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Abstract: The study of protein folding and its ramifications in biological contexts is at the heart of 
computational biology.  In this paper, we discuss a number of tools in systems engineering that would 
provide an analysis framework to help explain the observed dynamic behavior of the protein, ultimately 
making the connection between protein structure and functionality.  A case study of villin headpiece 
folding using principal components analysis as well as clustering demonstrates the potential of these tools 
in responding to this challenge. 
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1. INTRODUCTION 

The study of proteins is easily justified by the fact that they 
constitute an essential element of all living beings.  
Specifically, proteins are responsible for controlling gene 
expression, allow transmission of signals between cells and 
organs, transport and store other species and defend the body 
against microbes, among many other functions.  Thus, due to 
their universal significance, understanding the relationships 
between their sequence, configurations and the vital functions 
they play in the body, can help development of new therapies 
and novel biomaterials.  As such, uncovering the mysteries of 
proteins requires an interdisciplinary approach, enlisting not 
only biologists and medical professionals but also engineers, 
mathematicians and computer scientists. Recent studies 
include bioinformatics approaches that explore data mining 
(Brito, Dubitzky et al. 2004) and evolutionary algorithms 
(Pal, Bandyopadhyay et al. 2006), in addition to structure 
prediction problems (Krogh, Larsson et al. 2001; Floudas 
2007) and computational techniques focusing on optimization 
(Krogh, Larsson et al. 2001; Greenberg, Hart et al. 2004).   

All protein molecules are chains of amino acids and referred 
to as linear heteropolymers due to the unbranched nature of 
their monomeric units (amino acids) (Creighton 1993).  The 
amino acid building blocks consist of a central �-carbon (C�)
atom surrounded by four groups: an amino group (-NH2), a 
carboxyl group (-COOH), a hydrogen atom and a fourth 
group (-R) that can be one of twenty specific molecules, and 
is referred to as the side group.  The specific side group gives 
the amino acid its unique characteristic.  The sequence of 
amino acids (also called residues) as read from the amino (N-
terminus) to the carboxyl (C-terminus) is referred to as the 

primary structure.  Helices, �-strands, loops, etc. are the 
secondary structures. Organization of the secondary 
structures in space to form a stable 3-D structure leads to the 
tertiary structure. The lowest free energy tertiary structure is 
the unique native conformation with which the protein 
performs its function. 

The type of a protein and its folding characteristics are 
determined by its primary structure, i.e., the sequence of 
amino acids (Dill, Bromberg et al. 1995). It is also noted that 
the folding process is often aided by molecular chaperons that 
help the protein fold correctly as it exits the ribosome by 
minimizing the influence of other nearby proteins as well as 
by binding to the protein to prevent misfolding (Shinde and 
Inouye 2000).  This is especially important as incorrectly 
folded proteins resulting from errors during folding are 
responsible for illnesses such as Creutzfeldt-Jakob disease, 
Bovine spongiform encephalopathy, Parkinson’s and 
Alzheimer’s diseases. Due its implications in understanding 
such diseases, the dynamics of folding has received 
substantial attention in recent years (Karplus and Kuriyan 
2005; Colombo and Micheletti 2006). 

The dynamics of protein folding have been studied 
extensively in vitro, where the protein is denatured to assume 
an arbitrary initial configuration and then as the natural 
conditions are restored, folds into its native configuration.  
This refolding process has been explored both by molecular 
dynamics (MD) simulations (Duan and Kollman 1998; Pan 
and Daggett 2001; Mori, Colombo et al. 2005) and using 
mostly stop-flow experiments and NMR spectroscopy 
(Eaton, Thompson et al. 1996; Plaxco and Dobson 1996) and 
the results provided unique insight towards the folding 



     

dynamics. During the refolding process, the simulations 
explore the conformational energy landscape accessible to the 
protein molecule and all-atom MD simulations with explicit 
solvent can only feasibly achieve time scales shorter than 
about 1�s for relatively small proteins which leaves out a 
number of phenomena inaccessible and poorly understood.   

In this paper, we show how systems engineering tools can be 
used to probe the dynamics of protein folding to provide a 
better understanding of the key mechanisms.  The next 
section discusses protein folding simulations and the type of 
information gathered as a result.  Dynamic folding 
trajectories that result from such simulations can be 
interrogated by a number of analysis tools, and we focus on 
the use of Karhunen-Loeve and clustering to extract spatial 
and temporal features to help explain the folding dynamics.     

2. SIMULATIONS OF PROTEIN FOLDING  

Folding of a protein takes place in the form of a competition 
between the loss of configurational entropy and the decrease 
of energy due to the formation of inter-residue contacts. 
Consequently, a free energy barrier separates the unfolded 
and folded states. The energy surface, as a function of the 
variables active in folding, such as the 3N coordinates of an N
atom protein and a multitude of additional dimensions 
describing the surrounding water molecules, is called the 
‘energy landscape’. The competition of entropy and energy 
results in a rugged landscape, and leads to transient trapping 
of structures that are either partially folded or misfolded. A 
comprehensive account of protein folding simulations can be 
found in a recent article (Scheraga, Khalili et al. 2007). 

The protein can be modeled at different levels of complexity
ranging from all-atom to coarse-grained representations. The 
all-atom visualization coupled with MD simulations gives the 
most detailed picture of folding but the computational time is 
a serious bottleneck. The only full-trajectory molecular 
dynamics simulation in the presence of explicit water up to 
this date is that of a 35-residue protein (Duan and Kollman 
1998). In typical coarse-grained approximation approaches 
(Haliloglu and Bahar 1998; Doruker, Jernigan et al. 2002), 
the protein consists of N  beads that represent the amino acids 
joined into a linear chain by virtual bonds analogous to the 
chemical bond. A virtual bond joins two consecutive alpha 
carbons, C�, along the chain. The length of a virtual bond is 
fixed, a condition referred to as the ‘fixed bond length 
condition’. Each bead has a finite volume. No bead shares its 
own volume with any other bead. This is called the ‘excluded 
volume condition’. Folding of the protein progresses from a 
random initial state at 0�t  to the final state at ftt � ,
subject to the fixed bond length and excluded volume 
conditions at all stages of folding. Folding to the native 
configuration requires the specification of interactions 
between pairs of amino acids. This information is based on 
empirical energy functions, chosen such that the unique 
native state corresponds to the minimum of total energy 
(Erman and Dill 2000).  

The protein folding problem in its simplest form may be 
viewed as a constrained optimization problem: We are given 

an initial configuration of N beads connected in the form of a 
linear chain. The beads want to move towards their specified 
final destinations by spending minimal energy subject to the 
(i) connectivity between beads, (ii) fixed bond length and (iii) 
excluded volume constraints. Each bead obeys Newton’s 
second law of motion throughout the folding trajectory.  The 
forces acting on each bead are received either from the other 
beads or they are external interaction forces with the 
environment. Under these conditions, one needs to determine 
the optimal forces acting on the beads and the resulting 
optimal trajectory of the beads from their initial configuration 
to their final native states. 

Here, we analyze the optimal pathways followed by the 
protein during folding. These pathways were generated using 
the optimal control framework proposed in our earlier work 
(Guner, Arkun et al. 2006). A coarse grained dynamic model 
based on Newton’s equation of motion is used to make the 
dynamic optimization manageable. 

3. INTERROGATION OF SIMULATION DATA 

While simulations provide a wealth of data on the nature of 
protein motion, extraction of useful information that would 
shed light on the dominant folding/unfolding mechanisms, 
evolution of interactions among key residues such as those 
that determine the hydrophobic core, as well as understanding 
of the structural conformations and their relationship with 
biological function is non-trivial.  The computational burden 
and complexity are significant barriers; thus, methods that 
help reduce dimensionality and provide analytical capabilities 
in a low-dimensional subspace are largely used.  Here, we 
discuss two techniques.  Karhunen-Loeve expansion (KLE) 
or Principal Components Analysis (PCA) can extract key 
coordinates (modes) that govern the global motion of the 
protein.  Clustering helps classify large-scale correlated 
motions that can explain the presence of meta-stable states in 
which certain protein configurations exist and evolve.   

3.1 Principal Components Analysis 

The application of PCA to the study of macromolecular 
motion dates back many years where MD simulations were 
studied to identify fluctuation modes (Garcia 1992) and to 
extend simulation time scales (Amadei, Linssen et al. 1993).  
In the latter work, the conformational space is subdivided 
into an ‘essential’ subspace (Van Aalten, De Groot et al. 
1997) which contains only a few degrees of freedom, 
exhibiting unharmonic motion and a ‘residual’ subspace 
where the fluctuations are Gaussian. Recent studies explore 
the energy landscape and the conformational states (Alakent, 
Doruker et al. 2005; Mu, Nguyen et al. 2005), identify modes 
contributing to protein fluctuations in MD simulation of apo-
adenylate kinase (Lou and Cukier 2006), and extract key 
mechanistic features from simulations of chemotrypsin 
inhibitor 2 (Palazoglu, Gursoy et al. 2004).  One can also 
refer to a comprehensive review article for further details 
(Stein, Loccisano et al. 2006).  

The data matrix can be constructed in various forms 
depending on the information desired.  For example, we can 
construct a matrix of spatial positions as they evolve in time. 



     

The simulations yield the position vectors  of N residues for 
M time intervals and, after subtracting the temporal mean, 
this results in a KM �  array, where NK 3� . One can also 
use the fluctuation matrix which captures the jump dynamics 
governing protein folding.  The fluctuation matrix becomes 

KM �  with NK �  and has been previously studied 
(Palazoglu, Gursoy et al. 2004).  Another possibility is to 
form a matrix in which temporal evolution of the magnitude 
of the distance between the contact pairs is captured.  This 
matrix would have M time intervals and K would correspond 
to the total number of short- and long-range contact pairs. 

The expansion has K modes (eigenvector directions) and each 
eigenvalue measures the mean energy of its corresponding 
mode. Among the class of all linear expansions, KLE is 
optimal in the sense that, on a subspace of lower dimension 

KL � , it retains the most energy possible. One can retain 
only the first few L  modes that extract the important trends 
and filter the details deemed insignificant by the user.  

3.2 Clustering 

Cluster analysis (Everitt, Landau et al. 2001) is a class of 
statistical methods that seeks to partition a set of N
observations (objects) into distinct groups.  Each observation 
corresponds to a particular sampling interval (distinct period 
in time) for which corresponding measurements are available 
on the same set of parameters.  One of the early applications 
of clustering to MD simulation data is by Karpen et al. 
(Karpen, Tobias et al. 1993) where feature vectors (dihedral 
angle time series) are clustered for a 2.2 ns trajectory of the 
small peptide YPGDV to identify conformational states 
during unfolding.  When applied to protein models, clustering 
can classify ensembles of structural models based on their 
backbone structure, using C� distances as the dissimilarity 
measure (Domingues, Rahnenfuhrer et al. 2004).  The 
molecular motion of proteins can also be classified using 
clustering to identify functionally relevant structures (Pan, 
Dickson et al. 2005) and to gain insight towards the shape of 
the energy landscape (Plaku, Stamati et al. 2007). 

Agglomerative hierarchical clustering is used to identify 
sampling intervals exhibiting similar ‘behavior’ based on a 
chosen metric.  It accepts as input a symmetric matrix D
whose elements Dij indicate the relative dissimilarity between 
sampling intervals i and j.  Matrix D can derive from various 
parameters in a given simulation, such as the dihedral angles, 
internal coordinates and potential energies, and must be 
properly defined for the cluster solution to be physically 
meaningful.  The hierarchical clustering starts with all objects 
residing in their own cluster, and by using various linkage 
rules, proceeds by merging the closest objects, and 
subsequently, the closest clusters, finally terminating when 
all objects are collected under a single cluster.  The output of 
the hierarchical clustering algorithm is graphical in nature (a 
dendrogram), and facilitates the visualization of recurring 
phenomena manifested in the data.  Another popular method, 
k-means clustering (Everitt, Landau et al. 2001), creates 
clusters based on the maximization of between-cluster 
variance and minimization of the within-cluster variance, and 
often gets trapped in local extrema, requiring multiple 

initializations.  The number of clusters needs to be specified a 
priori for the k-means algorithm and it starts by randomly 
populating these clusters and proceeding by the optimization 
step to reform the clusters.  These shortcomings were 
overcome in a recently proposed aggregated k-means 
clustering strategy (Beaver and Palazoglu 2006) where an 
ensemble of cluster solutions, generated by performing many 
randomly initialized runs of the algorithm, can be aggregated 
to form a single, hierarchical solution. A recent study 
discusses the performance of different clustering algorithms 
applied to MD trajectories (Shao, Tanner et al. 2007). 
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Fig. 1. The structure of villin headpiece.  

4. CASE STUDY OF CHICKEN VILLIN HEADPIECE 

We consider a 36-residue protein, (PDB code 1Vii.pdb), 
chicken villin headpiece that is the smallest protein that can 
fold autonomously. It has been shown through a landmark 
all-atom explicit water simulation of villin headpiece (Duan 
and Kollman 1998) that there is a sudden initial hydrophobic 
collapse followed by longer structural adjustment phase. 
Other simulation studies also agree with the folding events 
revealed by Duan and Kollman, e.g., the implicit-water 
simulation by Shen and Freed (Shen and Freed 2002) and 
MD scheme integrated with Monte Carlo search by Mori et 
al. (Mori, Colombo et al. 2005).   

Chicken villin headpiece (Figure 1) has 3 short helices, Helix 
1, 2 and 3 which contain the residues 4-8, 15-18, and 23-32, 
respectively. They are held together by a loop between 
residues 9-14, and a turn between residues 19-22.  

Fig. 2. Snapshots from the folding process starting from an 
arbitrary initial configuration, 0�t , followed by 30�t ,

60�t , and 90�t , and 150�t .

4.1 Folding Trajectories 

The optimal folding trajectories were calculated starting from 
several random initial configurations (Guner, Arkun et al. 
2006).  Each simulation is performed for 301 time steps. 
Results include the optimal values for both the position of 
each bead and the force applied to each bead as a function of 
time.  Figure 2 shows a representative result where the initial 
denatured configuration is significantly stretched out and the 
protein starts to establish the helices first. Once the helices 
form, the loop and the turn secondary structures begin to get 
established.  Finally, the native 3-D structure is reached after 
refinement of the overall configuration.  



     

The root-mean-square-distance (RMSD) is the distance 
between the native structure 	 
NsssS 112111 ...� , and a 
folding structure 	 
NsssS 222212 ...� , where ijs  is the 
position of the jth bead in structure i:

	 
��
�








�
N

i

N

ij
jiji ssss

NN
RMSD 2

2211 ||||||||
)1(

2

Figure 3 shows the RMSD variation between the native 
structure and simulated structures with respect to time for the 
whole chain. On the average, initial configurations fold 
around time step 100, with an average final RMSD of 3Å.  

Fig. 3. The evolution of RMSD over all simulations. 

4.2 KL Analysis 

The long-range contact pairs are defined as those residues 
that are 5 and more residues apart.  For chicken villin, there 
are a total of 89 native contact pairs and 8 are considered as 
long-range contacts: 2-34, 7-14, 7-34, 10-33, 10-34, 11-33, 
11-34, 19-26. Here, we consider the temporal evolution of the 
magnitude of the contact pairs, ijr ’s.  The matrix is 89301�
with 301 rows for the time steps and 89 columns for each pair 
of native contacts.  For this analysis, we focused on 14 
simulations.  We found that, in general, 2 modes capture 99% 
of the variance in the simulation data. Figure 4 shows the first 
and second spatial eigenvectors indicating which native 
contact pairs contribute to these directions the most.  The 
major contributions to the first come from the long-range 
contacts, as indicated by the vertical lines.  The other contact 
pairs have generally minor contributions to this direction, 
perhaps with the exception of the pair 2-7 (position 4 on the 
plot).  It is reported (Frank, Vardar et al. 2002) that three 
phenylalanine residues F47, F51, and F58 (residues 7, 11 and 
18) make up the bulk of the hydrophobic core along with the 
hydrophobic residues L42, V50, and L69 (residues 2, 10 and 
29).  Thus, it is noteworthy that the first mode is significantly 
influenced by the interaction between residues 2 and 7 as the 
hydrophobic collapse occurs.  Another observation is that all 
pairs load positively in this direction, indicating that all move 
in the same direction, effectively in the direction of reducing 
the distances among contact pairs. In fact this coordinated 
collapse is observed in Fig. 1.  Another important observation 
is that this loading behavior is independent of the initial 
configuration, underscoring the fundamental nature of the 

collapse.  In the second mode, the influence of the long-range 
contacts is attenuated (especially for 10-33, 10-34, 11-33 and 
11-34) and short-range contacts become more important, 
almost across the board for all such contacts.  The native 
contact pair 2-7 still retains its influence.   The contact pairs 
load in both positive and negative directions, a key difference 
from the first mode, indicating a more complex motion. It is 
also important to note that this loading depends on the initial 
configuration, implying that the formation of secondary 
structures can follow different paths in time.

(a)             (b) 
Fig. 4. First (a) and second (b) spatial eigenvectors, vertical 
lines indicate the position of long-range native contact pairs, 
and vertical line at position 4 points to the native contact pair 
2-7.  

As shown in Fig. 5, the temporal coefficient of the first 
spatial eigenvector decays exponentially, indicating that the 
manner with which energy is minimized is common for all 
simulations regardless of the initial configuration.  This also 
supports the all-positive loading directions of the contact 
pairs as shown in Figure 4a.  On the other hand, the temporal 
coefficient of the second spatial eigenvector shows second-
order behavior and is attenuated significantly, underscoring 
the lesser influence of the second mode. This mode explains 
the fast dynamics associated with the short-range contacts as 
secondary structures (helices in this case) are made quickly 
and then readjusted to conform to the overall formation of the 
protein structure.  Folding dynamics exhibit two time-scales, 
which is consistent with the two-step folding mechanism of 
the hydrophobic collapse model (Baldwin 2002).  

(a)   (b) 
Fig. 5. First (a) and second (b) temporal coefficients, bold red 
line indicates the averages. 

4.3 Cluster Analysis 

To demonstrate the potential of clustering, we focus on native 
contact distances analyzed before.  For a given simulation, 
the expectation is to see if the dynamic signature of contact 
distances can be used to label each contact pair as belonging 
to a class, distinguished by its characteristic temporal 
evolution or contact distance.  Thus, the feature vector is the 
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time series of contact distance magnitudes, ijr ’s. The 
simulation data from the 14 runs were stacked into a matrix 
of dimension 894214�  and the data were normalized to [0, 
1].  The data matrix is then transposed for clustering the 89 
contact pairs.  Thus, the scaling is in reality performed on the 
rows of the clustered data matrix, as opposed to for the 
columns as is more typical.  A different scaling is used in this 
analysis because the variables have different mean levels 
although they are measured in the same units.  

Using aggregated k-means clustering with average linkage, 
the dendrogram in Figure 6 is obtained.  It shows two coarse 
and six relatively distinct fine clusters with a cophenetic 
coefficient (Beaver and Palazoglu 2006) of 0.96, which 
indicates that the dendrogram is a good representation of the 
relationships among the objects.  The aggregated distances 
show that the cluster members have short merging distances 
while the main clusters merge at relatively large distances.  
This shows that the within-cluster variance is low while the 
between-cluster variance is high. 

Fig. 6. The dendrogram for clustering the distances of all 
native contact pairs for 14 simulations.  Contacts labelled as 
green are the long-range native contacts whereas the contacts 
labelled as red are the ones involving residues in the 
hydrophobic core. 

In Figure 6, it is noted that a large number of the residues that 
form the long-range native contacts and the hydrophobic core 
fall in the same cluster.  Indeed, first cluster (labeled as red) 
contains six of the eight long-range contact pairs along with 
two short-range contact pairs that contain hydrophobic core 
residues.  This cluster captures the concerted motions of the 
loop and the tail, as well as the loop and helix-1 contacts.  
The second cluster (dark blue) is largely residues involved in 
forming the helix-1.  It is noted that the long-range native 
contact pair 7-14 (PHE7-THR14) appears in a rather isolated 
third cluster (green) and its motion shows greatest similarity 
to contact pairs 9-12 and 18-21.  The long-range interaction, 
i.e., 7-14, is the only long-range interaction close to the N-
terminal, thus having dynamic characteristics different than 
the other long-range contacts is expected. The small fourth 
cluster (magenta) contains residues towards the end of the 
protein chain and also notably differs from the first three 
clusters. The fifth cluster (light blue) contains all the 

remaining short-range contacts associated with helix 2 and 
helix 3, including the long-range contact 19-26. This long-
range contact pair shares characteristics common with the 
other helix 3 contact pairs, thus dynamically acts in concert 
with a large number of short-range contact pairs specific to 
the secondary structure with which it is associated.  The final 
cluster (yellow) brings together short-range contacts 
primarily involving turn and tail secondary structures.   

We must re-iterate that a coarse clustering decision indicates 
two main clusters, containing the subclusters (1, 2, 3) and (4, 
5, 6), respectively.  Such a grouping would suggest two 
classes of residues where the first mainly contains the long-
range-contacts and the second, the short-range contacts.  Yet, 
the fact that specific residues (such as long-range contacts) do 
not appear all in a single cluster and usually appear together 
with other residues is supported by (Larson, Ruczinski et al. 
2002) who claim that both poorly and highly conserved 
residues are equally likely to participate in the protein folding 
nucleus.  They also note, however, that there is an observable 
bias in the mean sequence conservation of the residues in the 
folding nuclei.  This is especially consistent with the 
membership of the large cluster on the left. 
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