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Abstract: Granulation is a multivariable process characterized by several physical attributes that are 
essential for product performance, such as granule size and size distribution. An optimally operated 
granulation process will yield, in a reproducible manner, product with tightly controlled performance 
attributes. In this paper predictive models of the dynamics of these key variables are developed using a 
dynamic partial least squares approach. The method, demonstrated here on process simulation as well as 
on an industrial mixer-granulator process, result in accurate predictions. These models motivate the 
development of model predictive controllers for these processes. 
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1. INTRODUCTION 

Granulation is a complex process in which many input 
variables influence many product properties. As Iveson et al. 
describe in a review paper (2001), the understanding of the 
fundamental processes that control granulation behavior and 
product properties have increased in recent years. This 
knowledge can be used during process design, in choosing 
the right formulation and operating conditions, and it can also 
be used to improve process control. Although many variables 
are set constant during process design, variations during 
production in input variables occur due to the variable nature 
of the powder feed. Even if all granule properties, except for 
size, are ignored for process control, a one dimensional 
granule size distribution can be constructed by multiple 
discrete output variables, in order to represent the shape of 
the distribution (these can be mean sizes (with coefficients of 
variation), percentile sizes, moments or size bins). Model 
Predictive Control (MPC) is an effective method to control 
such multiple input, multiple output processes (García, et al., 
1989). The majority of MPC applications in the chemical 
process industries utilize empirical models that are 
constructed from plant data. In this work, we explore the use 
of dynamic partial least squares to construct these empirical 
models. 

2. METHODS 

2.1  Partial Least Squares 

Partial Least Squares (PLS) methods have been demonstrated 
as a useful tool for analysis of data and modeling of the 
systems from which the data are collected (Kaspar and Ray, 
1993). Unlike related methods, such as Principal Component 

Analysis (PCA), which finds factors that capture the greatest 
amount of variance in the predictor (X) only, the PLS method 
attempts to find factors which both capture variance and 
achieve correlation. PLS handles this by projecting the 
information in high dimensional spaces (X,Y) down to low 
dimensional spaces defined by a small number of latent 
vectors (t1,t2…ta). These new latent vectors summarize all the 
important information contained in the original data sets, by 
representing the scaled and mean-centered values of  X and Y 
matrices as: 
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where the ti are latent (score) vectors calculated sequentially 
for each dimension i=1,2,…a. 

In the PLS method, the covariance between the linear 
combinations of X and the output measurement matrix Y is 
maximized at each iteration, using the vectors pi and qi which 
are the loading vectors whose elements express the 
contribution of each variable in X and Y toward defining the 
new latent vectors ti and ui. E and F are residual matrices for 
X and Y blocks, respectively. The optimal number of latent 
vectors retained in the model is often determined by cross-
validation (Dayal et al. 1994).  

In an industrial environment, it is more often the case that 
many of the predictor variables (X) are highly correlated with 
one another and their covariance matrix is nearly singular, 



 
 

     

 

which renders classical regression methods intractable. 
Reduced space methods such as PLS and PCA can overcome 
this problem (MacGregor and Kourti, 1995). PLS is also 
robust to measurement noise in the data and can be used in 
cases where there are random missing data and when the 
number of input variables is greater than the number of 
observations (Dayal et al. 1994). Various examples of the 
implementation of PLS analysis to industrial process 
modeling and control can be found in the literature (for 
example, Dayal et al., 1994, MacGregor and Kourti, 1995, 
and others). 

Process dynamics can be incorporated into the PLS model by 
including columns of lagged outputs and/or inputs into the 
predictor block (X) (Dayal et al., 1994, Kaspar and Ray, 
1993, Juricek et al. 2001). The resulting PLS model is 
actually an ARX type input-output model of the form: 
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where y denotes the output variable (e.g., median particle 
size, d50), and u denotes the manipulated variable (e.g., binder 
flow). The terms A and B contain the autoregressive and 
exogenous terms of the model, respectively. The 
autoregressive term captures dynamics through lagged terms 
of the output, and the exogenous term captures dynamics 
through lagged terms in the input. 

Once the models have been calculated from the plant data, it 
is useful to evaluate their properties using several key 
statistical measures. Some of the useful statistics that are 
associated with reduced space models (Wise et al. 2006) are 
outlined below: 

Q residual – is simply the sum of squares of each row of E 
(from eq. 1), i.e. for the ith sample in X, xi: 

T
iii eeQ �   (5) 

where ei is the ith row of E. The Q statistics is a measure of 
the difference between a sample and its projection into the a 
principal components retained in the model. 

Hotelling T2 is a measure of the variation in each sample 
within the model. Its value is the sum of normalized squared 
scores, defined by: 

T
iii ttT 12 �� �   (6) 

where ti are the score vectors (eq. 1) and � is a diagonal 
matrix containing the eigenvalues corresponding to a 
eigenvectors (principal components) retained in the model. 

Together, the T2 and Q residual statistics are useful in 
evaluating the fitness of a PLS model to specific data. It is 
possible to calculate statistically meaningful confidence 
limits for both cases. 

2.2  Simulation studies 

In our previous work, a nonlinear one dimensional population 
balance model (1D-PBM) was successfully used to model a 
laboratory continuous drum granulation process with fine 
particle recycle (Glaser et al., 2008). The same model is used 
here as a base for a process simulation (Figure 1) for a 
preliminary evaluation and sensitivity test of the applicability 
of the dynamic PLS modeling technique for granulation. 

 

Fig. 1. Simulator structure: five inputs are included in the 
simulator: binder spray rate, fine powder feed-rate, drum 
rotation-rate and the drum inclination angle. The model is 
divided into three well mixed drum compartments, each 
described by an individual set of ODEs, a retention time 
model and a set of global parameters that influence the 
model behavior (taken from Glaser 2008). 

Both particle median size (d50) and, separately, particle size 
distribution width (d84/d16) were used as output variables for 
this study. The predictor (X) was constructed from 4 
manipulated variables (solid feed flow rate, binder feed flow 
rate, drum rotation speed, recycle rate) and the computed 
recycle flow as an additional input variable. Process 
dynamics were incorporated into the X block by including 
columns of lagged output variables. The lag time was 
estimated using an autocorrelation function. Delay times of 
each of the input variables were estimated using cross 
correlation function, and the predictor matrix was adjusted 
according to the obtained delay vector. During the 
simulation, the 4 manipulated variables were randomly 
perturbed around their nominal values at steady state 
sequentially, i.e. input variables were perturbed one after the 
other in fixed time gaps. The resulting PLS-based ARX 
model’s short horizon predictive ability was tested by cross 
validation with a set of separately calculated simulation 
sequences with different excitation regimes. For each of these 
cross validation sequences, the root mean square error of the 
model based prediction (RMSEP), relative to the simulated 
plant measurements was calculated for a given short horizon 
period. In order to make a more representative quantification 
of the predicting ability of the model, the short horizon start 
point was moved along the time axis of the data one time step 
after another thus creating a set of RMSEP measures out of 
which an average and maximum RMSEP could be calculated. 
All variables were mean centered and scaled to unit variance 
prior to processing. 
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Based on this technique a sensitivity test was performed in 
order to estimate the required size of the data set needed for 
reliable process modeling. Figure 2 shows the convergence of 
RMSEP related to the length of data set used for the PLS 
model training. This plot is based on averaging 100 multiple 
simulations and modeling runs for each training length. 
Sample rate was set to 2 minutes and the simulated process 
step response time (�) was set to 4.5 minutes. The prediction 
horizon was set to 8 samples (i.e., 16 minutes). From this 
figure one can note that most of the dynamic features are 
captured by the model in the first 200 minutes of training 
data, as the mean RMSEP converges to low values. However 
using training data of up to 600 minutes would improve the 
model predictions. Notice that these results are not so 
sensitive to the excitations rate used in the modeling data set 
(i.e., time between two successive input variable 
perturbations), as long as this time is in the order of 
magnitude of the expected variations in process variables. 
Figure 3 depicts the response of the process model obtained 
with 520 minutes of training data to the process simulation 
for a step response in one of the input variables.  
 
All of these models use one lagged output variable (granules 
median size) in the predictor block and 2 latent variables in 
the PLS model, which are linear combinations of the time-
lagged values of the output variable and the delayed values of 
the five process variables. Figure 4 shows the prediction 
abilities of three PLS models obtained using different lengths 
of data sets for training (120, 220 and 520 minutes long) from 
a single simulation data, with input variable excitation every 
15 minutes. In this example, the predictions of these models 
are cross-validated using data from a separate simulation run 
with randomly timed excitations of the inputs. Considering 
that PLS models captures covariance in X and Y, it is 
possible to calculated the percentage of variance captured by 
each of their latent variables by dividing the variance 
predicted by the latent variables to the total variance in the 
original data. The percentage of variance captured by the 
abovementioned 3 PLS models (from the training data) is 
detailed in Table 1. It is noticeable that the longer the training 
set used, more fine details of the process dynamics are 
captured by the models, confirming Figure 2 results.  Notice 
that high values of explained variance do not guarantee good 
prediction of validation data by these models. The robustness 
of the PLS based models to measurement noise is 
demonstrated in Figure 5 and Table 2, where the simulated 
process was subject to 5% white noise on the output and 
input variable measurements. 
 
 
 

 
Fig. 2. Root Mean Square Error of Prediction (in validation 
simulation) versus length of training data set (based on 
modeling simulation), at different excitation rates. 

 
Fig. 3. Step response to a 1.2% step change in Binder feed 
flow  - PLS model based on 520 minutes training data vs. 
process simulation. 

 

 

 
Fig. 4. PLS based dynamic model validation for different 
training set length. Circles represents simulation results, 
lines represent 8 point horizon prediction. 
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Table 1: Percent variance captured by PLS models based on 
different lengths of training data sets. 

Training 
set length 

LVs X Block Y Block 
This Total This Total 

120min 1 76.04 76.04 82.44 82.44 
2 7.66 83.7 11.42 93.85 

220min 1 59.45 59.45 93.05 93.05 
2 14.21 73.66 2.8 95.85 

520min 1 41.35 41.35 97.88 97.88 
2 17.29 58.64 1.04 98.92 

 

 
Fig. 5. PLS based dynamic model validation, simulated 
process with 5% white measurement noise. Circles 
represents simulation results, lines represent 8 point 
horizon prediction. 

Table 2: Percent variance captured by PLS model, simulated 
process with 5% white measurements noise. 

Training 
set length 

LVs X Block Y Block 
This Total This Total 

520 min 1 33.93 33.93 82.75 82.75 
2 33.10 67.03 1.61 84.37 

 

3. DYNAMIC PLS MODELLING OF AN INDUSTRIAL 
PROCESS PLANT 

3.1 Process plant description  

In this section, we report on some preliminary studies on 
granulation model identification for a Procter & Gamble 
(P&G) industrial granulation process using normalized 
process data. 
 
A complex industrial granulation process, such as the 
flowsheet shown in Fig. 6, was subjected to a series of 
(designed) random perturbations in a number of input 
parameters. This plant is equipped with an on-line granule 
size measurement system that measures particle size based on 
image analysis of 2-D camera images.  The analysis 
constructed size distributions on the basis of the measured 
cross sectional area of the 2-D images. Granule size data 
along with all other plant variables were then sent to the 
UCSB team for modeling.  
 
There are notable distinctions between the P&G study and the 
one reported in Section 2.2.  The P&G process study is not 
meant to be used as a direct comparison (or validation) for 
the process simulation studies in Section 2.2. Rather, we 
present both as separate case studies to demonstrate the 

feasibility of using PLS methodology as an empirical 
modeling tool for granulation process control. 
 
The low-shear drum-granulation pilot plant that was used to 
design the simulator in Section 2.2 produced particles with 
d50’s of several mm; on the other hand, the medium-high 
shear mixer-granulation process shown in Fig 6 typically 
produced particles with d50’s less than 1 mm.   While the 
underlying physical mechanisms of growth and consolidation 
may be similar, the flow and shear fields are very different 
for the two processes (the drum granulator is relatively low 
shear, compared to the medium-high shear mixer-granulation 
process), the process layouts and control handles are 
different, as are the material properties.  As such, the choices 
of process variables (manipulated and measured) are unique 
for each process. 
.  

 

Figure 6.  Representative P&G process flow diagram for 
mixer-granulator (Mort et al. 2001). For simplicity, this 
diagram omits the usual operations for classification and 
recycle. 

3.2 PLS modeling of real plant data- Case I  

Figure 7 describe the dynamic PLS model fitting obtained for 
the granules median size. The data set obtained from the plant 
originally contained 147 sampling points, each consist of 81 
process variables, together with granules size measurements. 
Sampling time was 0.4 times the process characteristic time 
�. During this time period 4 manipulating variables were 
subjected to random perturbations around their nominal 
values at steady states (Fig. 8) in a similar way to the 
simulation work described earlier (adjusted to the process �), 
while other adjustments were continuously made to other 
plant variables (i.e. normal plant operations). Granules 
median size (d50) was selected as the output variable. Nine 
out of the 81 process variables were chosen as predictor 
variables for the PLS model, based on engineering judgment, 
GA based variable selection (PLS Toolbox 5.0 by 
Eigenvector research incorporated), and trial and error. The 
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output lag time and process variables delay times were 
evaluated using the auto and cross correlation functions, 
respectively, as described in section 2.2.  The process model 
uses two latent variables, which are linear combinations of 
the time-lagged values of the output variable and the delayed 
values of the nine process measurements. For an independent 
cross validation of the model, the above data was divided to 
two sections – the first half was used to train the PLS model, 
and the second used to test model predictions, yielding 
RMSEP value of 0.26. These results, as shown in Fig. 9. and 
Table 3, are very similar to the fitting obtained for the 
simulation data of the same training length to � ratio (Fig. 2 
and Fig 4. upper plot). 

 

Fig. 7. Dynamic PLS model fitting to plant d50 data. 

Table 3: Percent variance captured by PLS model, 
plants’ d50 data. 

Training 
set length 

LVs X Block Y Block
LVi  Total LVi Total

60� 1 24.97 24.97 79.34 79.34 
2 25.09 50.06 9.04 88.38 

36� 1 39.46 39.46 72.13 72.13 
2 23.31 62.77 16.8 88.92 

 

Fig. 8. Values of the 9 predictor variables used in Case I 
PLS model – 4 manipulated variables (top) and 5 
additional process variables (bottom) 

 

Fig. 9. Cross validation of the dynamic PLS model for 
plant d50 data. Circles represents measurements, lines 
represent 8 point horizon prediction. 

3.3 PLS modeling of real plant data- Case II 

In a separate test, the granules distribution width as a function 
of selected process variables was modeled.  This analysis was 
performed on two limited sets of data, each from a different 
operating day. A series of step tests were performed on one 
of the manipulating variables. As in the previous case, other 
adjustments were continuously made to other plant variables 
to maintain normal plant operation. The standard deviation of 
the granules measured area was used as the output variable to 
be modeled. A dynamic PLS model was built using 3 input 
variables and one lagged output variable, based on the first 
data set, and then validated using the second data set, 
resulting in an excellent fit (Figure 10). In this case, as well, 
the process model uses two latent variables.  

 
Fig. 10. Actual process data (granules area standard 
deviation): Cross validation of model based on first data 
set, tested on second data set 

On the scores plot (Figure 11) it is clear, however, that these 
two sets represent different and distinct operating conditions. 
If one further examines the contribution of each variable for 
these two sets (Figures 12) we can see that the main 
difference is that on the validation set, much lower values of 
variable 2 were used, compared to the modeling set. It is also 
interesting to note that the only outlier of the modeling set 
also exhibits the same low value on variable 2. 
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Fig. 11. Score Plots for the PSD width model. Circles are 
samples from the modeling set; Triangles are samples from 
the validation set. The ellipse marks the 95% confidence 
limit for the model. 

 
Figure 12: Values of input variables used in the modeling 
set (left) and in the validation set (right). 

Although these results looks promising with respect to the 
ability to analyze and predict the granulation process 
variables, a quick look at the high values of Q residuals and 
Hotelling T2 (Figure 13) indicates that this model is far from 
describing the whole complexity of the process, and many 
more measurements should be done in order to characterize 
the different operating regimes of this process. 

 

 

 
Figure 13: Q Residuals and Hotelling T2 Values for the PSD 

width model 
  

 

 

4. CONCLUSIONS 

Dynamic PLS modeling was proven to be an effective tool in 
modeling key process variables in an industrial granulation 
process. Our future work will explore methods to capture the 
additional dynamics that remain in the plant data. We are also 
planning longer plant runs with larger input variable 
excitation to improve the model identification. Longer term 
goals are to develop a model-based controller for plant 
testing. 
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