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Abstract: This paper introduces a dynamic operability-based approach for the determination of feasible 
output constraints during transient operation. This approach is based on previously published steady-state 
operability developments and the concept of output funnels. In this study, high-dimensional non-square 
systems with more outputs than inputs are of particular interest. Such systems are challenging because it 
is impossible to control all the outputs at specific set-points when there are fewer degrees of freedom 
available than the controlled variables. Thus, interval, instead of set-point, control is needed for at least 
some of the output variables. In order to motivate the new concepts, two non-square case studies are 
addressed, one illustrative and one industrial - obtained from the control system of a Steam Methane 
Reformer process. The calculated constraints are validated by running DMCplusTM (AspenTech) closed-
loop simulations for the extreme values of the disturbances. These constraints are intended for use online 
in model-based controllers (e.g., Model Predictive Controllers) to ensure that each of the outputs will 
remain inside a feasibility envelope during transient operation. 
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1. INTRODUCTION 

Model Predictive Control (MPC) is a long standing 
multivariable constrained control methodology that utilizes 
an explicit process model to predict the future behavior of a 
chemical plant. At each control interval, the MPC algorithm 
attempts to optimize the future plant behavior by computing a 
sequence of future manipulated variable adjustments. The 
first of the optimal sequence of calculated input moves is 
implemented into the plant and the entire calculation is 
repeated at subsequent control intervals using updated 
process measurements. MPC has been extensively studied in 
academia and widely accepted in the chemical industry for its 
ability to handle complex multivariable and highly interactive 
process control problems (Qin and Badgwell, 2003). MPC-
type controllers in industrial practice aim to control non-
square systems in which there are more controlled outputs 
than manipulated inputs. In such systems it is impossible to 
control all the outputs at specific set-points because there are 
fewer degrees of freedom available than the controlled 
variables.  

Based on the input constraints, generally specified a priori 
due to the physical limitations of the process, an important 
design task is to determine the output ranges within which 
one wants to control the process. The improper selection of 
these constraints can make the controller infeasible when a 
disturbance moves the process far away from its usual 
operating region. Past practice requires that output constraints 
are enforced whenever feasible and softened whenever they 
become infeasible (Rawlings, 2000). The steady-state 
operability methodology originally introduced for square 

systems (Vinson and Georgakis, 2000) and extended for non-
square systems (Lima and Georgakis, 2006; Lima and 
Georgakis, 2008a) provides a method for selecting such 
output constraints systematically, so that they are as tight as 
possible but also do not render the controller infeasible. 
Specifically for non-square systems, the interval operability 
framework was introduced (Lima and Georgakis, 2006) to 
assess the input-output open-loop operability of multivariable 
non-square systems at the steady-state, a necessary condition 
for the overall process operability. The application of this 
framework to high-dimensional square and non-square 
systems is discussed in another set of publications (Lima and 
Georgakis, 2008b; Lima, Georgakis, Smith and Schnelle, 
2008), where a Linear Programming (LP) based approach is 
introduced to calculate the tightest feasible set of steady-state 
output constraints when interval operability is necessary. 

This paper extends this interval operability framework to 
enable the determination of feasible output constraints during 
transient for high-dimensional non-square systems. Although 
the previously developed steady-state operability approaches 
are necessary to quantify the overall operability of a process 
and to determine the steady-state output constraints for MPC, 
the development of a dynamic operability methodology for 
non-square systems will have great impact on MPC controller 
design. Specifically, dynamic operability analysis can be used 
to systematically calculate the amount of constraint relaxation 
necessary in order to prevent the occurrence of transient 
infeasibilities, when disturbances affect the process (see 
Dimitriadis and Pistikopoulos (1995) for dynamic flexibility 
analysis). This extension is accomplished here by designing a 
funnel for each of the output variables, which provides output 



 
 

     

 

constraints that guarantee feasible process operation in 
closed-loop. Previously, output funnels have been used to 
define MPC controllers’ output trajectories in commercial 
packages (Qin and Badgwell, 2003). Specifically, 
Honeywell’s RMPCT (Robust Multivariable Predictive 
Control Technology) controller defines a funnel for the 
outputs or Controlled Variables (CV) constraints. When a 
predicted CV trajectory leaves its funnel, the controller 
algorithm penalizes this trajectory to bring the CV back 
within its range (Qin and Badgwell, 2003; Maciejowski, 
2002). Here such funnels are used to design output 
constraints during transient operation. This design is 
especially important for underdamped systems in general, 
where overshoots may occur during process operation, and 
overdamped or critically damped systems when disturbance 
dynamics are faster than input dynamics. For the opposite 
case when input dynamics are faster than disturbance ones, 
the output constraints calculated using one of the steady-state 
operability methodologies are also applicable during 
transient.  

2. PROCESS OPERABILITY 

Before introducing the dynamic operability approach, it is 
necessary to briefly define the sets of variables used for 
steady-state interval operability calculations (Lima and 
Georgakis, 2008a). The Available Input Set (AIS) is the set 
of values that the process input, or manipulated, variables (u) 
can take, based on the constraints of the process. For an n x m 
x q (n outputs, m inputs and q disturbances) linear system: 

� �min max| ; 1i i iu u u i m� � � � �uAIS  (1) 

The Desired Output Set (DOS) is given by the ranges of the 
outputs (y) that are desired to be achieved and is represented 
by:                                          

� �min max| ; 1i i iy y y i n� � � � �yDOS  (2) 

The Expected Disturbance Set (EDS) represents the expected 
steady-state values of the disturbances (d):  

� �min max| ; 1i i id d d i q� � � � �dEDS  (3) 

Based on the steady-state linear model of the process, 
expressed by the process gain matrix (G) and the disturbance 
gain matrix (Gd), the Achievable Output Set for a specific 
disturbance vector, AOS(d), is defined by the ranges of the 
outputs that can be achieved using the inputs inside the AIS: 

� �( ) | ; ,   is fixedd� � � �d y y Gu G d u dAOS AIS  (4) 

The Achievable Output Interval Set (AOIS) is defined as the 
tightest feasible set of output constraints that can be achieved, 
with the available range of the manipulated variables and 
when the disturbances remain within their expected values 
(see references (Lima and Georgakis, 2008a; Lima and 
Georgakis, 2008b; Lima, Georgakis, Smith and Schnelle, 
2008) for the algorithms developed for the calculation of this 
important set). Using these defined sets and some of the 
previously published interval operability concepts and 
calculations, a dynamic operability approach, based on the 
design of output funnels, for the determination of output 

constraints during transients is introduced next through a 2-D 
illustrative example. This is followed by the analysis of the 
Steam Methane Reformer (SMR) process example, which is 
9-D and underdamped.  

3. ILLUSTRATIVE EXAMPLE 

In order to introduce the dynamic operability approach, 
consider a 2-D example from Lima and Georgakis (2006) 
with 2 outputs, 1 input and 1 disturbance (2 x 1 x 1). This 
example has the following steady-state gain model and 
constraining sets (see information on process dynamics 
below): 
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Two funnels, one for each output, with specific amplitudes 
and decay characteristics will be designed for the two output 
variables of this system. Each of these funnels is designed 
from the moment that a disturbance is inserted into the 
system and provides an envelope where the control problem 
is always feasible if the output constraints remain inside of 
this envelope. This envelope starts at the funnel amplitude 
value (defined below), decays at a specific rate and ends at a 
designed steady-state constraint calculated using one of the 
interval operability approaches cited above. Cases where the 
disturbance variable takes its extreme values are of particular 
interest because they represent the worst cases, which if 
satisfied, ensure feasible operation for all the other cases.  

For the system above, the dynamics of each of the input-
output and disturbance-output pairs are plotted in Figs. 1, 2, 
3, and 4 for pairs (y1, u1), (y1, d1), (y2, d1), and (y2, u1), 
respectively. In these figures, these dynamics are represented 
by step response coefficients, which would be obtained in 
practice by plant testing.  

The funnel amplitude associated with output i (ai) is defined 
as follows: 

, 
�i d j i ja k s  (6) 

where kd,j-i corresponds to the value of the steady-state 
disturbance gain associated with the disturbance-output pair 
j-i and sj is the step disturbance value. For this example, sj 
will be assumed at the extreme values of the disturbance 
within the EDS, i.e. d1 is moved from 0 to ± 1. If d1 = 1, then 
a1 = -0.6 and a2 = 0.4. When d1 = -1, a1 = 0.6 and a2 = -0.4. It 
is assumed that using steady-state disturbance gains to 
calculate the starting point of the funnel decay, as opposed to 
the maximum absolute value of the dynamic gains, will be 
enough to provide an envelope that contains the entire closed-
loop response. This is based on the assumption that the inputs 
are able to compensate for the presence of overshoots, caused 
by these dynamic gains, in most practical cases during 
closed-loop operation, especially if a model-based controller, 
such as MPC, is implemented. The decay for each output 
funnel (�i) is determined by the slowest dynamics among all 



 
 

     

 

the input-output and disturbance-output pairs for the 
corresponding output. Each output is analyzed separately 
because the disturbance dynamics might be slower for one of 
the outputs, while the input dynamics may be slower for the 
other. These dynamics are estimated from the step response 
curves using two approaches, depending on the 
characteristics of the analyzed curve: 

1) Exponential fit (typically for oscillatory responses): an 
exponential is fitted to two selected points of the step 
response curve. These points are selected such that most of 
the curve is below (or above, depending on the sign of the 
dynamic gains) the fitted exponential. The dynamics of the 
analyzed pair are estimated by the following exponential 
decay: 

� �exp exp expexpy a t y	� 
� �  (7) 

where y� corresponds to the steady-state gain of the analyzed 
step response curve. Using the two selected points and eq. 
(7), a system of 2 equations and 2 unknowns can be solved 
for the two parameters of the exponential, aexp and �exp. For 
the example above, this approach is used for pairs (y1, u1), 
(y1, d1), and (y2, d1), whose exponential fits are shown in Figs. 
1, 2, and 3, respectively, along with the fitted points selected 
for each case. For such pairs, the following exponential fits 
are obtained: 
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2) First-order models estimated using ARX (Auto-Regressive 
model with eXogenous inputs, subroutine ARX in Matlab) 
(Ljung, 1999): the following first-order ARX model with a 
zero-order holder in the z domain is fitted to the step response 
coefficients of a specific pair: 

� �
1

arx1( ) ( ) with ln
1 z

bzy z u z p
az





� � � 

�

 (9) 

where �arx represents the model dynamics and is calculated by 
taking the negative natural log of the transfer function pole in 
the z domain, pz = -a. This approach is used whenever a pair 
dynamics can be well approximated by a first-order model. 
This approach is applied here to pair (y2, u1), which is shown 
in Fig. 4, and the following model and �arx are obtained: 

� � 2
2 1 arx

0.0283( ) ( ) ln 0.9601 4.07 10
0.9601

y z u z
z
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 (10) 

After calculating all �s for all possible pairs (4 in this case), 
using the two approaches above, their values are compared 
and the one with smallest absolute value for each output 
(representing the slowest dynamics) is retained and used in 
the funnel design for the corresponding output. For example, 
for output 1, �1 = 1.89 x 10-2 is chosen, which is the smallest 
between 1.89 x 10-2 and 2.12 x 10-2. Therefore, for this 
example, the following values of �i are selected: 

2 2
1 21.89 10 ,  4.07 10
 
� � � � � �  (11) 

 

Fig. 1. Step Response Coefficients, Exponential Fit and Fitted 
Points for (y1, u1) pair. 

 

Fig. 2. Step Response Coefficients, Exponential Fit and Fitted 
Points for (y1, d1) pair. 

 

Fig. 3. Step Response Coefficients, Exponential Fit and Fitted 
Points for (y2, d1) pair. 

Using the calculated amplitudes and decays, the following 
equation represents the funnel for each of the output 
variables:  

� � � � ,1 exp 1i f i f i ss if a t y� �� � � 
 �� � �� �  (12) 

where yss,i is one of the steady-state output constraints (upper 
or lower limit) for output i, which is calculated using the 
previously published interval operability approaches (Lima 
and Georgakis, 2008a; Lima and Georgakis, 2008b). Also, �f 



 
 

     

 

and �f are adjustable tuning parameters, associated with 
amplitude and decay, respectively, and are independent of the 
output selected. As explained above for ai, depending on the 
magnitude of the disturbance inserted, which in this case 
takes either its maximum or minimum value, yss,i will have 
different values. For the case study here, if d1 = 1, then yss,1 = 
-0.464 and yss,2 = 0.464. When d1 = -1, yss,1 = 0.464 and yss,2 = 
-0.464. These values were extracted from the steady-state 
operability results presented in the ADCHEM 2006 paper by 
Lima and Georgakis (see case 2, section 3). Thus, each output 
envelope actually has upper and lower limits that start at 
different points and end at the upper and lower calculated 
steady-state constraints, respectively. The same decay holds 
for both cases. Therefore, for the 2-D case study above, 
selecting �f = 0 and �f = -0.74, the following funnels are 
obtained for each output for the two extreme values of the 
disturbance: 

� �
1 ,1 ,2
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For 1:  0.464,  0.464

0.6exp 1 0.74 1.89 10 0.464

ss ssd y y

f t


� � 
 �

� �� 
 
 
 � 
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� � 2
2 0.4exp 1 0.74 4.07 10 0.464f t
� �� 
 
 � �� �  (14) 
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� � 2
2 0.4exp 1 0.74 4.07 10 0.464f t
� �� 
 
 
 � 
� �  (16) 

The funnels for outputs 1 (eqs. 13 and 15) and 2 (eqs. 14 and 
16) are plotted in Figs. 5 and 6, respectively, along with the 
DMCplusTM (Dynamic Matrix Control - AspenTech, a 
multivariable constrained controller) trend obtained for each 
case. For all cases, the controller is operating in closed-loop 
mode and the disturbance was inserted at time = 0. 

4. HIGH -DIMENSIONAL INDUSTRIAL SYSTEM 

The design of output constraints during transient for the 
Steam Methane Reformer (SMR; Vinson, 2000) process 
example will now be performed using the output funnels 
defined above. This process has 9 outputs, 4 inputs and 1 
disturbance variable and it is defined by the following set of 
steady-state equations and constraining sets (see information 
on process dynamics below): 
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Fig. 4. Step Response Coefficients, Exponential Fit and First-
order ARX Model for (y2, u1) pair. 

 

Fig. 5. Funnel Design and DMCplus trend for output y1 with 
(�f, �f) = (0, -0.74). 

where �y, �u and �d1 are deviation variables from the steady-
state values for the outputs (yss), the inputs (uss), and the 
disturbance (d1,ss), respectively. These steady-state values are 
given by: 

� �
� � 1,

44.35,  94.10,  1.50,  21.5,  1.80,  431.45, 510.75, 5.35, 37.1

29.00,  100.00,  1.10, -1.55 ;  0

T
ss

T
ss ssd

�

� �

y

u
(19) 

Also, the original output constraints (DOS), lower and upper 
limits, are given in Table 1. The SMR process has 
underdamped dynamics for several input-output/disturbance-
output pairs, which are represented by the step response 
coefficients obtained by plant testing that are shown in Fig. 7. 
For this case, the disturbance gains, given in eq. (17), and the 
designed output constraints at the steady-state in Table 1 
(from Lima, Georgakis, Smith, Vinson and Schnelle, 2009) 
will be used here to define each output funnel. 

Following the same procedure as in the illustrative example 
above, exponential and ARX fits were obtained and �s 
calculated for all the input-output and disturbance-output 
pairs. The calculated �s for all these pairs are presented in 
Table 2, where the smallest absolute values of � for each 
output, which will be used in the funnel design, are 
highlighted. Thus, using eq. (12), the funnel equations (20) 
and (21) are calculated  for all outputs when d1 moves from 0 
to ± 4 (extreme cases) and (�f, �f) = (1.00, 0.36).  



 
 

     

 

 

Fig. 6. Funnel Design and DMCplus trend for output y2 with 
(�f, �f) = (0, -0.74). 

 

Fig. 7. Step Response Model for the SMR Problem. 
Responses for outputs y1- y9 to a step in inputs u1 - u4 and 
disturbance d1. Empty boxes represent that there is no 
interaction between the input-output or disturbance-output 
pair. 

Table 1. SMR Example: original and designed set of 
output constraints at the steady-state (Lima, Georgakis, 

Smith, Vinson and Schnelle, 2009). 

Process 
Outputs 

Original
Lower 
Bound

Original 
Upper 
Bound 

Designed 
Lower 
Bound 

Designed
Upper 
Bound 

y1 43.00 45.70 43.98 44.72 
y2 26.90 161.30 84.89 103.31 
y3 0.80 2.20 1.02 1.98 
y4 0 43.00 20.91 22.09 
y5 1.70 1.90 1.73 1.87 
y6 424.70 438.20 426.82 436.08 
y7 430.10 591.40 455.48 566.02 
y8 3.20 7.50 3.87 6.83 
y9 21.50 52.70 26.41 47.79 
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Note that, for outputs y4 and y5, the steady-state disturbance 
gains are 0, and thus, their funnel’s upper and lower bounds 
are constants at their upper and lower designed steady-state 
limits, respectively. Figs. 8, 9, and 10 show the DMCplus 
trends for y1, y2, and y3, respectively, as well as the funnels 
for each case, where the controller is operating in closed-loop 
mode and the disturbance was inserted at time = 0. The 
funnels for the other outputs are not shown here due to space 
limitations of the manuscript. 

Table 2. Calculated �s for each input-output and 
disturbance-output pairs for the SMR Example (smallest 
� for each of the outputs in bold;  dash (-) for pairs with 

no model)  

y/ 
u, d 

u1 u2 u3 u4 d1

y1 0.0189 0.0323 0.0212 0.0151 0.0212 
y2 0.0335 0.0699 0.0288 0.0286 0.0288 
y3 0.0794 - 0.0140 0.0847 0.0140 
y4 0.0537 - 0.0939 0.0364 - 
y5 1.4437 0.5177 - - - 
y6 0.0407 0.0453 0.0422 0.0195 0.0422 
y7 0.0530 0.0391 0.0681 0.0221 0.0681 
y8 0.0248 0.0280 0.0316 0.0706 0.0316 
y9 0.0243 0.0290 0.0110 0.1213 0.0110 



 
 

     

 

 

Figure 8: SMR Example: funnel design and DMCplus trend 
for output y1 with (�f, �f) = (1.00, 0.36). 

 

Figure 9: SMR Example: funnel design and DMCplus trend 
for output y2 with (�f, �f) = (1.00, 0.36). 

 

Figure 10: SMR Example: funnel design and DMCplus trend 
for output y3 with (�f, �f) = (1.00, 0.36). 

6. CONCLUSIONS 

In this paper we have presented an extension of the 
previously developed steady-state interval operability 
approach to dynamical systems. Through the detailed 
examination of an illustrative case study we have motivated 
the calculation of output funnels for the design of output 
constraints during transient operation. The developed 
methodology was then applied to determine feasible output 

constraints for the Steam Methane Reformer industrial 
process. The analysis presented here provides a starting point 
for the verification of the achievability of control objectives 
in the entire control horizon. As potential future directions, an 
extension of this framework to address systems with multiple 
disturbances is necessary. Moreover, a moving horizon 
operability approach could be developed, where operability 
calculations would be performed online at each time instant, 
as the control horizon advances.  
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