.
This give handles to feel for the complexity and reduce
it. Use of block structure enhances the chances to get a
reduced model, which is uncomplicated and is computa-
tionally efficient.

In this paper, a block structure (Hammerstein) has been
used to achieve reduced model for nonlinear chemical
process. In the subsequent section, Hammerstein struc-
ture is discussed. In section 3, reduction methodology is
discussed. In section 4, implementation on high purity
distillation column and its results are considered. The last
section 5 concludes the paper with key points and future
work.

2. HAMMERSTEIN STRUCTURE

There are different block structures which are known for
model reduction (and empirical modeling); Wiener, Ham-
merstein etc. Chen (1995) has introduced and discussed a
wide variety of such block structures. Wiener and Ham-
merstein block structure models are most widely used
structures in literature for the representation of nonlin-
ear physical processes and will be shortly discussed here.
Wiener models have limitations (specifically for chemical
processes) which give edge to Hammerstein structure for
identification purposes ( Harnischmacher and Marquardt
(2007)). Wiener models not only limit the nonlinearity
measure to be approximated, but they also increase the
complexity involved in identifying or approximating the
process. Harnischmacher (2007) investigated that Wiener
models restrict the dynamic NL behavior that can be ap-
proximated and identified in comparison to Hammerstein
structure.

Hammerstein structure is used for the approximation of
NL processes in this study. The methodology is extended
further to I/S Hammerstein structure to improve the
approximation.

2.1 Classical (Input-Output I/O) Hammerstein structure

Classical Hammerstein model can be seen as nonlinear
static gain, followed by linear dynamics.
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Fig. 1. Classical Hammerstein structure (input-output)

The classical I/O Hammerstein structure shown in figure 1
represents the continuous system/process. A procedure to
get Hammerstein structure approximation for a process
is to represent the nonlinear static block by interpolation
table (lookup table), neural network or spline scheduling
(the steady states) and represent linear dynamic block
by linear time invariant (LTI) model. The intermediate
variable v is a low dimensional vector. Mathematically,
classical Hammerstein structure is given as;

ẋ = A x + g(u) (1)
y = C x

where, A is the state matrix, C is the output matrix which
can be identified from process data or can be obtained
by linearizing the nonlinear system at ’nominal operating
point’. Nominal operating point is an operating point
within the operating domain, chosen by the input design
(discussed in later section 3.1.

The input-output (I/O) Hammerstein model shown can be
modified to Input-state (I/S) Hammerstein model under
few assumptions (Naeem et al. (2008)). I/S Hammerstein
model can be derived from expansion of Taylor series
(shown in section 2.3)

2.2 Taylor Series

The Taylor expansion of a function f(x) that is differen-
tiable in the neighborhood of real or complex number ’a’
is mathematically given as:

f(x) = f(a) +
1
1!

∂f

∂x

∣∣∣∣
a

(x− a) +
1
2!

∂f2

∂2x

∣∣∣∣
a

(x− a)2 + . . .

(2)

Typically process models are of DAE format and transfor-
mation from DAE to ODE is a model reduction step (for
a large scale process). The ODE can be approximated by
I/S Hammerstein structure.

Given an ODE ẋ = f(x, y), which is modeled in an
environment (gPROMS, MATLAB, SIMULINK), the first
order Taylor expansion around point (x∗, u∗) is given
mathematically as:

ẋ = f(x, u) = f(x∗, u∗) + Jx|x∗,u∗ (x−x∗) + Ju|x∗,u∗ (u−u∗)+. . .

(3)

Equation 3 evaluates the function f(x, u) given lineariza-
tion at f(x∗, u∗). Figure 2 shows the equation 3 in block
diagram.
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Fig. 2. Block structure for Taylor series of ẋ = f(x, u)

2.3 Taylor Series expansion

Taylor series illustrated in preceding section can be ex-
tended to I/S Hammerstein structure (at steady-state
point (x∗, u∗)) under following assumptions:

a. It is assumed, within the operating domain that
every u∗ leads the system finally to steady-state ’xss’
which means a stable process is considered. Moreover,
it is assumed that steady-state is calculated by u.
Mathematically, xss = g(u). Setting x∗ = xss results
in output of the (constant) block (f) zero (the system
is being evaluated at steady-state x∗).

b. Input u is chosen freely, but is chosen such that it is
equal to the input at steady-state, mathematically;
u = u∗; this implies that gradient input to block
(J(u)) becomes zero; (since u− u∗ = 0).

Under above assumptions, adding g(u), removing blocks
f and Ju and rearranging the block structure in figure 2,
we get the block structure shown in figure 3. Observing
this structure it can be considered an I/S Hammerstein
structure; it has two blocks, a NL steady-state mapping
block, followed by linear dynamic block.
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Fig. 3. Taylor series extension to I/S Hammerstein struc-
ture

For a linear system, state-space model can be mathemat-
ically given as below:

ẋ = A x + B u (4)
y = C x

For the state-space linear model (in equation 4), I/S
Hammerstein structure can be shown as figure 4.

The block structure shown in figure 4 can be extended
for NL processes, shown in figure 5. I/S Hammerstein
structure shown in figure 5 is similar to the structure
derived by Taylor series expansion (shown in figure 3).

The block structure shown in figure 3 and figure 5 is I/S
Hammerstein block structure, with separated NL stat-
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Fig. 5. Input-state Hammerstein structure for non-linear
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ics(where NL static mapping takes place), followed by
linear dynamic block. The dynamic linear block is driven
by difference between the steady state ’xss’ and current
state ’x’.

Mathematically, for NL case, I/S Hammerstein structure
can be given as:

ẋ = J (x− xss) + g(u) (5)
y = C x

where, J = Jacobian; C = output state matrix ; y =
output ; xss= g(u) is steady-state, scheduling (implemented
by lookup table).

The I/S Hammerstein block structure shown in figures 3
and 5 is used for the approximation of NL processes. The
accuracy of approximation of I/S Hammerstein structure
is improved by estimating Jacobian online. Jacobian is
estimated (and updated) based on information of Jacobian
basis Jb, reduced state z and input u. Jacobian basis Jb

are calculated by SVD analysis of Jacobian data. Jacobian
data is collected by taking snapshots of Jacobians over
the operating domain (’input design’) by exciting the
NL system with inputs to acquire most information in
operating envelope. Similarly the reduced order states z
is calculated by transformation matrix (U1), obtained by
SVD analysis of steady-state and dynamic state (snapshot)
data, taken over the operating domain.

First order I/S Hammerstein approximation structure
(with updated Jacobian), is shown in figure 6. As figure
shows,the Jacobian estimation is based on (reduced) cur-
rent state information (z).
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Fig. 6. First order I/S Hammerstein approximation struc-
ture

In the figure 6, J = Jacobian ; U1 = transformation
matrix to transform full state x to reduced state z ; Jb =



Jacobian basis obtained by SVD analysis of snapshots of
Jacobians (within operating domain) ; N0, N1, N2 = the
parameters relating Jacobian with reduced-state z, input u
and constant.

It is to be noted, I/S Hammerstein can be derived by
extending Taylor expansion as proved above. This is not
possible for Wiener structure.

2.4 Accuracy improvement by higher order approximation

First order approximation of NL system by expansion
of Taylor series to I/S Hammerstein structure is shown
in above section. The approximation accuracy can be
improved with higher order terms.

The Taylor series is extended to second order. Taylor series
around (steady-state) point (x∗, u∗) is given as:

f(x, u) = f(x∗, u∗) +
∂f

∂x

∣∣∣∣
x∗,u∗

(x−x∗) +
1
2!

∂f2

∂2x

∣∣∣∣
x∗,u∗

(x−x∗)2

(6)

Similarly, Taylor series expansion around any point (x, u)
is given as below:

f(x∗, u∗) = f(x, u) +
∂f

∂x

∣∣∣∣
x,u

(x∗−x) +
1
2!

∂f2

∂2x
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x,u

(x∗−x)2

(7)

Equation 6 and equation 7 are the Taylor series expansions
at two points (x∗ and x), given by Taylor series extension
to second order. Rearranging equation 7, we get;

f(x, u) = f(x∗, u∗) +
∂f

∂x

∣∣∣∣
x,u

(x∗−x) +
1
2!

∂f2

∂2x

∣∣∣∣
x,u

(x∗−x)2

(8)

Adding equation 6 and equation 8 (while higher order
terms are canceled, assuming 1

2!
∂f2

∂2x

∣∣∣
x,u

= 1
2!

∂f2

∂2x

∣∣∣
x∗,u∗

),

we get;

f(x, u) = f(x∗, u∗) +
1
2

[
∂f

∂x

∣∣∣∣
x∗,u∗

+
∂f

∂x

∣∣∣∣
x,u

]
(x− x∗)

(9)

Equation 9 is the approximation of f(x, u) using higher
order terms. There are two Jacobian evaluations involved
in this approach, an approximation using knowledge at
steady-state (x∗) and approximation using current state
(x) knowledge. The block structure representation of this
approximation is shown in figure 7.

3. REDUCED ORDER HAMMERSTEIN STRUCTURE

Approximation block structure shown in figure 7 is full
state model. Since it is a prerequisite for the approxima-
tion block structure, to be valid within certain operating
domain.
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Fig. 7. Approximation model (I/S Hammerstein); Higher
order approximation)

3.1 Operating domain/Input Design

Within defined domain, inputs are designed with the
purpose to define an input trajectory that travels through
complete domain. The process is known as ’input design’.
As the name indicates, it is the process of designing
inputs based on constraints on input or output (depending
upon a process). In summary, the operating domain is
a region, where the approximated model is supposed to
be valid, once identified (based on data from the physical
process) and input design is the procedure, which defines
the boundaries of this operating domain.

The steady-state and dynamic state data is obtained by
taking snapshots over the operating domain. Similarly,
Jacobian data is collected by taking the snapshots of
Jacobians over the operating domain. Jacobian basis Jb

are computed by SVD analysis of Jacobian data.

The I/S Hammerstein block structure gives scope to get
the reduced order structure by;

i. Reduction in state size.
ii. Reduction in Jacobian size.

i. Reduction in state size.
The singular value analysis on data of states indicates
that there is a low dimensional space, such that low
order state (z) can represent the whole operating do-
main. The state reduction is performed by transforma-
tion matrix. The transformation matrix U1 (to obtain
reduced state ’z’) is obtained by SVD analysis of data
over the operating domain. Reduced states are back-
transformed to full state by back transformation matrix
Û1. The block structure of the reduced approximation
model is shown in figure 8. The Jacobian reduction takes
place online (in the block U1 ∗ J ∗ UT

1 ).

ii. Reduction in Jacobian size.
The scheme in figure 7 shows that Jacobian estimation
takes place using Jacobian basis Jb, state z and input u
information. The estimated Jacobian Jest is full order
Jacobian. There is possibility to obtain reduced size
Jacobian, by using reduced order Jacobian basis (Jbred

)
and reduced state (z). With reduced basis Jbred

and
reduced states z, estimated Jacobians are also reduced
sized and the block structure is a reduced order I/S



Hammersteins approximation model. The block struc-
ture is shown in figure 9.
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stein); Higher order approximation
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4. APPLICATION TO HIGH PURITY DISTILLATION
COLUMN

The approximation block structure and reduced block
structure model has been applied to the benchmark. A
benchmark is high purity distillation column, and its
properties will be discussed in subsequent sections. But
before the methodology is implemented on benchmark, a
prerequisite for the methodology is to define the operating
domain, within which the approximation/reduced model
is valid. Input design, discussed in section 3.1 is designed
for distillation column; the operating domain has been
finalized by constraint in output purity. A set of input
variables (reflux (L) and vapour boilup (V)) is chosen,
for which output variables are observed. The product
purity for output variables sets the boundary for operating
domain.

High purity distillation column

A high purity distillation column is used as test case, on
which the approximated and reduced model estimation is
applied. The distillation column has following properties;
The column has 72 trays, a total condenser and partial
reboiler. It is a nonlinear system. The thermodynamics of
the column are governed by constant relative volatility.
The relative volatility for this specific system is 1.33.
Pressure is assumed to be constant. Vapour holdups are
considered negligible and liquid holdups are considered
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Fig. 10. Figure of operating domain ’input design’

to be constant. Moreover, the column is assumed to be
working with equimolal flow (which results in eliminating
energy balances). The distillation benchmark model has
been explained in detail by Lévine and Rouchon (1991).

The benchmark is modelled in gPROMS while the approx-
imation model is modelled in MATLAB and SIMULINK.
The approximation technique is implemented on the
benchmark. The operating domain is finalized (input de-
sign) shown in figure 10. The static part consists of lookup
table which interpolates the steady-states. The steady-
states are fed into the dynamic part. The difference be-
tween current state and steady-state is fed to Jacobian
block, which is estimated based on state and steady-state
data. This represents the linear block as bilinear system.

Two types of changes

There are two types of input signals tested for the valida-
tion of approximated (and reduced) model.

a) ’Separation index’ (SI) is change in distillation, when
both the input variables (reflux rate (L) and vapour
boilup (V)) are given same steps at the same time, or
the rate of flow of distillate D and bottom B does not
change.

b) ’Effective Cut Point’ (ECP) is change in distillation,
when one input variable (reflux rate (L) or vapour boilup
(V)) is kept constant and step change is given to the
other input variable. This change is known to be highly
non-linear for high purity distillation column (in process
industry).

Figure 11 show the step in both inputs at the same time
(separation index). The approximation model structure (in
full state) and reduced order model structure approximate
the behavior very well. The mismatch between the approx-
imations and original is cause by offset form lookup table
(NL block of approximated model).

Figure 12 show the result comparison of original, full
order approximated model and reduced order model, when
step in vapour boilup (V) input (effective cut point) is
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Fig. 11. Results for comparison of SI change between
original, approximation ’full ’ and ’reduced ’ model

applied. The approximation model structure (in full state)
and reduced order structure approximates the behavior
satisfactorily. There is a very small mismatch in dynamics
between the approximation model and original. The offset
is acceptable (and sufficiently accurate) for this applica-
tion.
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Fig. 12. Results for comparison of ECP change between
original approximation ’full ’ and ’reduced ’ model

5. CONCLUSIONS & FUTURE WORK

In this paper, it is shown that Input-State Hammerstein
structure can be derived from a Taylor expansion. The
approximation model’s accuracy can be improved by in-
cluding higher order terms. The approximation results
were shown for a high purity distillation benchmark are
acceptable for the kind of application. Order reduction of
70% is possible using the methodology with satisfactory
results (high accuracy).

Work on the following tasks is done presently or is to be
considered in future:

i) The computational load reduction for the benchmark
example (high purity distillation column) is to be inves-
tigated. The computational load and simulation time
reduction has to be compared with original NL model.

ii) It is planned to extend the methodology to industrial
case. The industrial models make use of dynamic link li-
brary (dll) files (as foreign process) to compute different
task (such as thermodynamic properties). Such foreign

processes buildup overhead costs,resulting in increased
computational load. It is anticipated, that transforma-
tion of large DAE model to ODE structure will reduce
the computational effort (and simulation time), since the
algebraic computations are vanished in ODE structure,
replaced by NL mapping.
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