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Abstract: This paper addresses the application of a new MPC to a distillation system where isobutane 
and light butenes are separated from butane and heavier compounds. This system is located in the 
alkylation unit of an oil refinery. The MPC considered here is based on the infinite horizon MPC 
extended to the case where the system has stable and integrating modes. The controller is developed 
based on a particular state space model in the incremental form, which considers the existence of time 
delays. The proposed controller provides nominal stability to the closed loop system. Practical tests in a 
distillation system show that the performance of the new controller, which can be extended to consider
robustness to model uncertainty is similar to the performance of the conventional MPC with finite 
prediction horizon. 
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1. INTRODUCTION 

One of the key issues in the application of MPC to industrial 
processes is the requirement that the closed loop system 
should remain stable for a large set of tuning parameters and 
any possible control structure in terms of active controlled 
outputs and available manipulated inputs. Rawlings & Muske 
(1993) have demonstrated that, in the regulator operation of 
stable systems, the infinite horizon MPC preserves stability 
even in the presence of constraints in the inputs and states. 
These ideas have been extended to the case of output tracking 
of stable systems (Odloak, 2004) and to systems with stable 
and integrating modes (Carrapiço & Odloak, 2005; González 
et al., 2007). However, a recent review by Qin & Badgwell 
(2003) points out that these developments have not been 
incorporated into the available MPC technology. Thus, the 
main scope of this work is to report the application of an 
infinite horizon MPC with nominal stability to an industrial 
system of small dimension but that presents the typical 
ingredients of a practical application: time delay, measured 
and unmeasured disturbances and integrating modes. 

The state space model considered here is an extension of the 
model developed by Gouvêa & Odloak (1997) and Rodrigues 
and Odloak (2003) and implemented by Porfírio et al. (2003) 
to include time delays and integrating modes and is 
represented as follows: 
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In the model defined in (1), nuu ∈ℜ  is the manipulated input. 
The first np components of the state vector defined in (2) 
correspond to the output predictions computed at time k
based solely on past control actions and disturbances, xs are 
the state components associated with the integrating modes 
created by the incremental form of the model, xd are the state 
components associated with the stable modes of the system 
and xi are the state components associated with the 
integrating modes of the system. To represent systems with 
time delays, it is assumed that { },int max( / )i jnp m tθ≥ + Δ , 
where m is the control horizon of the MPC, tΔ  is the 
sampling time and ,i jθ  is the time delay associated with 
output yi and input uj. In the state matrix defined in (3), one 
has 
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States ( / ), ( 1/ ), .... , ( / )y k k y k k y k np k+ +  correspond to 
the output predictions calculated at time k based solely on 
past control actions and disturbances. 
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iθ  is the time delay associated with the integrating mode 
related to output iy .  
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In the above matrix, it is assumed that either output iy
integrates only input iu , or if this output integrates other 
inputs, the time delays between the integrated inputs and the 
output are the same for all the inputs. If this condition is not 
satisfied, the model proposed above is not observable. The 
step response of the system can be calculated by the 
following equation 

0 *( ) ( ) ( )d iS t D t D N I t D= + Ψ +
where t is supposed to be larger than any time delay included 
in the process model. 

2. THE INFINITE HORIZON MPC 

The infinite horizon MPC considered here is based on the 
following control cost 
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where  

( ) ( ) spe k j k y k j k y+ = + −�  and ( )y k j k+�  is the output 
prediction at time k+j computed at time k and considering the 
future control actions. Weight matrices Q, R, S1 and S2 are 
assumed positive definite. 

The control objective defined in (4) can be expanded as 
follows 
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In order to develop the infinite sum defined in (6), one needs 
to consider an expression for the calculation of the output 
prediction at time steps beyond time np. Using the model 
expressions defined in (1) to (3), the output prediction at time 
step np+1 can be written as follows: 
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where sx� , dx�  and ix�  are computed considering the future 
control actions. Analogously, the prediction at any time step 
np+j can be written as follows: 
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In order to guarantee that (2)
kV  will be bounded, it is 

necessary to force the state components related to the 
integrating modes to be zero at the end of the control horizon: 
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It is easy to show that for the model defined in (1), the 
constraint defined in (8) can be written as follows
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Therefore, the infinite horizon MPC that is implemented here 
is based on the following optimization problem: 
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Carrapiço & Odloak (2005) showed that the problem defined 
in (14) produces a nominally stable MPC if it is solved in a 
two step approach. In the first step, the objective is to 
minimize slack i

kδ , which is related to the integrating modes. 
Then, in the second step, the objective is to minimize Vk

while i
kδ  is kept at the same value computed in the first step.  

In practical terms, the two step approach would be equivalent 
to adopting the value of the slack weight S2 large enough to 
force the controller to minimize i

kδ  before considering the 
other control objectives. Thus, the IHMPC, which is 
implemented here, is obtained through the solution to the 
problem defined in (14) with suitable tuning parameters that 
produce the nominal stability of the controller. 

3. PROCESS OVERVIEW AND CONTROL STRATEGY 

A schematic representation of the de-isobutanizer distillation 
column where the infinite horizon MPC was implemented is 
illustrated in Figure 1. The system is part of an alkylation unit 
in the PETROBRAS/Cubatão oil refinery. The feed stream 
distillation column comes from the FCC unit and consists of 
a mixture of isobutane, 1-butene, cis-2-butene, trans-2-
butene, n-butane and n-pentane. The top product, which is 
sent to the alkylation reactor, is composed mainly of 
isobutane and light butenes. The bottom stream that is 



    

composed of n-butane and heavy butenes is sent to storage 
and sold as a special product. 
The feed flowrate is defined by the refinery production plan 
and usually remains constant over long periods of time. The 
feed temperature is the main disturbances to the control 
system. A recycle stream of isobutane and steam are used as 
sources of heat to the reboiler. The pressure in the top drum is 
controlled by manipulating the bypass of the top condenser. 
In the original regulatory strategy, a PID controller of the 
temperature of tray 68 cascades the steam flowrate to the 
reboiler and there was no control on the level of liquid in the 
top drum. The main control objective is to keep the 
composition of the top product composition at desired values. 

As shown in Figure 1, in the control strategy implemented in 
the IHMPC there are two manipulated inputs: u1 (ton/h) is the 
steam flowrate to the reboiler and u2 (m3/d) is the reflux 
flowrate. The feed temperature d1 (ºC) is a measured 
disturbance. The outputs of the distillation column are: y1 (%) 
the level of liquid in the top drum, y2 (ºC) the temperature of 
tray 68 and y3 (%) the percentage of flooding in the column. 
The flooding is calculated based on the measured values of 
some variables of the process. The two degrees of freedom 
(inputs) are used to control the liquid level in the drum at a 
fixed set-point and the other two outputs are controlled by 
zone: the column flooding has to be kept below an upper 
limit and the temperature in tray #68 has to be kept above a 
minimum value. Two other outputs that will be included in 
this control strategy in the near future are the volumetric ratio 
iC4/(� olefin components) in the top product and the 
volumetric fraction of iC4 in the bottom stream. 
Step tests were performed in the distillation column and the 
resulting transfer function model is the following:
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During the identification tests, it was observed that the 
control valve of the reflux flow rate has shown an erratic 
behavior probably due to stickiness. Although, this problem 
could be easily repaired, we found it interesting to perform 
the evaluation test of the proposed IHMPC in these 
conditions, as this scenario may be frequently found in 
industry. So, the sticking reflux control valve becomes an 
unmeasured disturbance to the MPC controller. The transfer 
functions represented above relates the outputs to the set 
points to the regulatory flow control loops. 

4. PRACTICAL RESULTS 

Figures 2 and 3 show the typical responses of the industrial 
system with IHMPC when a step disturbance is introduced in 
the set point of the liquid level. The tuning parameters of the 
controller are the following: 2m = , 1tΔ = , 

(6,4,1)Q diag= , (0.1,5)R diag= , 3
1 2 (1,1,1) 10S S diag= = × . 

In this case, the column flooding (y3) was controlled at a 
fixed set point of 91%, while the temperature in tray #68 (y2) 
was kept above the minimum constraint (52ºC). Fig. 3 clearly 
shows that there is a sticking problem in the valve of the 
reflux flow rate (u2), where the process variable (PV) has a 
significant delay in comparison to the corresponding set point 
(SV). The consequence is a continuous cycling of this 
variable with a period of about 30min. This disturbance is 
transferred to the controlled variables of the system, but the 
IHMPC can cope with this situation quite nicely as the 
amplitude of the resulting oscillation is largely attenuated. 
Concerning the tuning parameters of the proposed IHMPC, 
they can be borrowed from the conventional MPC, except the 
prediction horizon, which is infinite, and the slack weights S1
and S2. Typically, these parameters should be two or three 
orders of magnitude larger than the output weights. The main 
point related to the slack weights is that they should be large 
enough to make the hessian matrix H defined in (11) positive 
definite. If this condition is not satisfied, the integrating 
outputs may become unbounded or the stable outputs may 
show offset. 

Fig. 1. Schematic diagram of the de-isobutanizer column. 

There was a question if the proposed IHMPC would amplify 
this sort of periodic disturbance, as the controller includes 
equality constraints (12) and (13) related to cancellation of 
the integrating modes. Apparently, the inclusion of slacks s

kδ
and i

kδ  greatly reduced this problem. To verify if the gain in 
stability associated with the use of an infinite prediction 
horizon would result in a loss of performance, the proposed 
controller was compared with the conventional MPC. For this 
purpose, a finite horizon MPC was also implemented in this 
distillation column. Although, in practice, one cannot repeat 
exactly the experiment reported above but considering the 
conventional MPC, Figures 4 and 5 show the responses of the 
conventional MPC for a similar step disturbance in the set 
point of the liquid level. The tuning parameters for the two 
controllers are the same except, for the prediction horizon, 
which is infinite in the IHMPC and the slacks weights, which 
do not exist in the conventional MPC. Observing figs. 4 and 
5, one may conclude that there is no significant difference 
between the performances of the two controllers and 
consequently, there is no practical disadvantage in 
implementing the infinite horizon MPC that introduces 
nominal stability. 
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Fig. 2 – Outputs for the IHMPC. Step change in the liquid 
level set-point. 

Another practical experiment performed with the IHMPC is 
shown in figures 6 and 7. In this case, the set point to the 
flooding percentage (y3) in the column is successively 
decreased along a series of step changes, while the set point 
to liquid level in the reflux drum (y1) is fixed and the column 
temperature (y2) is controlled by zone. Although the 
performance of the controller can be considered satisfactory, 
the sticking problem in the reflux control valve seems more 
serious and heavily affects the behavior of the system, mainly 
the reflux flow rate (u2) and the column flooding. It is not 
represented here, but the same kind of behavior is observed 
when the system is controlled with the conventional MPC. 

5. CONCLUSIONS 

A MPC with infinite prediction horizon was successfully 
implemented in an industrial distillation column and has been 
in continuous operation for several months. The proposed 
controller can be applied to systems with stable and 
integrating outputs. The IHMPC was compared to the 
conventional finite horizon MPC and the performances of the 
two controllers seem quite similar. The new controller has 
some additional parameters related to the weighting of slack 
variables that are introduced in the control problem in order 
to guarantee that this control problem will remain always 
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Fig. 3 – Inputs for the IHMPC. Step change in the liquid level 
set-point. 
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