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Abstract: This work focuses on the design and implementation of a nonlinear model-based
control system on an experimental reverse osmosis (RO) membrane water desalination system
in order to deal with large set-point changes and variations in feed water salinity. A dynamic
nonlinear lumped-parameter model is derived using first-principles and its parameters are
computed from experimental data to minimize the error between model predictions and
experimental RO system response. Then, this model is used as the basis for the design of
a nonlinear control system using geometric control techniques. The nonlinear control system
is implemented on the experimental RO system and its set-point tracking capabilities are
successfully evaluated.

Keywords: Process control, process monitoring, model based control, nonlinear process systems

1. INTRODUCTION

Reverse osmosis (RO) membrane desalination has emerged
as one of the leading methods for water desalination
due to the low cost and energy efficiency of the process
(Rahardianto et al. (2007)). Lack of fresh water sources
has necessitated further development of these desalina-
tion plants, especially in areas with dry climates. Even
with advances in reverse osmosis membrane technology,
maintaining the desired process conditions is essential
to successfully operating a reverse osmosis desalination
system. Seasonal, monthly, or even daily changes in feed
water quality can drastically alter the conditions in the
reverse osmosis membrane modules, leading to decreased
water production, sub-optimal system performance, or
even permanent membrane damage. In order to account
for the variability of feed water quality, a robust process
control strategy is necessary. In a modern reverse osmosis
(RO) plant, automation and reliability are elements crucial
to personnel safety, product water quality, meeting envi-
ronmental constraints, and satisfying economic demands.
Industrial reverse osmosis desalination processes primar-
ily use traditional proportional and proportional-integral
control to monitor production flow and adjust feed pumps
accordingly (Alatiqi et al. (1999)). While such control
strategies are able to maintain a consistent product water
(permeate) flow rate, they may fail to provide an optimal
closed-loop response with respect to set-point transitions
owing to the presence of nonlinear process behavior (Chen
et al. (2005)). In some cases, permeate production can
decrease due to scaling or fouling on the membrane sur-
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face. When this occurs, traditional control algorithms force
the feed pumps to increase feed flow rate leading to an
increased rate of scaling, irreversible membrane damage,
and eventual plant shutdown. Traditional process control
schemes are also unable to monitor plant energy usage
and make adjustments toward energy-optimal operation.
Model based control is a promising alternative to tradi-
tional RO plant control strategies. Several model based
methods such as model-predictive control (MPC) and
Lyapunov-based control have been evaluated via computer
simulations for use in reverse osmosis desalination (Abbas
(2006); McFall et al. (2008); Bartman et al. (2009b); Gam-
bier and Badreddin (2002)). Experimental system identi-
fication and MPC applications can also be found in the
literature (Assef et al. (1997); Burden et al. (2001)). Model
based control methods have also been used in conjunction
with fault detection and isolation schemes to improve
robustness of control methods in the presence of sensor and
actuator failures (McFall et al. (2008)). Other automatic
control methods utilize model based control based on a
linear model (Alatiqi et al. (1989)); using step tests to
create a model that is a linear approximation around the
desired operating point. Several other traditional control
methods have also been studied in the context of RO
system integration with renewable energy sources (Herold
and Neskakis (2001); Liu et al. (2002)). Motivated by these
considerations, the goal of this work is to evaluate the ef-
fectiveness of a feedback linearizing nonlinear model-based
controller through application to an experimental reverse
osmosis desalination system. The nonlinear model-based
controller is shown to possess excellent set-point tracking
capabilities. The nonlinear controller is also shown to out-
perform a proportional-integral control system.
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Fig. 1. Reverse osmosis system used for model development

2. RO SYSTEM MODEL

In this section, a fundamental model of a representa-
tive RO desalination system is developed including all
of the basic elements present in UCLA’s experimental
RO desalination system. In this system, shown in Fig.
1, water enters the feed pump, which is equipped with
a variable frequency drive (VFD), and is pressurized to
the feed pressure Psys. The pressurized stream enters the
membrane module where it is separated into a low-salinity
product (or permeate) stream with velocity vp, and a high-
salinity brine (or retentate) stream with velocity vr. In the
model, the individual spiral-wound membranes in series
are assumed to be one large spiral-wound membrane in
one large vessel, where any effects of individual membrane
vessel interconnections are neglected. The pressure down-
stream of the actuated valve and at the permeate outlet is
assumed to be equal to atmospheric pressure.

The model is based on a mass balance taken around the
entire system and an energy balance taken around the
actuated retentate valve. In the model derivation, it is
assumed that the water is an incompressible fluid, all
components are operated on the same plane (so potential
energy terms due to gravity can be neglected), and the
density of the water is assumed to be constant. It is also
assumed that the effective concentration in the membrane
module is a weighted average of the feed concentration
and the brine stream concentration (see Eq. 6 below).
The model derivation results in a nonlinear ordinary
differential equation for the retentate stream velocity and
an algebraic relation for the system pressure. This model is
an adaptation of a model developed in our previous work
used to describe a similar reverse osmosis desalination
system (McFall et al. (2008)). In the previous work, the
system utilized a feed pump with a constant feed flow
rate, but used a separate bypass stream with an actuated
valve to control the velocity of the water feeding to the
membrane units. An equation for the osmotic pressure
based on effective concentration and temperature in the
membrane unit was also developed in (Lu et al. (2007)),
and is used as an estimate in the model. Specifically, an
energy balance is first taken around the retentate valve
which leads to the following differential equation:

dvr

dt
=

PsysAp

ρV
− 1

2
Apevrv

2
r

V
(1)

where vr is the retentate stream velocity, Psys is the system
pressure, Ap is the pipe cross-sectional area, ρ is the fluid
density, V is the system volume and evr is the retentate
valve resistance. To compute an expression for the system
pressure in terms of the other process variables, an overall
steady-state mass balance is taken to yield:

0 = vf − vr − vp (2)

where vf is the feed stream velocity and vp is the permeate
stream velocity. In order to get an expression for the
system pressure, the following classical expression is used
for the computation of the permeate stream velocity:

vp =
AmKm

ρAp
(Psys − Δπ) (3)

where Am is the membrane area, Km is the membrane
overall mass transfer coefficient, and Δπ is the difference
in osmotic pressure between the feed side of the membrane
and the permeate side. Substituting Eq. 3 into Eq. 2,
the following expression for the system pressure (Psys) is
obtained:

Psys =
ρAp

AmKm
(vf − vr) + Δπ (4)

where the osmotic pressure (Δπ) and effective average
concentration at the membrane surface (Ceff ) on the feed
side can be computed from the following relations:

Δπ = δCeff (T + 273) (5)

Ceff = Cf (a + (1 − a)((1 − R) + R(
vf

vr
))) (6)

where Cf is the amount of total dissolved solids (TDS)
in the feed, a is an effective concentration weighting
coefficient, δ is a constant relating effective concentration
to osmotic pressure, T is the water temperature in degrees
Celsius, and R is the fractional salt rejection of the
membrane. Substituting Eq. 4 into the energy balance
equation of Eq. 1 yields the following nonlinear ordinary
differential equation for the dynamics of the retentate
stream velocity:

dvr

dt
=

A2
p

AmKmV
(vf − vr) +

Ap

ρV
Δπ − 1

2
Apevrv

2
r

V
(7)

Using the above dynamic equation, various control tech-
niques can be applied using the valve resistance value
(evr) as the manipulated input. As the valve resistance
goes to zero, the valve behaves as an open pipe; as the
valve resistance approaches infinity, the valve behaves as a
total obstruction and the flow velocity goes to zero (Bird
et al. (2002)). To accurately model the valve dynamics and
to relate the experimental results to the concept of valve
resistance value (evr), the concept of valve Cv is used. The
definition of Cv for a valve in a water system is:

Cv =
Qr√
Psys

(8)

where Qr is the volumetric flow rate (Qr = Apvr) through
the retentate valve. In order to obtain an expression for
Cv as a function of the retentate valve resistance (evr), we
consider the steady state form of the energy balance of Eq.
1, solve the resulting equation for Psys and substitute the
resulting expression for Psys into Eq. 8 to yield:

Cv =
Ap√
1
2ρevr

(9)

Depending on the type of valve and its flow characteristics,
it is assumed that the Cv values (and in turn, the evr



values) can be related to the valve position (percentage
open) through the following empirical logarithmic relation
based on commercially available valve data (Bartman et al.
(2009b)):

Op = μ ln evr + φ (10)

where μ and φ are constants depending on the valve
properties. The values of μ and φ for this model are taken
from a paper based on the same experimental system at
UCLA (Bartman et al. (2009b)). For the model presented
in this paper, the curve relating valve position (Op) to
resistance value (evr) is shown in Fig. 2. It can be seen in
Fig. 2 that as the valve position goes to zero (fully closed),
the valve resistance values begin to grow at an increasing
rate; and as the valve approaches the fully-open position,
the resistance values change slowly. The data from the
experimental system is also plotted on the figure, and it
can be seen that the data does not fit the same logarithmic
relation as the ideal valve curve. Due to the shape of the
experimental data curve, the data is fit in three segments
with curve fits following a similar form as the theoretical
curve. The first curve fit is applied to valve resistance (evr)
values of approximately 205 to 212 and takes the form:

Op = −84.428 ln(evr) + 459.21 (11)

For evr values between 212 and 6200, Op is computed by:

Op = −2.0473 ln(evr) + 18.141 (12)

while for evr values above 6200, Op is computed by:

Op = −0.0778 ln(evr) + 0.9476 (13)

This treatment of the valve characteristics allows for
conversion of the experimental values of Op to values of evr

in the model-based nonlinear control algorithm, and allows
for values of evr generated by the control algorithm to be
translated to values of Op to be sent to the actuated valve
on the experimental system. Capturing the nonlinearity
present in the valve is extremely crucial when applying
the control algorithms to the experimental system.

2.1 Computation of Nonlinear Model Parameters Based
on Experimental Data

Most of the parameters of the model of Eqs. 7-13 such as
the membrane area (Am), water density (ρ), pipe cross-
sectional area (Ap), and system volume (V ) have constant
values which can be obtained from the experimental sys-
tem. Another key model parameter, the overall mass trans-
fer coefficient (Km) was computed to match the model
response to experimental step-test data. Specifically, Km

was computed using steady state data from the experi-
mental system by minimizing the difference between the
model steady state and the experimental system steady
state for various step tests. The computed values of Km

were then averaged to determine the best value for use
in the model used for controller design. The values of the
model parameters can be found in Table 1.

3. CONTROL ALGORITHMS

Two separate control loops are present in the control
problem formulation. The first loop regulates the system
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Fig. 2. Correlation between valve resistance value (evr) and
valve percentage open (Op) : commercial theoretical
data (solid line), experimentally measured data (x),
and curve fittings to experimental data (dashed lines)
using Eqs. 11-13.

Table 1. Process model parameters based on
experimental system data.

ρ = 1007 kg/m3

V = 0.6 m3

Ap = 0.000127 m2

Am = 15.6 m2

Km = 6.4 × 10−9 s/m
Cf = 4842 mg/L
a = 0.5
T = 22 ◦C
R = 0.97

pressure by adjusting the variable frequency drive (VFD)
speed directly (effectively changing the feed flow rate).
This control loop will be termed “loop I”. In each set of
experiments presented below, a proportional-integral (PI)
feedback controller is used to keep the system pressure
(Psys) at the set-point value (P sp

sys) of 150 psi. This control
algorithm takes the form:

SV FD = Kf (P sp
sys − Psys) +

Kf

τf

∫ tc

0

(P sp
sys − Psys)dt (14)

where SV FD is the control action applied to the variable
frequency drives (VFD speed), Kf is the proportional gain
and τf is the integral time constant. The second control
loop (termed “loop II”) uses a nonlinear model-based con-
troller (for the purposes of comparison, and a PI controller
is also used in loop II). The nonlinear controller utilizes the
error between the retentate velocity and its corresponding
set-point, but it also takes into account many additional
system variables (El-Farra and Christofides (2001, 2003);
Christofides and El-Farra (2005)). Specifically, the non-
linear model-based controller manipulates the actuated
retentate valve position by using measurements of the feed
flow velocity (vf ), feed salinity (Cf ), and retentate flow
velocity (vr). The nonlinear controller is designed following
a feedback linearization approach. To derive the controller
formula, the following linear, first-order response in the
closed-loop system between vr and vsp

r is requested:



dvr

dt
=

1
γ

(vsp
r − vr) (15)

It is noted that a first-order response is requested because
the relative degree between vr and evr is one (Christofides
and El-Farra (2005)). Using this approach, the following
formula is obtained for the nonlinear controller:

evr =
1
γ (vsp

r − vr) − A2
p

AmKmV (vf − vr) − Apδ(T+273)
ρV Ceff

−Ap

2V (v2
r)

(16)

To achieve offset-less response, integral action is added to
the controller in Eq. 16 and the resulting controller takes
the form:

evr =
1
γ (vsp

r − vr) + 1
τNL

∫ tc

0
(vsp

r − vr)dt
−Ap

2V (v2
r)

+

− A2
p

AmKmV (vf − vr) − Apδ(T+273)
ρV Ceff

−Ap

2V (v2
r)

(17)

As a baseline, the performance of the nonlinear controller
is compared to a traditional form of control. Loop II,
using PI control, uses the retentate (or concentrate) stream
flow velocity to manipulate the actuated valve in order to
regulate the retentate stream velocity/flow rate. Under PI
control, the control system for loop II takes the form:

Op = Kr(Qsp
r − Qr) +

Kr

τr

∫ tc

0

(Qsp
r − Qr)dt (18)

where Qr is the retentate stream volumetric flow rate and
Qsp

r is the retentate stream flow rate set-point. In the
experiments, the performance of the nonlinear controller
implemented on the experimental system is compared to
the performance of the nonlinear controller implemented
on the process model and to the performance of the
proportional-integral controller implemented on the exper-
imental system. The control algorithms were programmed
into the data acquisition and control software to operate
in real-time with a sampling time of 0.1 seconds. Addi-
tionally, the actuated retentate valve is powered by an
electric motor with a maximum operating speed which
must be taken into account when attempting to simulate
the nonlinear controller action. From testing on the ex-
perimental system, it was found that the actuated valve
could travel its entire range in approximately 45 seconds;
this provides an important constraint on the speed of valve
opening/closing in the simulations of the form:∣∣∣∣dOp

dt

∣∣∣∣ ≤ 2.22
%
s

(19)

To derive the constraint of Eq. 19, it is assumed that the
valve speed is independent of valve position (valve always
turns at maximum speed). This is a physical constraint
which is intrinsically accounted for in the experimental
results and is programmed into the nonlinear model-based
controller simulation as well (to facilitate comparison).
Additionally, when using the experimental system, the
valve position is not allowed to fall under 1%, and any
values sent to the valve above 100% are translated to the

max value of 100% open. The lower constraint (< 1%)
is enforced so that the system pressure will not rise too
rapidly. A constraint on the variable frequency drive is also
placed to avoid pressure spikes (a maximum VFD speed of
4.5/10 is used). In the experiments presented in this work,
the actuators do not reach these constraints.

4. EXPERIMENTAL SYSTEM DESCRIPTION

The experimental reverse osmosis water desalination sys-
tem constructed at UCLA’s Water Technology Research
(WaTeR) Center was used for conducting the control ex-
periments. This experimental system is comprised of a
feed tank, two low-pressure feed pumps in parallel which
provide enough pressure to pass the feed water through
a series of cartridge filters while also providing sufficient
pressure for operation of the high-pressure pumps, two
high-pressure pumps in parallel (each capable of delivering
approximately 4.3 gallons per minute at 1000 psi), and
a bank of 18 pressure vessels containing Filmtec spiral-
wound RO membranes. The high-pressure pumps are out-
fitted with variable frequency (or variable speed) drives
which enable the control system to adjust the feed flow rate
by using a 0-10V output signal. The bank of 18 membranes
are arranged into 3 sets of 6 membranes in series; and for
the control experiments presented below, only one bank
of 6 membrane units was used. The experimental system
uses solenoid valves controlled by the data acquisition and
control hardware to enable switching between multiple
arrangements of the membrane modules (2 banks of 6
in parallel to one bank of 6 in series, or any number of
the modules in series) while also allowing for control of
the flow direction through the membrane banks. After the
membrane banks, an actuated valve is present to control
the cross-flow velocity (vr) in the membrane units, while
also influencing system pressure. This valve is used as
an actuator for the control system utilizing the control
algorithms presented in section 3. The resulting permeate
and retentate streams are currently fed back to the tank in
an overall recycle mode, but for field operation the system
can be operated in a one-pass fashion. The experimental
system also has an extensive sensor and data acquisition
network; flow rates and stream conductivities are available
in real-time for the feed stream, retentate stream and
permeate stream. The pressures before each high pres-
sure pump, as well as the pressures before and after the
membrane units (feed pressure and retentate pressure) are
also measured. The system also includes sensors for mea-
suring feed pH, permeate pH, in-tank turbidity, and feed
turbidity after filtration (in real-time). A centralized data
acquisition system takes all of the sensor outputs (0-5V, 0-
10V, 4-20mA) and converts them to process variable values
on the local (and web-accessible) user interface where the
control system is implemented. The data is logged on a
local computer as well as on a network database where
the data can be accessed via the internet, while the control
portion of the web-based user interface is only available to
persons with proper authorization. The data acquisition
and control system uses National Instruments software and
hardware to collect the data at a sampling rate of 10 Hz
and perform the necessary control calculations needed for
the computation of the control action to be implemented
by the control actuators. A photograph of the system can
be seen in Fig. 3.
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Fig. 3. UCLA experimental RO membrane water desalina-
tion system: (1) Feed tank, (2) Low-pressure pumps
and prefiltration, (3) High-pressure positive displace-
ment pumps, (4) Variable frequency drives (VFDs),
(5) Pressure vessels containing spiral-wound mem-
brane units (3 sets of 6 membranes in series), (6)
National Instruments data acquisition hardware and
various sensors.

5. EXPERIMENTAL CLOSED-LOOP RESULTS

In the control experiments presented in this paper, the
experimental system was turned on and the PI loop con-
trolling the variable frequency drives (loop I) was activated
to bring the system pressure to a set-point of Psys = 150
psi. The retentate flow rate was set to 1.5 gallons per
minute (gpm). After the system had been operating at
this steady state for a sufficient period of time, loop II
was activated to manipulate the retentate valve. All data
taken from the experimental system was averaged (after
the experiments) using a 19 point moving average to re-
move most of the measurement noise. The following sets
of experiments compare the performance of the nonlinear
controller with the performance of the proportional and
proportional-integral controllers. The closed-loop response
observed for the nonlinear controller applied to the dy-
namic process model is used as a baseline for comparison
of controller performance, as well as to determine an ap-
proximate range of controller tunings for the experimental
system. In this set of experiments, the retentate flow rate
set-point was changed from an initial value of 1.5 gpm to a
new value of 0.8 gpm, while the VFD control loop is again
maintained at a pressure set-point of 150 psi. In this set of
experiments, the performance of the nonlinear controller
with integral term is evaluated against the performance
of a proportional-integral (PI) controller (both of these
controllers are implemented experimentally), and the per-
formance of the nonlinear controller with integral action
applied to the dynamic process model via simulations.
The feed salt concentration for these experiments was
approximately 8200 ppm of NaCl. The tuning parameters
for the controllers in this set of experiments can be found
in Tables 2 and 3.

The results for these experiments are plotted in Figs.
4 - 5. In Fig. 4, it can be seen that all of the closed-
loop results (simulated and experimental) decrease at the

Table 2. Loop I PI controller tuning parame-
ters.

Kf = 0.01
τf = 0.1
Ksim

f = 0.0091

τsim
f = 0.1

Table 3. Loop II controller tuning parameters
(both PI and nonlinear controllers).

Kr = 1
τr = 5
γ = 0.6
τNL = 10
γsim = 0.6
τsim
NL = 10
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Fig. 4. Profiles of retentate flow rate (Qr) with respect
to time for retentate flow rate set-point transition
from 1.5 to 0.8 gpm under proportional-integral con-
trol (dashed line), nonlinear model-based control with
integral action (solid line) and nonlinear model-based
control with integral action implemented via simu-
lation on the process model (dash-dotted line). The
horizontal dotted line denotes the retentate flow rate
set-point (Qsp

r = 0.8 gpm).

same rate initially (due to the valve opening/closing rate
constraint). As expected, the simulated nonlinear model-
based controller with integral term immediately converges
to the set-point with no offset since it is not subject
to any plant-model mismatch or measurement noise. As
it is evident in Table 2, the integral time constant for
the simulated controller is slightly different (τf = 0.01,
τ sim
f = 0.0091). The simulations where the nonlinear

controller was applied to the process model were used
to find an approximate range of controller parameters,
but these values were implemented on the experimental
system and changed slightly to achieve better closed-loop
performance in the presence of plant-model mismatch.
The speed of the closed-loop response under the nonlinear
controller applied to the experimental system is slower
in terms of convergence to the set-point than the one in
the simulated case and the retentate flow rate reaches the
set-point in about 145 seconds. The proportional-integral
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Fig. 5. Profiles of system pressure (Psys) with respect to
time for retentate flow rate set-point transition from
1.5 to 0.8 gpm under proportional-integral control
(dashed line), nonlinear model-based control with in-
tegral action (solid line) and nonlinear model-based
control with integral action implemented via simu-
lation on the process model (dash-dotted line). The
horizontal dotted line denotes the system pressure set-
point (P sp

sys = 150 psi).

(PI) controller with τr = 5 leads to an extremely slow
convergence to the set-point (on the order of 10 minutes).
It is also seen that when a smaller integral time constant
is used, it results in significant oscillations around the set-
point due to the coupling between the two control loops.
These oscillations cause large fluctuations in the feed flow
rate (due to the VFD control loop) and could damage
the feed pumps and cause fatigue on system components.
Similar results are evident in Fig. 5. The application of
the nonlinear controller to the experimental system causes
the most deviation from the pressure set-point due to the
speed at which it converges to the set-point. It can be seen
that the PI controller causes almost no deviation from
the set-point (approximately the same as the simulated
nonlinear controller) because the convergence (change in
valve position) is much slower. As the valve closes, it causes
the system pressure to rise, forcing loop I to take action in
order to keep the system pressure at the set-point. Slower
valve actions allow more time for loop I to act and keep
the system pressure at the set-point, such as in the case
of the PI control with τr = 5. Additional results from the
experiments can be seen in the submitted journal paper
(Bartman et al. (2009a)).
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