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Abstract: In this paper, we present an application of data derived approaches for analyzing
and monitoring an industrial deethanizer column. The discussed methods are used in visualizing
process measurements, extracting operational information and designing an estimation model.
Emphasis is given to the modeling of the data obtained with standard paradigms like the Self-
Organizing Map (SOM) and the Multi-Layer Perceptron (MLP). The SOM and the MLP are
classic methods for nonlinear dimensionality reduction and nonlinear function estimation widely
adopted in process systems engineering; here, the effectiveness of these data derived techniques
is validated on a full-scale application where the goal is to identify significant operational modes
and most sensitive process variables before developing an alternative control scheme.
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1. INTRODUCTION

A modern process plant is under tremendous pressure to
maintain and improve product quality and profit under
stringent environmental and safety constraints. For effi-
cient operation, any decision-making action related to the
plant operation requires the knowledge of the actual state
of the process. The availability of easily accessible displays
and intuitive knowledge of the states is thus indispensable,
with immediate implications for profitability, management
planning, environmental responsability and safety.

Due to the advances in measuring and information tech-
nology, historical data are available in abundance. Re-
markable characteristics of the data acquired in industrial
facilities are redundancy and possibly insignificance, not
to mention the presence of disturbances that corrupt the
measurements. Very often, the amount and quality of the
data together with their high-dimensionality can be a
limiting factor for the analysis; therefore, it is necessary
the availability of effective methods that: i) model the data
to extract the structures existing in the measurements, ii)
identify and reconstruct the most relevant structures for
the scope at hand and, iii) allow for easily interpretable
displays where the states’ information is presented to the
plant operators. Intuitive knowledge of all visited states is
invaluable for safe plant operation and trustworthy meth-
ods become necessary when considering statistical process
monitoring as part of a supervision and control strategy.

In this paper, we discuss the implementation and direct
application of a strategy to model, visualize and ana-
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lyze the information encoded in industrial process data.
The approach is based on a classical machine learning
method for dimensionality reduction and quantization, the
Self-Organizing Map, SOM (Kohonen, 2001). The SOM
combines many of the main properties of other general
techniques and shares many commonalities with two stan-
dard methods for data projection (Principal Components
Analysis, PCA (Jolliffe, 2002)) and clustering (K-means,
(Hartigan et al., 1979)). In addition, the SOM is also
provided with a set of tools that allow for efficient data
visualization in high-dimensional settings.

The use of the Self-Organizing Map in the exploratory
stage of data analysis is discussed in (Kaski, 1997; Vesanto,
2002) and it is widely employed in many fields. In general
terms, the main contributions in applying the SOM on
industrial process data are collected by Alhoniemi (2002)
and Laine (2003), whereas more domain specific devel-
opments can be found in the SOM’s bibliography (Oja
et al., 2003). Here, the SOM is used as a framework for
the identification of the process modes with their time of
occurence and present the information on simple displays.

To support the presentation, the analysis is discussed
on a full-scale deethanizer where the goal is to identify
significant operational modes and most sensitive process
variables before developing an alternative control scheme.
The study relies on an regression model for estimating
an important quality variable (the ethane concentration
in the bottom) otherwise difficult to measure in real-time
from a set of easily measurable process variables. Inference
is based on the Multi-Layer Perceptron Haykin (1998).



2. THE SELF-ORGANIZING MAP

The Self-Organizing Map (Kohonen, 2001) is an adaptive
formulation of vector quantization performing in unison:

• a reduction of the data dimensionality by projection;
that is, the reduction of the dimensionality of the data
by mapping all the observations onto a meaningful
subspace with lower dimensionality;

• a reduction of the amount of data by clustering; that
is, the retention of the original dimensionality of the
data space while reducing the amount of observations
by prototyping them by similarity.

The SOM nonlinearly projects vast quantities of high-
dimensional data onto a low-dimensional array of few
prototypes in a fashion that aims at preserving the topol-
ogy of the observations. By choosing a conventional bi-
dimensional array of prototypes, the main advantage of
the map is in a wealth of visualization techniques that
allows the analysis of the structures existing in the data.

The following overviews the SOM algorithm and its analo-
gies with other projection and clustering methods. A brief
presentation of the most common SOM-based visualiza-
tion methods for exploratory data analysis is also reported.

Algorithm and properties The basic Self-Organizing Map
consists of a low-dimensional and regular array of K nodes,
where a prototype vector mk ∈ R

p is associated with each
node k. Each prototype acts as an adaptive model vector
for the N observations vi ∈ R

p. During the computation
of the SOM, the observations are mapped onto the array
of nodes and the model vectors adapted according to:

mk(t + i) = mk(t) + α(t)hk,c(vi)

(
vi(t) − mk(t)

)
. (1)

In the learning rule in Equation 1, t denotes the discrete-
time coordinate of the mapping steps and α(t) ∈ (0, 1)
is the monotonically decreasing learning rate. The scalar
multiplier hk,c(vi) denotes a neighborhood kernel centered
at the Best Matching Unit (BMU); that is, at the model
vector mc(t) that, at time t, best matches with the obser-
vation vector vi. The matching is based on a competitive
criterion on the Euclidean metric d(mk(t),vi(t)), for all
k = 1, . . . , K. At each step t, the BMU is thus the proto-
type mk(t) that is the closest to observation vi(t):

c(t) = argmin
k

(
d(mk(t),vi(t))

2
)
, ∀k and ∀i. (2)

The kernel hk,c(vi) centered at mc(t) is often a Gaussian:

hk,c(vi) = exp
(
−

||rk − rc||
2

2σ2(t)

)
, (3)

where the vectors rk and rc represent the geometric
location of the nodes on the array and σ(t) denotes the
monotonically decreasing width of the kernel. The effect
of the kernel decreases with the distance from the BMU.

The SOM is computed recursively for each observation.
As α(t)hk,c(vi) tends to zero with t, the set of prototype

vectors {mk}
K
k=1 are adaptively updated to represent sim-

ilar observations in {vi}
N
i=1, and converge toward their

asymptotic limits. The resulting model vectors learn a
nonlinear manifold in the original embedding space such
that the relevant topological and metric properties of the
observations are preserved on the map. Thus, the SOM is

to be understood as an ordered image of the original high-
dimensional data modeled onto a low-dimensional mani-
fold, where the complex data structures are represented
by simple geometric relationships.

A rigorous analysis of the SOM has demonstrated difficult.
However, in the case of the basic algorithm with a fixed
kernel function, also the SOM algorithm can be under-
stood from the optimization of a cost function:

E(SOM) =
N∑

i=1

K∑
k=1

hk,c(vi)d(mk,vi)
2. (4)

The cost function in Equation 4 is closely related to the
objective optimized with the K-mean algorithm (Lloyd,
1982). The only difference is in the neighborhood function
that smoothly weights all the distances between the ob-
servations and the prototypes, instead of just the closest
one. In that sense, the SOM operates as the conventional
clustering method where the width of the kernel is zero.
Moreover, there is no need to explicitly specify the number
of taxonomies; in fact, the number of prototypes in the
SOM can be chosen without any specific concern on the
actual number of clusters. The SOM has also neat pro-
jection properties. In fact, the cost in Equation 4 closely
resembles the objective optimized by Curvilinear Compo-
nents Analysis CCA (Demartines et al., 1997); CCA is
a modification of metric Multi-Dimensional Scaling MDS
(Cox et al., 2000) and Principal Components Analysis
PCA (Jolliffe, 2002). Similarity is in the decreasing and
smoothing nature of the neighborhood function that em-
phasizes smaller distances in the projection. Conversely,
the notion of locality in the SOM does not correspond to
the global concern on small distances characterizing CCA.

Data exploration methods In the typical case of projec-
tions onto 2D arrays, the SOM offers excellent techniques
for data exploration. In that sense, the approach to data
analysis with the SOM is mainly visual and focuses on the
low-dimensional displays specifically designed for the map.

The data visualization techniques based on the SOM as-
sume that the prototype vectors are representative models
for groups of similar observations, and projecting the data
onto the low-dimensional array allows for an efficient dis-
play of the dominant relationships existing between them.
For instance, the displays permit to identify the shape of
the data distribution, cluster borders, projection directions
and dependencies between variables. The visualizations
techniques considered here are i) the component planes
and ii) the distance matrix. Such techniques were thor-
oughly studied by Kaski (1997) and Vesanto (2002).

A component plane shows on the SOM’s array the coordi-
nates of the prototype vectors along a specific direction in
the data embedding space; that is, each component plane
is associated to one original variable and there are as many
planes as directions in the embedding. The coordinate
values are encoded into gray levels or colors, and the area
of each unit on the array is dyed with the color associated
to the component value. A component plane thus displays
the distribution of the corresponding variable among the
prototype vectors. The component planes are useful in
order to visually identify possible dependencies between
variables. The dependencies between variables can be seen
as similar patterns (the colors corresponding to the values



of the variables) in identical locations on the component
planes. Such representations can be also used to quantify
dependencies. In that sense, the SOM reduces the effect of
noise and outliers in the observations and, therefore, may
actually make any existing dependence simpler to detect.

A distance matrix visualizes on the SOM’s array the
average distance between each prototype vector and its
adjacent neighbors. In a distance matrix, distances are
encoded into gray levels or colors and each unit on the
array is dyed with the color associated to the distance
with the neighbors. The most widely used distance matrix
for the SOM is the Unified Distance Matrix, or U-matrix
(Ultsch, 1993). Here, the dominant clustering structure
of the observation can be seen as clearly separated areas
(large distances) characterized by a homogeneous coloring.
In the U-matrix, visualization of the clusters is improved
by augmenting the distance matrix with additional entries
(nodes) between each prototype vector and each of its
neighbors. Unconventional alternatives to the U-matrix
are reported by Oja et al. (2003) but not considered here.

3. CASE STUDY

To illustrate the potentialities of topological data analysis
using the Self-Organizing Map, the overviewed methods
are applied on a set of measurements from a full-scale
process. The monitoring problem consists of modeling
and analyzing the operational behaviour of an industrial
deethanizer, starting from a set of online process measure-
ments. The objective of the deethanizer (in Figure 1) is
to separate ethane from the feed stream (a light naphta)
while minimizing the ethane extracted from the bottom of
the column (an economical constraint for the subsequent
unit in the plant). Such a constraint is quantified by the
maximum amount of ethane lost from the column bottom;
the operational threshold is set be smaller than 2%. The

Fig. 1. Deethanizer: Simplified flowsheet.

motivation for choosing this unit is merely illustrative; in
fact, the considered deethanizer offers an ample variety
of behavior that reflects the operational usage; hence, an
interesting groundwork for presentation and discussion.

TAG/Variable TAG/Variable

FIC-1397/Inlet Flowrate FIC-1430/Vapor Flowrate
TI-1389/Inlet Temp. LIC-1424/Reboiler Level
TI-1402/Inlet Temp. FIC-1432/Bottom Flowrate
TI-1409/Inlet Temp. FI-1449/Distillate Flowrate
TI-1435/Top Temp. PIC-1451/Distillate Pressure
TIC-1457/Enriching Temp. TI-1452/Reflux Temp.
TI-1412/Enriching Temp. FIC-1455/Bypass Flowrate
TI-1413/Exhausting Temp. TI-1439/Condensed Temp.
TI-1414/Exhausting Temp. LIC-1442/Top Drum Level
TI-1415/Exhausting Temp. PIC-1448/Blowdown Pressure
TI-1418/Bottom Temp. LIC-1446/Bottom Drum Level
FIC-1456/Reflux Flow. AI-1503A1/Ethane Conc.
TIC-1434/Vapor Temp. AI-1503A2/Butane Conc.
PDI-1429/Delta Pressure

Table 1. Deethanizer: Process variables

In order to analyze the behaviour of the unit, a set of
process variables was collected from the plant’s distributed
control system (DCS). The measurements correspond to
three weeks of continuous operation in winter asset and
three weeks in summer asset. The data are available as 3-
minute averages and 27 process variables (in Table 1) are
available for a macroscopic characterization of the unit.

In addition, there are a number of control loops in the
process. Briefly, the temperature TIC−1457 and the vapor
temperature TIC − 1434 out of the reboiler are controlled
by manipulating the reflux flow FIC − 1456 and the
steam rate FIC − 1430 to the reboiler, respectively; with
both loops cascaded with the corresponding flowrates. The
distillate pressure PIC−1451 is controlled by the distillate
flowrate FI−1449 and the level in the reboiler LIC−1424
by the bottom flowrate FIC − 1432.

3.1 Analysis and inference

The operational objective of the column is to produce
as much ethane as possible (minimizing concentration of
propane from the top of the column) while satisfying the
constraint on the amount of impurity from the bottom
(maximum concentration of ethane in the bottom ≤ 2%).
With respect to the loss of ethane from the bottom, such
considerations led to the definition of 3 operational modes:

• a normal status, corresponding to the operation of the
column, where the concentration of ethane is within
allowable bounds (within the 1.8 − 2.0% range)

• a high status, corresponding to the operation of
the column, where the concentration of ethane is
exceeding the allowable upper bound (above 2%)

• a low status, corresponding to the operation of the
column, where the concentration of ethane is below
the allowable lower bound (below 1.8%).

The two abnormal conditions have a direct and important
economic implication. In fact, when at low status, the pro-
cess is delivering a product out of specifications whereas,
when at high status the product is within the specifica-
tions, but an unnecessary operational cost is observed.

To understand under which conditions such modes are
experienced, in a recent study (Corona et al., unpublished)
we analyzed the clustering structure of the data and visu-
alized the operating conditions of the unit. Starting from a
selection of important process variables, we expanded this



subset by incorporating an additional dummy indicator,
specifically calculated to indicate the status. As such, the
new variable was defined as to take values +1, −1 or 0,
according to the operational status of the process. Value 0
is assigned to the normal operation, whereas values +1 and
−1 correspond to high and low operations, respectively.
Notice that the calculation of the dummy variable requires
the availability of a real-time measurement for the ethane
concentration; such a variable (AI − 1503A1) is presently
acquired from a continuos-flow chromatograph. The subset
of selected process variables augmented by the dummy
indicator was used to calibrate a SOM over which the
resulting component planes and U-matrix were analyzed;
the exploration was perfomed as a direct application of
the techniques discussed by Alhoniemi (2002). The study
allowed us to extract the clustering structure of the data
and illustrate on simple displays how it corresponds to the
operational modes of the unit.

However, the delay associated with the analytical measure-
ments of the ethane concentration from the bottom of the
column can pose severe limitations to the online analysis.
Moreover, the existing instrumentation setup available for
the unit may benefit from a backup measurement for such
an important variable. In this study, we are thus extending
the analysis of the operational modes of the deethanizer,
by validating the functionality of the approach when re-
placing the analytical measurements of ethane with online
estimates. In that sense, the availability of an inference
model would allow the development of a fully automated
system to be implemented online in the plant’s DCS.

For the purpose, a soft sensor based on the standard Multi-
Layer Perceptron MLP (Haykin, 1998) with one hidden
layer and sigmoidal activation functions was developed to
infere the ethane concentration from the bottom. The esti-
mates are obtained starting from the same input subset of
easily measurable process variables used for the SOM and
selected according to the guidelines provided by Baratti
et al. (1995). The parameters of the MLP (that is, number
of hidden nodes, one, and the connection weights) were
optimized using the Levemberg-Marquard method and
cross-validation. In Figure 2, the response of the soft sensor
on a set of independent testing observations is reported for
about a week of continuous operation.
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Fig. 2. Ethane concentration from the bottom: Analytical
measurements (·) and MLP estimates (−).

Based on the MLP estimates, a bidimensional Self-
Orgaznizing Map was calibrated using only the winter
data. The map consists of a hexagonal array of prototype
vectors initialized in the space spanned by the eigenvec-
tors corresponding to the two largest eigenvalues of the
covariance matrix of the data. As usual, the ratio between
the two largest eigenvalues was used to calculate the ratio

between the two dimensions of the SOM; the resulting map
consists of a 70 × 24 array of 15-dimensional prototype
vectors, where the dimensionality of the vectors equals the
number of variables used for calibration. On the SOM, we
analyzed the clustering structure of the data and visualized
the operating conditions of the unit using the U-matrix.

The U-matrix is based on distances between each proto-
type vector and its immediate neighbors. A common way
to visualize it consists of an initial projection of all the
distances onto a color axis and the subsequent display
with colored markers between each prototype vector. On
the display, areas with homogeneous coloring correspond
to small within-cluster distances (recognized as clusters),
whereas cluster borders are areas with homogeneous color-
ing but corresponding to large between-cluster distances.
The use of the U-matrix in clustering the operational
regimes of the deethanizer column is shown in Figure 3.

(a)

(b)

(c)

Fig. 3. The U-Matrix (a), the clustered SOM projected
onto the 3D principal components space (b) and the
SOM colored according to the K-means clustering (c).

In Figure 3(a), distances are depicted with dark blue
colors shading toward dark red as the proximity between
the prototypes decreases. The visualization permits to
clearly recognize the presence of three distinct clusters of
prototypes, as well as several other data substructures.
An analogous visualization of the grouping is achieved by
projecting the map onto a low-dimensional subsapce; in
Figure 3(b), a tridimensional principal components space
learned by the metric MDS. Indeed, also this visualization
permits to illustrate the actual clustering structure of the
process measurements and displays a good separateness
also in this space of reduced dimensionality. However, to
obtain a quantitative characterization of the clustering
structure, the prototypes of the SOM should be regarded
as a reduced data set and modeled with a standard
clustering algorithm. For simplicity, we are here adopting
a standard K-means algorithm coupled by the Davier-
Bouldin index, a measure of cluster validity to identify
an optimal number K of taxonomies from data Milligan
et al. (1985). As expected, optimality was found for K = 3
clusters, corresponding to the modes of the unit.

On the SOM, such clusters are located in the lower, mid-
dle and upper part of the map. After coloring the SOM
according to the cluster membership obtained by using
the K-means algorithms, in Figure 3(c), and comparing
it with the component plane of the dummy variable (and
equivalently, the MLP estimated ethane concentation), it
is straightforward to associate the three taxonomies to the



(a) (b) (c)

Fig. 4. The component planes for the dummy variable
(a), the estimated ethane concentration (b) and the
temperature TI − 1414 (c), with a coloring scheme
that assigns blue to high values of the variables fading
toward red as the values decrease. This scheme differs
from the what defined for the clustering with blue and
red corresponding to −1 and +1, respectively.

three main operational modes of the deethanizer, Figure
4. Specifically, Figure 3(c) shows the clusters on the SOM
as distinct regions dyed in blue, green and red with a
cloring scheme that assignes those colors to the operational
modes (+1, 0 and −1, respectively). As expected, a sim-
ilar structure is also retrieved from the component plane
for the dummy variable, Figure 4(a). Though apparently
less evident, the same structuring is retrieved from the
component planes of the estimated ethane concentration
(Figure 4(b)) and one of the temperatures in the ex-
hausting section of the dethanizer; namely, TI − 1414
in 4(c). Looking for similar patterns in similar positions
in such components planes allows the visualization of a
neat dependence between the ethane composition and such
temperature indicator. Such pair of variables shows near
identical but reversed component planes, thus highlighting
the inherent inverse correlation that exists between them.

(a) AI-1503A1 (b) TI-1414

Fig. 5. The colored time series (3 winter weeks) for the
ethane concentration AI − 1503A1 (a) and the tem-
perature in the enriching section TI − 1414 (b). The
actual values of the variables could not be reported
because of the confidentiality agreement.

Information about this dependence can be further en-
hanced by applying the coloring scheme resulting from
clustering directly to the original observations in the time
domain. In fact, all points can be dyed using the cluster
color of the corresponding Best Matching Unit, as in Fig-
ure 5. The figure shows how TI−1414 is mostly responsible
for the transition between the aformentioned operational
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Fig. 6. The temporal evolution of the winter operational
modes colored according to the SOM clustering.

conditions. The correspondence with the ethane concen-
tration is observed as clear banded regions and indicates
that, in order to maintain the column at optimality (with-
ing the 1.8− 2.0% range of ethane from the bottom), such
a temperature should be controlled (possibily, within the
52−55◦C range). A possible variable to manipulate is the
steam flowrate FIC−1430. However, such a variable is not
used in the present control scheme and induces an overall
85% of off-spec operation of the unit, during the given
winter period. Such information is obtained by calculating
the number of point measurements that falls outside the
normality conditions over the total count and pictorially
depicted also as clustered time series (in Figure 6).

So far, we have restricted the analysis only to the mea-
surements observed under winter asset. However, it is also
possible to directly use the calibrated SOM as a reference
model for new and unseen observations; in our setting,
the three weeks of data corresponding to the summer
operation of the deethanizer column. To validate this idea,
the winter SOM was used to explore the behaviour of
the deethanizer under summer asset. Again, the summer
measurements from AI−1503A1 were replaced by the esti-
mates from the soft sensor. The analysis was accomplished
by initially projecting the new data onto the calibrated
SOM, being the mapping based on a nearest neighbor cri-
terion between the new sample vectors and the prototype
vectors of the SOM. In this respect, novelty detection using
the SOM is based on finding the BMU. Once the mapping
is completed, the inspection is performed for the new data.

(a)


 �

(b)
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(c)
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(d) 6 hr

Fig. 7. Trajectory of a selection the summer observations
(approximatively, 6hr) displayed on the winter SOM.

The results in extrapolation are presented by illustrating
another technique for visualization on the SOM. The ap-
proach allows to follow operational changes in the process
and tries to provide a simple display for identifying reasons
of specific behaviors. For the purpose, the map calibrated
on the winter data can be enhanced by the inclusion of



the summer point trajectories followed by the process. The
trajectory permits to intuitively indicate the current mode
of the process and observe how it has been reached. In
Figure 7, the process trajectory is sequentially reported
for a small time window corresponding to six hours of con-
tinuous summer operation of the deethanizer. The process
trajectory on the SOM’s domain passes through all the
BMUs of each new data vector and it is shown as red line
connecting the visited prototypes (the nodes are marked
as yellow dots and thicken with the count of visits).

(a) AI-1503A1 (b) TI-1414 (c) FIC-1397

(d) FIC-1456 (e) FIC-1430

Fig. 8. Status transitions on the time domain (approxima-
tively, 6hr), for a set of relevant process variables.

Following the temporal evolution from Figure 7 and 8, the
diagrams show a process that is initially operated in the
green area, or normal condition (as for the ethane in the
bottom and reference temperature). As the process has
moved further in time, new prototype vectors are visited
and added to the trajectory until the column eventually
leaves the normality region and crosses the boundary
towards the region of high ethane composition (in red). In
a similar fashion, all the process variables changed coloring
to match the visited modes allowing to appreciate that
the change in the operation was mainly due to an abrupt
change in the feed flowrate (FI−1397), in Figure 8(c), and
possibly its composition. In turns, the variation triggered
the action on steam to reboiler flowrate (FIC − 1430),
in Figure 8(e), as well as the reflux to control the top
temperature (FIC − 1456), in Figure 8(d). The events
initiated a sequence of oscillations around normality that
could be reestablished only after several hours.

4. CONCLUSIONS

In this work, we implemented and discussed a strategy
to model, visualize and analyze the information encoded
in industrial process data. In particular, the proposed
strategy was applied to a full-scale distillation column.

From a methodological point of view, the process moni-
toring problem was casted in a topological framework by
using the Self-Organizing-Map. On the SOM, the identifi-
cation of the process modes was approached as a clustering
task rather than classification; that is, in an unsupervised
rather than supervised fashion. Moreover, in order to over-
come the limitations associated with the time delay and
costs of the analytical instrumentation, a software sensor
based on a Multi-Layer Perceptron was developed to infer

a primary process variable, thus favoring the possibility to
directly use such a strategy also for online monitoring.

The application allowed the definition of simple displays
capable to present meaningful information on the actual
state of the process and also suggested an alternative con-
trol strategy for maintaining the unit in normal conditions.
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