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Abstract: Valve stiction is a well known villain in process industry. Quantifying this valve damage is 
essential to ensure plant stability and profitability. The scope of this work is to propose a new method to 
compute valve stiction parameters, using a two parameter model, using only routine operating data. The 
proposed method uses global optimization to evaluate loop and plant parameters. Combining the 
proposed procedure with an efficient global optimization algorithm, the mean computation time for each 
valve was about 5 minutes. The method was applied in both simulation and industrial valves, providing 
reliable results, with relative errors smaller than 3% in all parameters.
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1 INTRODUCTION
In the last two decades, control loop performance monitoring 
has been a fruitful research field, providing automatic tools 
for process industry, which has great interest in evaluating
loop performance in real time. Inside this scope, one topic 
that has been in focus is valve stiction, whose frequency in 
control loops is about 30% (Bialkowski, 1993). The effects of 
stiction are one explanation for these developments: it can 
cause plant-wide oscillations and increase the variability of 
the process and products.

Evaluating loop stiction is not a new issue. First studies were 
dated from 60’s (Brown, 1958). However, in the last years, a 
big effort has been made to diagnose and solve this valve
illness. A first group of works aimed at diagnosing stiction
automatically, using only process variable (PV) and 
controller output (OP) (He et al., 2007, Horch, 1999, Rossi 
and Scali, 2005, Ruel, 2000, Scali and Ghelardoni, 2008, 
Singhal and Salsbury, 2005, Stenman et al., 2003, Yamashita, 
2006). Some works have proposed specific stiction models 
for diaphragm type valves (Chen et al., 2008, Choudhury et 
al., 2005). A good survey about stiction models was recently 
written by Garcia (2008).

Also, some authors have proposed to compute stiction 
parameters in real time. Choudhury et al. (2006) proposed 
two methods to quantify stiction parameters, based on ellipse 
fitting and c-clustering, using a 1 parameter empirical model.
Subsequently, some authors have proposed to quantify 
stiction parameters using a more reliable model, with two 
parameters. Choudhury et al. (2008) have proposed a method 
based on optimization and grid search. 

Recently, Jelali (2008) has introduced one methodology to 
compute both stiction models, based on least-squares and 
global search algorithms. This method has two drawbacks: it 
is dependent of initial guess and it is computationally 
expensive. The scope of this work is to propose an alternative 

method based on global optimization to compute stiction 
parameters and linear plant model.

The main difference between our and Jelali’s method is the 
optimization procedure, which is made in a single step, using 
global optimization. Both plant models and stiction 
parameters are computed in each optimization step.
Combining the proposed procedure with an efficient global 
optimization algorithm, the computation time for each valve 
was less than 5 minutes.

The proposed methodology was applied in a set of 1000 
simulation valves, with a relative error smaller than 3% in all 
cases, for all parameters. Then, the proposed method was 
applied in a group of industrial valves, showing reliable 
results.

The paper has been organized as follows: in section 2, the 
stiction definition, model and methodologies to evaluate 
valve stiction will be briefly discussed. Then, in section 3, the 
proposed methodology will be detailed. Several simulated 
and industrial case studies are shown in section 4, to 
corroborate the applicability of the proposed methodology. 
The paper ends with the concluding remarks.

2 STICTION: MODEL AND COMPUTATION
Stiction, or high static friction, can be defined as the valve 
damage that keeps the stem from moving, because the static 
friction exceeds the dynamic. As a consequence, the force to 
move the steam is generally larger than the desired new stem 
value, and the movement is jumpy (Ruel, 2000). 

2.1 Stiction: model
A valve “suffering from stiction” has in the phase plot MV 
versus OP, shown in Fig. 1, four components: deadband 
(DB), stickband (SB), slip jump (J) and moving phase (MP). 
The method assumes that the process and controller have 



linear behaviour, while the sticky valve inserts in the loop 
nonlinear behaviour.

Fig. 1. Relation between controller output (OP) and valve 
position (MV) for a sticky valve.

When the valve changes the direction (A), the valve becomes 
sticky. The controller should overcome the deadband (AB) 
plus stickband (BC), and then the valve jumps to a new 
position (D). The stiction model consists of these two 
parameters: S (deadband+stickband) and J (jump).

Next, the valve starts moving, until its direction changes 
again or the valve comes to rest, between D and E. 

The deadband and stickband represent the behaviour of the 
valve when it is not moving, although the input of the valve 
keeps changing. Slip jump represents the abrupt release of 
potential energy stored in the actuator chambers due to high 
static friction in the form of kinetic energy as the valve starts 
to move. The magnitude of the slip jump is crucial to 
determine the limit cycle amplitude and frequency.

The stiction model used in this work is proposed by Kano
(2004), which is an extension of Choudhury’s method, where 
stiction is modeled using two parameters. Their main 
advantage is that it can deal with both stochastic and 
deterministic signals. Kano’s model flowchart representation 
is shown in Fig. 2.

The first two branches check the valve bounds. In the Kano’s 
model, two valve states are distinguished: moving (stp=0) or 
resting (stp=1). When the valve changes its direction, its 
actual position state (us) is kept, until the static force is 
overcome. The friction force direction is denoted by .

2.2 Stiction: computation
In the literature, two methods to compute stiction parameters, 
using only normal operating data are proposed. 

In the method proposed by Jelali (2008), a two step procedure 
is described. In the first step the stiction parameters are
quantified using pattern search methods or genetic algorithms 
(GA). Next, the low-order linear plant model is identified, 
using a least-squares estimator. Both simulation and 
industrial valves are analyzed, and the errors between 

predicted and actual values for stiction parameters are less 
than 10%.

Fig. 2. Flowchart for Kano model.

a second method proposed by Choudhury et al. (2008)
describes a method based on a grid search. Initially, a grid
using several different values of J and S is built and then 
based on the process output, the plant model is identified. 
Based on the mean square error (MSE) between predicted 
process output and actual output in each grid point, the 
stiction parameters are estimated.

3 STICTION QUANTIFICATION
This section describes a new method to compute both stiction 
parameters and plant model, using only normal operating 
data. Data from process variable (PV) and controller output 
(OP) are required. Here, only first order with time delay 
models (FOPTD) will be used. However, the methodology is 
adequate for second orders, integrating process, among 
others. 

Our approach uses the following assumptions, which are 
quite similar to the other methods available in the literature: 
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• The plant model is (locally) linear; 

• The loop nonlinearity is caused by the valve;

• The stiction model can be considered a 
Hammerstein model;

The proposed method computes both plant stiction
parameters in a single step, using a global optimization 
algorithm. This is the first difference between this work and 
the work proposed by Jelali (2008), where a two step 
procedure is proposed.

3.1 Optimization problem
The optimization problem to be solved is a non-linear 
programming type, where the objective function is the mean 
square error (MSE) of the difference of model output (PVP) 
and plant output (PV). 

Where n is the length of PV.

In this class of problems, the function inside the search space 
is non-smooth and has some flat areas, where the gradient is 
zero, or close to this values. Fig 3 illustrates this behavior, 
using a FOPTD model and a sticky valve. The MSE was 
computed, varying J and S. In the process output, white noise 
is added, with signal-noise ratio equal to 1.

Fig 3: Objective function shape for variable S and J

Fig. 3 clearly shows that this class of function pattern 
requires global search algorithms; otherwise probably it will 
stick, depending on the initial guess. One possibility is to use 
stochastic algorithms, as proposed by Jelali (2008). A second 
possibility is to use global optimization deterministic 
algorithms, where the convergence is guaranteed, as proposed 
in this work. 

The optimization problem for a FOPTD model to be solved 
is:

Where K and τ are the static gain and process time constant, 
respectively. The time delay is assumed to be known. Several 

methodologies available in the literature can be used to 
estimate this loop parameter (Elnaggar et al., 1991, Ahmed et 
al., 2006, Liang et al., 2003).

The proposed technique can be easily extended to higher 
order or integrating processes. In this case, the plant model is 
replaced by an integrating transfer function . In this case, 
the K and A are estimated by the optimization algorithm.

To allow the industrial application of the proposed method, 
the computational time should be reasonable. Thus, an
efficient global optimization algorithm should be selected. 
Several optimization methods have been evaluated, and the 
best obtained by the authors is DIRECT (Finkel and Kelley, 
2006). All algorithms are deterministic and deal with 
bounded decision variables.

4 CASE STUDIES
This section illustrates the applicability of the proposed 
methodology. Over a thousand simulation systems and a
dozen of industrial sticky valves were analyzed and the 
proposed methodology has shown reliable results, what 
corroborates its industrial usefulness. Some of these systems 
will be shown here.

All computations were performed in an Intel Pentium D, 
2GHz with 1 GB Ram.

4.1 Simulation case-studies
The objective of this section is to show the applicability of 
the proposed method in a set of simulation studies. All 
simulations use a PI controller and a first order plus time 
delay transfer function. Tab. 1 shows the models used in this 
work.

Tab. 1: Process and controller models used in the simulation 
case studies

Parameter Model

Plant

Controller (PI)

Here, only twelve cases are shown, where a closed loop 
system is investigated with variable stiction parameters (S
and J) and different plant time constant. The remaining 
parameters are maintained constant. Kano’s model was used 
in all cases. The stiction parameters are specified as 
percentage of input and process variable span (%). Tab. 2
provides the summary of the results obtained by the 
application of the proposed methodology, where the true 
plant and valve stiction parameters (τ, S, and J) were 
compared with their values obtained by the proposed
methodology. (τp, Sp, and Jp). The computation time (CPUt) is 
also shown. All default settings in the DIRECT algorithm 
were used, except the maximum number of evaluations of 
objective functions, which was increased by 1000.

Tab. 2 corroborates the applicability of the proposed method, 
where the model parameters have deviation less than 3% of 



the actual values. These values are comparable with Jelali’s 
simulation cases, where the errors are less than 10%. If the 
maximum number of evaluations of objective function is 

increased by 3000, then the deviation reduces by less than 
1%, however the CPU time increases to 12 min each. 

Tab. 2: Results for process simulations

Case
J

(%)
Jp

(%)
Error 
(%)

S
(%)

Sp

(%)
Error
(%)

ττ  
((min) 

τp 
(min)

Error
(%)

CPUt

(min)

1 2,3 2,3 0,1% 3,0 3,0 0,1% 30,0 30,0 0,0% 4.3

2 2,3 2,3 0,1% 3,0 3,0 0,1% 10,0 10,0 0,0% 4.3

3 3,0 3,0 0,1% 3,0 3,0 0,1% 30,0 30,0 0,0% 4.3

4 3,0 3,0 0,0% 3,0 3,0 0,1% 10,0 10,0 0,0% 4.3

5 3,8 3,8 0,1% 3,0 3,0 0,1% 30,0 30,0 0,0% 4.2

6 3,8 3,7 -1,2% 3,0 3,0 0,0% 10,0 9,9 -1,0% 4.2

7 0,8 0,8 0,6% 1,0 1,0 1,1% 30,0 30,0 0,1% 4.4

8 0,8 0,8 2,9% 1,0 1,0 3,1% 10,0 10,1 1,3% 4.4

9 1,0 1,0 0,0% 1,0 1,0 0,1% 30,0 30,0 0,0% 4.0

10 1,0 1,0 -1,7% 1,0 1,0 -1,2% 10,0 10,0 -0,1% 4.1

11 1,3 1,3 1,3% 1,0 1,0 0,4% 30,0 30,1 0,2% 4.0

12 1,3 1,2 -1,6% 1,0 1,0 -0,9% 10,0 10,0 0,0% 4.3

The second factor also analyzed in this work, was the impact 
of white noise. Using the same case study of Tab. 1 with 

, and , and different level of added white 
noise to the process variable several optimizations have been 
performed and the results are summarized in Tab. 3 where 
SNR is the relationship between Signal-Noise Ratio and the 
predicted stiction parameters, expressed in percentage of 
actual value.

Tab 3. White noise impact over the predicted stiction 
parameters – % change in each parameter

SNR % S % J
100 0.09% -0.23%

50 0.29% 0.87%

5 0.50% 1.23%

0.5 5.9% 25%

As shown in Tab 3, the methodology is not very sensitive to 
white noise impact. Only when the noise is significant (i.e.
SNR = 0.5) the results have been corrupted.

4.2 Industrial case-studies
This section shows some of the industrial application where 
the proposed methodology was applied. One flow control  
(case 1) and one pressure control (case 2) with sticky valves, 
from a Brazilian refinery, are analyzed. 

Fig. 4 illustrates the PV and OP for industrial case study 1, 
where the presence of stiction can be easily seen. The 
application of the procedure proposed in this work leads to 
the estimates of J = 2.6, S = 4.0, and τ = 80 sec. The 
comparison between the measured and predicted curves is 
shown in Fig. 5. This comparison shows that the estimated 
curve is in good agreement with the measured process 
variable.



Fig. 4: Data trend for industrial case study 1 – flow control.

Fig 5: Comparison between measured and predicted PV for 
industrial case study 1 – flow control. Fig 7 Comparison between measured and predicted PV for 

industrial case study 2 – pressure control.

Fig. 6: Data trend for industrial case study 2 – pressure control.



The PV and OP signals for the second industrial sticky valve 
are shown in Fig. 6. Again, the stiction can be detected by 
visual inspection of PV versus OP plot, where a
parallelogram shape is seen. The proposed estimation 
algorithm leads to the parameters estimates: J = 1.6, S = 2.9, 
and τ=18 sec. The comparison between the measured and 
predicted curves is shown in Fig. 7.

5 CONCLUSIONS
This work proposes a new method for quantifying valve 
stiction based on global optimization, using a one-step 
procedure, where both stiction parameters and plant model 
are simultaneously quantified, using only process variable 
(PV) and controller output (OP). The objective function 
minimized the mean square error between the measured and 
predicted process output and the optimization algorithm used 
for this class of problem is called DIRECT (Finkel and 
Kelley, 2006). 

The validity of the method is successfully demonstrated by 
comparing simulation results, where valves with known 
stiction parameters were evaluated. Industrial valves were
also evaluated, providing very good results. Comparing the 
actual procedure with the available in the literature, the CPU 
time is considerably smaller – in this case lower than 5 min 
against 20 to 30 min – and the quality of the results is 
comparable – an error lower than 3% against 10%. The 
industrial applicability of the proposed method has been 
corroborated by two industrial applications, where reliable 
results have been obtained.
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