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Abstract:
In this paper, a new scheme for adaptive unfalsified control with non-ideal measurements is
presented and demonstrated for a well-known example of a nonlinear plant, the continuous
stirred tank reactor (CSTR) with the van-der-Vusse reaction scheme. In our adaptive control
algorithm, there are two adaptation mechanisms: 1. Switching of the active controller in a fixed
set of candidate controllers by the ε-hysteresis switching algorithm. 2. Adaptation of the set of
controllers performed by a population-based evolutionary algorithm. In this paper, the effect
of measurement errors on the adaptive control scheme is investigated. The total least squares
method is used to perform the deconvolution of noisy signals.
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1. INTRODUCTION

The adaptive unfalsified control scheme was initially in-
troduced by Safonov et al. (1997). The basic idea is to
switch among candidate controllers in a predefined set of
controllers. This approach does not require a plant model
but uses the observed plant input-output data while one
controller is active to decide on the switching to the next
active controller. Further developments by Wang et al.
(2005) led to the concept of cost-detectability, the proposal
of a cost-detectable cost function, and the ε-hysteresis
switching algorithm. Stability of the adaptive system was
proven in Wang et al. (2005) in the sense that if the set
of controllers contains stabilizing controllers with satisfac-
tory performance, the scheme will ultimately switch to one
of them. In Engell et al. (2007), Manuelli et al. (2007)
and Dehghani et al. (2007), it was pointed out that the
scheme in Wang et al. (2005) cannot detect instability of
controllers that are not in the loop and may temporarily
switch to destabilizing controllers. For this reason, the cost
function proposed in Wang et al. (2005) is not suitable for
evaluating controllers that are not in the loop, and cannot
be used to adapt the controllers in the set.

To resolve this problem, a new scheme of adaptive unfal-
sified control was proposed in Engell et al. (2007). The
key point was the introduction of a new fictitious error
signal that can be computed using the estimated sen-
sitivity function obtained by deconvolution between the
fictitious reference signal and the fictitious error signal.
This new signal is used in a new cost function that can
measure the true performance of non-active controllers
� This work was supported by the NRW Graduate School of Produc-
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correctly. Based upon this new cost function, an adapta-
tion of the set of controllers using evolutionary algorithm
was performed. The scheme was demonstrated to work
for the well-known non-minimum phase CSTR example
with undisturbed measurements in Wonghong and Engell
(2008).

In this paper, we extend the approach in Engell et al.
(2007) to the case of noisy measurements. In the next sec-
tion, we first review the new concept of unfalsified control
with the ε-hysteresis switching algorithm as a switching
mechanism for the active controller and the adaptation of
the set of candidate controllers using evolution strategies.
Then we investigate the effect of noise added to the plant
output signal on the observed plant input-output data, the
fictitious reference signal, and the fictitious error signal.
We introduce the total least squares technique to solve the
noisy deconvolution problem. This leads to an estimation
of the sensitivity function in the non-ideal situation. In
section 5, we present simulation studies for the CSTR
example. We show that the adaptation of the controller
parameters can be performed successfully under non-ideal
measurements.

2. A NEW SCHEME FOR ADAPTIVE UNFALSIFIED
CONTROL

We consider a SISO adaptive unfalsified control system
Σ(P, K̂) mapping r into (u, y). The system is defined
on Σ(P, K̂) : L2e → L2e. The scheme of an adaptive
unfalsified control system Σ(P, K̂) is shown in Fig. 1.

The disturbed unknown plant P : U → Y is defined by
P = {(u, y, w) ⊂ U × Y ×W | y = Pu + w}. (1)



Fig. 1. Adaptive Unfalsified Control Scheme

The set of controllers K : R×Y → U is defined by

K̂ = {(r, u, y) ⊂ R× U × Y | u = Kn

[
r
y

]
}, n = 1, 2, ..., N.

(2)
The signals r(t), u(t), y(t) are assumed to be square-
integrable over every bounded interval [0, τ ], τ ∈ R+.
The adaptive control algorithm maps vector signals d =
[r(t), u(t), y(t)]T into a choice of a controller Kn ∈ K̂,
where Kn satisfies the stable causal left invertible (SCLI)
property [Wang et al. (2005)]. The true error signal is

e(t) = r(t) − y(t). (3)

The adaptive control law has the form:
u(t) = K̂(t) ∗ e(t) (4)

where K̂ = Kn(t) denotes the active controller. n(t)
is a piecewise constant function with a finite number
of switchings in any finite interval and ∗ denotes the
convolution integral.

Let d = (r(t), u(t), y(t)), 0 ≤ t ≤ T denote experimental
plant data collected over the time interval T , and let D
denote the set of all possible vector signals d. dτ denotes
the truncation of d, e.g., all past plant data up to current
time τ . The data set Dτ is defined by

Dτ = {(r, u, y) ⊂ R× U × Y | dτ = (rτ , uτ , yτ )}.
We consider linear time-invariant control laws of the form:

Kn = {(r, u, y) ⊂ R× U × Y | u = cn ∗ e} (5)
where cn is the impulse response of the nth controller.
Cn(s) denotes the Laplace transform of cn.

We assume that we have observed the excitation rτ , the
plant input data uτ and the plant output data yτ .

In unfalsified control, these data are used to evaluate
whether the controller Kn meets a specified closed-loop
performance criterion

J∗
n(rτ , uτ , yτ ) ≤ α (6)

where α is called the unfalsification threshold. If this
condition is not met, the control law switches to a different
controller and the previous controller is discarded. After at
most N switchings, a suitable controller is found, if there
is such a controller in the set.

The key idea of unfalsified control is to compute the cost
J∗

n(dτ , τ) based upon the available measurements. For this
purpose,

r̃n = c−1
n ∗ u + y (7)

and
ẽn = r̃n − y (8)

are defined where c−1
n is the impulse response of the

inverse controller transfer function C−1
n (s). These signals

are called the fictitious reference signal and the fictitious
error signal, respectively. r̃n is the reference signal that
produces the measured plant input u and output y if the
controller Kn is in the loop instead of the currently active
controller.

In Engell et al. (2007), the new fictitious error signal
e∗n = s̃n ∗ r (9)

where s̃n is the impulse response of the sensitivity function
with the nth controller in the loop,

S̃n(s) =
1

1 + CnP
(10)

was introduced. e∗n is the error that results for the true
reference signal r with the controller Kn in the loop. As
S̃n(s) = Ẽn(s)

R̃n(s)
, s̃n can be computed via the deconvolution

of r̃n and ẽn [Engell et al. (2007)].

When J∗
n(e∗nτ

, dτ , τ) > α, this implies that if the controller
Kn were in the loop, it would not satisfy the performance
criterion (6). In this case, it is said that the controller Kn

is a falsified controller. Otherwise the controller Kn is an
unfalsified controller.

The new adaptive control algorithm consists of two adap-
tation mechanisms:

1. Switching of the active controller
The closed-loop performances of all candidate controllers
are computed using sampled signals

J∗
n(dτk

, τk) = max
τj≤τk

∑j
i=0 |e∗n(i)|2 + γ · ∑j

i=0 |u(i)|2∑j
i=0 |r(i)|2

(11)

where γ is a positive constant.

The ε-hysteresis switching algorithm of Morse et al. (1992)
is applied for the switching of the active controller:

(1) Initialize: Let k = 0, τ0 = 0; choose ε > 0. Let
K̂(0) = K1,K1 ∈ K̂(0), be the first active controller
in the loop.

(2) k = k + 1, τk = τk+1

If J∗(K̂(k− 1), dτk
, τk) ≥ minKn∈K̂(k) J∗

n(dτk
, τk) + ε,

then K̂(k) ← arg minKn∈K̂(k) J∗
n(dτk

, τk),

else K̂(k) ← K̂(k − 1).
(3) Go to 2.

2. Adaptation of the set of controllers K̂(t∗)
An evolutionary algorithm (EA) is used for the adaptation
of the set of controllers because EA manipulate a popu-
lation of candidate controllers and can handle nonconvex
cost functions and are able to escape from local minima.
The EA is executed only at units of time t∗ after a suf-
ficiently large change of r(t) was detected. For accurate
results, t∗ should approximately match the settling time
of the controlled system. Insufficient excitation leads to
numerical problems due to an ill-conditioned matrix in
the deconvolution. Thus, we restrict the activation of the
EA to a suitable interval after a sufficient excitation by
a change of r(t). In this work, the evolutionary algorithm
is a so-called evolution strategy where each individual is



represented by a vector of controller parameters and by
a vector of strategy parameters that control the mutation
strength.

The evolution strategy as introduced by Rechenberg (1965)
and later developed by Schwefel (1975) is based on a
population P of μ individuals a = (x, s), which represent
search points x = (x1, . . . , xm) ∈ R

m and vectors of
strategy parameters s = (s1, . . . , sm) ∈ R

m
+ that handle

the evolution of the population. The size of the population
is equal to the number of candidate controllers μ = N .
The μ parent individuals in the parent set are randomly
selected from the population. The new offspring λ are
generated by recombination of two parent individuals
and by subsequent perturbation of single variable xj , j ∈
{1, ..., m} with a random number drawn from a Gaussian
distribution N (0, sj) by

x′
j = xj + sj · N (0, 1). (12)

According to the self adaptation mechanism of evolution
strategies, each strategy sj is modified log-normally

s′j = sj · exp(δ · N (0, 1)) (13)
where δ is an external parameter. Normally it is inversely
proportional to the square root of the problem size (δ ∝

1√
N

). To preserve a constant number of individuals, the
survivor selection chooses the μ best (1 ≤ μ < λ = 7 · μ)
individuals out of the set of λ offspring ((μ, λ)-selection)
or out of the union set of parents and offspring ((μ + λ)-
selection). The quality of each individual is evaluated by
the fitness function f(a) = J∗(x, dt∗ , t

∗). As long as a
fitness improvement (Δf > minΔf ) of the best individual
within a certain number of generations can be observed,
the termination criterion of the evolution strategy is not
fulfilled and the μ selected individuals from the previous
generation are used for the next iteration.

3. CONSIDERATION OF NOISE AT THE PLANT
OUTPUT

For the scheme in Fig. 1 with a linear plant and a linear
controller, in the Laplace domain,

Y (s) = P (s)U(s) + W (s)

= P (s)Ĉ(s)(R(s) − Y (s)) + W (s)

= T̂ (s)R(s) + Ŝ(s)W (s)

= Ytrue(s) + Yw(s) (14)
with the active complementary sensitivity function,

T̂ (s) =
Ĉ(s)P (s)

1 + Ĉ(s)P (s)
(15)

and the active sensitivity function,

Ŝ(s) =
1

1 + Ĉ(s)P (s)
. (16)

The observed disturbed plant input signal is,

U(s) = Ĉ(s)(R(s) − Y (s))

= Ĉ(s)(R(s) − Ytrue(s)) − Ĉ(s)Yw(s)

= Utrue(s) − Ĉ(s)Yw(s). (17)
Hence y(t) and u(t) consist of deterministic and stochastic
components,

y(t) = ytrue(t) + yw(t) (18)

u(t) = utrue(t) − ĉ(t) ∗ yw(t) (19)
where

ytrue(t) = t̂(t) ∗ r(t) (20)
utrue(t) = ĉ(t) ∗ (r(t) − ytrue(t)) (21)

yw(t) = ŝ(t) ∗ w(t). (22)
Therefore, the error propagation in the measured plant
input-output data depends on the closed-loop performance
of the active controller.

4. STOCHASTIC DECONVOLUTION

4.1 Stochastic Fictitious Signals

Using (7), the stochastic fictitious reference signal R̃i,w of
Ci using the noisy observed plant input-output data (U, Y )
while controller Ĉ is active results as

R̃i,w = C−1
i U + Y

= C−1
i Ĉ(R − Y ) + Y

= C−1
i Ĉ(R − Ytrue − Yw) + Ytrue + Yw

= R̃i,true + ΔR̃i

where ΔR̃i = (1 − C−1
i Ĉ)ŜW . Note that ΔR̃Ĉ = 0.

Using (8), the stochastic fictitious error signal Ẽi,w of Ci

can be computed from (U, Y ),

Ẽi,w = C−1
i U

= C−1
i Ĉ(R − Y )

= C−1
i Ĉ(R − Ytrue − Yw)

= Ẽi,true + ΔẼi

where ΔẼi = −C−1
i ĈŜW . Note that ΔẼĈ = −Yw 
= 0.

Using (9), the new fictitious error signal e∗i,w(t) of Ci is

E∗
i,w = S̃i,wR. (23)

S̃i,w can be obtained using (10),

Ẽi,w = S̃i,wR̃i,w

ẽi,w(t) = s̃i,w(t) ∗ r̃i,w(t). (24)

From (24), s̃i,w(t) can be computed from u(t) and y(t) via
ẽi,w(t) and r̃i,w(t). The noisy deconvolution is performed
using sampled signals:

R̃i,w · s̃i,w = ẽi,w

(R̃i,true + ΔR̃i) · s̃i,w = ẽi,true + Δẽi (25)
where

R̃i,true =

⎡
⎢⎢⎢⎣

r̃i,true(0) 0 · · · 0
... r̃i,true(0) 0 0

r̃i,true(l − 1)
. . . r̃i,true(0) 0

r̃i,true(l) r̃i,true(l − 1) · · · r̃i,true(0)

⎤
⎥⎥⎥⎦

and ẽi,true = [ẽi,true(0) · · · ẽi,true(l − 1) ẽi,true(l)]
T

. The
unknown matrix ΔR̃i is defined similar to R̃i,true and the
unknown vector Δẽi is defined similar to ẽi,true. Examples



of the computation of R̃i,true, ẽi,true, s̃i,true can be seen in
Engell et al. (2007) and Wonghong and Engell (2008).

The deconvolution problem (25) contains error terms both
in the matrix and in the right hand side, and therefore it
is not adequate to approach it as an ordinary least squares
problem. Instead we employ the total least squares (TLS)
method.

The total least squares method was originally proposed
by Golub et al. (1980). The motivation comes from the
asymmetry of the least squares (LS) method where no
error term in the matrix R̃ is taken into account. The
idea of TLS is to find the minimal (in the Frobenius norm
sense) error terms ΔR̃ and Δẽ in the matrix R̃ and in
the vector ẽ that make the linear equations system (25)
solvable, i.e.,

{s̃TLS , ΔR̃TLS , ΔẽTLS} = arg min
s̃,ΔR̃,Δẽ

‖ΔR̃ Δẽ‖F

subject to (R̃ + ΔR̃) · s̃ = ẽ + Δẽ.

4.2 Solution of the Total Least Squares Problem

The conditions for the existence and the uniqueness of a
TLS solution can be found in Markovsky et al. (2007):

Z = [R̃ ẽ] = UΣVT

where Σ = diag(σ1, ..., σl+1) is a singular value decompo-
sition of Z, σ1 ≥ · · · ≥ σl+1 are the singular values of Z.
Partitioned matrices are defined as

V =

⎡
⎢⎢⎣
V11

... v12

· · · · · ·
v21

... v22

⎤
⎥⎥⎦ , Σ =

⎡
⎢⎢⎣

Σ11

... 012

· · · · · ·
021

... σl+1

⎤
⎥⎥⎦ ,

where V11, Σ11 = diag(σ1, ..., σl) ∈ R
l×l,v12,012 ∈

R
l×1,v21,021 ∈ R

1×l, v22, σl+1 ∈ R . A TLS solution
exists if and only if v22 is not zero. In addition, it is unique
if and only if σl 
= σl+1. In the case when a TLS solution
exists and is unique, the solution is given by

s̃TLS = −v12

v22
. (26)

Therefore, the new fictitious error signal e∗i,w(t) for con-
troller Ci can be computed by

e∗i,w = R · s̃i,w = R · s̃iT LS
. (27)

4.3 Ill-conditioned Matrix R̃i,w

In the error-free case, the computation fails if R̃i,true is
ill-conditioned, in particular if r̃i,true(0) → 0. Using the
relationship of r̃i,true(t) and r(t)

R̃i,true =
Ĉ

Ci

1 + CiP

1 + ĈP
R (28)

and applying the initial value theorem,

r̃i,true(0) = lim
s→∞ s

Ĉ

Ci

1 + CiP

1 + ĈP
R. (29)

If a unit step function is applied to r(t) and P is strictly
proper and Ci(s) = kpi

(1 + 1
Tni

s ),

r̃i,true(0) =
k̂p

kpi

, (30)
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so |kpi
| � |k̂p| leads to ill-conditioned matrices R̃i,true.

For R̃i,w

r̃i,w(0) = r̃i,true(0) + Δr̃i(0) =
k̂p

kpi

+ Δr̃i(0). (31)

Hence the presence of measurement noise alleviates the
ill-conditioning problem for the deconvolution technique.

4.4 Example of Estimated Fictitious Error Signals

We assume that P = 1
(s+1)3 and Ĉ = 2(1 + 1

3s ) and a unit
step was applied to r(t). dτ = (rτ , uτ , yτ ) was observed
up to τ = 25s. We assume measurement errors in the
plant output data as shown in Fig. 2. Three candidate
controllers are tested: 1. C1 = 10(1+ 1

3s ) 2. C2 = 0.4(1+ 1
3s )

3. C3 = 2(1 + 1
3s ). r̃i,true(t) and r̃i,w(t) result as shown

in Fig. 3. Note that the computation of r̃3,w(t) is error-
free. e∗i,true(t) and e∗i,w(t) are shown in Fig. 4. The closed-
loop instability of the loop with C1 is detected and the
performances of C2 and C3 are estimated well.

5. ADAPTIVE CONTROL OF A CSTR WITH
NONMINIMUM PHASE BEHAVIOR

As an example of the application of the new adaptive
control scheme to a nonlinear process we investigate the
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Fig. 5. Continuous Stirred Tank Reactor

well-known case study of the control of a CSTR with
the van-der-Vusse reaction scheme. The parameters of the
model are the same as in Engell et al. (1993), Klatt et al.
(1998).

A sketch of the reactor is shown in Fig. 5. The reaction
scheme is

A
k1→B

k2→ C,

2A
k3→ D.

The reactor is operated at a constant holdup, i.e., the
volume of the contents is constant. The manipulated input
u(t) is the flow through the reactor, represented by the
inverse of the residence time (Fin/VR). u is in the range
0 ≤ u(t) ≤ 30h−1. We assume that the temperature
control is tight so that the dependency of the kinetic
parameters on the reactor temperature can be neglected.
Under these assumptions, a SISO nonlinear model results
from mass balances for the components A and B:

ẋ1 =−k1x1 − k3x
2
1 + (x1,in − x1)u

ẋ2 = k1x1 − k2x2 − x2u

y = x2 (32)

where x1 is the concentration of component A, x2 is the
concentration of component B and x1,in is the feed con-
centration of A, assumed to be constant. The parameter
values are k1 = 15.0345h−1, k2 = 15.0345h−1, k3 = 2.324l ·
mol−1 · h−1, x1,in = 5.1mol · l−1.
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We assume that the unknown plant P consists of the
continuous stirred tank reactor as described by the above
model plus a delay of 0.02h for the analytic instrument.
The controller structure is a PI-controller defined by

C(s) = kp(1 +
1

Tns
).

The initial set of the controller parameters is given by the
proportional gains kpa = {10, 50, 100} and the integral
times Tnb

= {0.1, 0.5, 1}. The initial set of candidate
controllers consists of 9 candidate controllers with PI-
controller parameter vectors Θ = {θi = [kpa , Tnb

]T , 1 ≤
a, b ≤ 3}. The first active controller assigned to the
feedback loop is θ1 = [10, 0.1]T ∈ Θ. All initial conditions
at τ = 0 are zero and the simulation horizon is tf = 3.5h.
The constant ε in the ε-hysteresis switching algorithm is
0.1 and γ = 10−9 in the cost function J∗

i .

The reference signal is

r(t) =

⎧⎪⎪⎨
⎪⎪⎩

0mol · l−1 : 0 ≤ t < 0.15h;
0.7mol · l−1 : 0.15h ≤ t < 1.15h;
0.9mol · l−1 : 1.15h ≤ t < 2.15h;

1.09mol · l−1 : 2.15h ≤ t < 3.5h.

EA activation times are at t∗ = 0.3h after each change of
r(t) at t = 0.15h, 1.15h, 2.15h.

CSTR with adaptation of the set of controllers
with noisy measurements

The EA is executed three times at 0.45h,1.45h, and 2.45h.
The EA used is a standard evolution strategy (ES) with
adaptation of the search parameters according to Schwefel
(1995) and Quagliarella et al. (1998). In this application,
the size of the population is equal to the number of
candidate controllers μ = N . The (μ + λ) selection is
chosen with μ = 9 and λ = 63. This means that the
best controllers are kept from the set of the old controllers
and 63 offspring. The search space of solutions kp ×Tn is
restricted to [−100, 100]× [0.01, 1] and the initial strategy
parameters are set to 10% of the ranges of the variables.
We assume Gaussian i.i.d. measurement errors and the
TLS solution is used to compute the estimated sensitivity
functions.
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The first execution of the evolutionary algorithm was per-
formed using measured data d(0.15h,0.45h) obtained with
the first active controller θ1 that was in the loop during
t ∈ (0.00h, 0.45h). At the first execution of the ES at
t = 0.45h, the evolution strategy returns a new set of
controllers for the first operating point after 38 gener-
ations. As shown in Fig. 6, the new active controller is
θ∗p1w

= [17.6214, 0.2929]T .

The evolutionary algorithm was executed for the second
time using the data d(1.15h,1.45h) with the active controller
θ∗p1

. After 19 generations, the new active controller is
θ∗p2w

= [20.9662, 0.0725]T (see Fig. 6).

The evolutionary algorithm was executed for the third
time using the data d(2.15h,2.45h) with the active con-
troller θ∗p2

. After 12 generations the ES returned a new
set of controllers and the new active controller is θ∗p3w

=
[33.1989, 0.0652]T (see Fig. 6). The control performance
and the manipulated variable for the case with measure-
ment noise are shown in Fig. 7 and can be compared with
the noise-free case in Fig. 8. We can see that the active
controller is well adapted to the change of the dynamics
of the unknown plant under measurement error.

6. CONCLUSIONS

In this paper, the new scheme for adaptive unfalsified
control was investigated for the case with noisy measure-
ment. The deconvolution with noisy plant data can be
solved by the total least squares method. The example
of a CSTR with nonminimum phase nonlinear dynamics
showed that a good performance can still be achieved for
noisy measurements.
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