
Expected Cost Optimization using Asymmetric Probability Density functions

Bertrand Pigeon*.  Michel Perrier*.  Bala Srinivasan*

*NSERC Environmental Design Engineering Chair in Process Integration, 
Department of Chemical Engineering, École Polytechnique de Montréal,

C.P. 6079, Succ. Centre Ville, Montréal, Québec, Canada, H3C 3A7, 
(e-mail: bertand.pigeon@ polymtl.ca)

Abstract:  In the stochastic context, expected value of the cost function is optimized either by
changing  the  mean  values  of  the  manipulated  variables  or  by  reducing  their  variance.  An
extension is to look for an optimal shape for the entire probability density function (PDF). Though
the use of asymmetric PDFs is proposed in the literature, no formal proof that justifies their use
has been provided. In this paper, it is shown that an asymmetric PDF is required if and only if the
cost  function  is  asymmetric  and  the  manipulated  variable  is  penalised.  The  proof  uses  an
analytical solution of the Fokker-Planck-Kolmogorov equation derived to calculate the shape the
output PDF for scalar systems.  In particular,  this analytical solution is adapted to a switching
proportional controller. The theoretical concepts are illustrated on a simulation example, where the
advantage of choosing an asymmetric PDF is shown.
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1. INTRODUCTION

Optimization in a stochastic context involves studying the
influence of decisions variables on the expected value of
the objective function. In the stochastic context, not only
the mean values of the decision variables but the entire
distribution plays a role in optimization. Typically, in the
presence of constraints, variability is reduced first using
appropriate controllers, and secondly by shifting the set
point closer to the constraint.  Use of minimum variance
controllers  for  optimization  purposes  has  been  well
studied in the literature (Muske, 2003 ).

However, shaping the entire probability density function
(PDF) could be a viable option to reduce costs. The first
mention  of  this  possibility  was  made in  Kàrn� (1996).
Then, Wang (1998) developed a PDF shaping algorithm
based  on  the  weights  of  a  neural  B-Spline  that
parameterized  the  output  PDF.  This  method  has  been
improved ever since by the same authors (Wang ,2002;
Wang  &  Zhang  2002;  Wang  &  Wang,  2002;  Guo  &
Wang 2005). Crespo and Sun (2002) used an analytical
solution of Fokker-Plank-Kolmogorov equation in steady-
state to develop a PDF shaping algorithm.  On the other
hand, Forbes et al. (2004) developed an algorithm based
on  the  parametrization  of  the  target  PDF  using  Gram-
Charlier  basis  functions.  In  all  the  above  cited  works,
though  the  motivation  is  to  improve  an  optimization
objective, only the sub-problem of getting close to a target
PDF  is  addressed.  No  indication  is  given  on  how  to
compute a target PDF that is suited for the optimization
problem at hand. 

It  has  been  argued  in  all  the  above  works  that  the
advantage  of  PDF  shaping  lies  in  shaping  it  in  an

asymmetric manner. The necessity of an asymmetric PDF
arises from the asymmetry of the objective function. This
is normally due to the presence of process and operational
constraints. With constraints, typically, an approach based
on penalty (barrier)  function is  used for  resolution.  An
additional cost is added when the constraint is violated (or
in  the barrier  function case an  additional  cost  is  added
when  operated  close  to  the  constraint),  which  inturn
causes asymmetry. 

Figure 1 shows an example with a penalty function where
a constant penalty is added if the manipulated variable is
above  the  constraint  set  at  11°C.  As  seen,  such
penalty/barrier functions cause a huge asymmetry around
the  optimal  solution.  The  optimal  solution  without  any
stochastic  behaviour  would  be  on  the  constraint  11°C.
However with process noise, a controller needs to be used
to reduce the variance of the manipulated variable,  and
the set point must be lower than 11°C, so that only a small

Figure 1: Example of an asymmetric objective function
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part of the distribution violates the constraint. The minimum
variance controller tries to squeeze and shift the distribution
towards the constraint. On the other hand,  the PDF shaping
solution  tries  to  match  the  asymmetry  in  the  objective
function  using  an  asymmetric  PDF  with  its  tail  on  the
opposite side of the constraint.

Though intuitive arguments were given for using asymmetric
PDFs, no formal results are available to distinguish the cases
where an asymmetric PDF would be more beneficial than the
symmetric one. So, the main question asked in this paper is,
“which class of problems requires an asymmetric PDF?” It is
shown that not only the asymmetry of the objective function
but  also  an  input  weighting  is  needed  to  necessitate  an
asymmetric PDF. The importance of input weighting is one
of  the  core  contributions  of  this  paper.  In  the  minimum
variance controller,  by reducing the variability of the output
variable, the variability of the manipulated variables would
increase, straining the process equipment. Contrarily, with an
asymmetric  PDF,  the  set  point  can  be  shifted  toward  the
constraint and with less impact on the manipulated variables.

This paper first presents an analytical solution of the Fokker-
Planck-Kolmogorov  (FPK)  equation  for  general  scalar
systems.  This  analytical  solution  is  then  applied  to  the
switching controller case, using which, the optimality or non-
optimality  of  symmetric  solution  is  ascertained.  The  last
section  is  devoted  to  a  simulation  example  where  the
improvement  in  cost  using  an  asymmetric  controller  is
shown.

2. PROBLEM FORMULATION

2.1Optimization problem formulation

Consider the dynamic system given by equation (1), where u
is the scalar manipulated variable, x the scalar state variable,
and  w the  zero-mean  Gaussian  process  noise  input  with
standard deviation � .

�x� f � x��g � x�u�w                (1)

The functions  f(x)  and  g(x)  represent  the unforced and the
forced  parts  of  the  system  dynamics.  Consider  the
optimization of the above system at steady state:

              
min

u
�� x ,u �

C � x ,u ��0
f � x��g � x �u�0

,                   (2) 

where  � is the function to be optimized,  C the constraints.
Note  that  the  optimization  considers  the  system equations
without noise at steady state as equality constraints. 

In the context of this paper, a penalty function is introduced
to handle the constraints as show below:

min
u
	 
�� x ,u ��D �C � x , u ������ x , u �

f � x��g � x�u�0
,      (3)

where D(.) is any appropriate penalty function and ��.�
the augmented cost. As discussed earlier, D(.) is asymmetric
which would lead to an asymmetry in the cost function.

In the context of this paper, x is considered stochastic due to
the presence of the noise term w. So, the expectation of the
cost  function  needs  to  be  calculated  for  optimization
purposes. The cost function that is minimized is given by:

J�

��

��



��

��

�� x ,u � p � x , u�dxdu ,              (4)

where p(x,u) is the joint probability density function. 

2.3  Controllers for PDF shaping

In this section, the nonlinear controller used for PDF shaping
is presented. Nonlinearity is crucial since, if the process and
the  controller  were  linear,  and  the  input  is  Gaussian,  the
output PDF would just be Gaussian. 

In  order  to  have a  full  control  on the nonlinearity,  all  the
system  nonlinearities  are  eliminated  by  feedback
linearization. In addition, the controller  h(x) is used to bring
the state to its desired set point. Then, the controller would
introduce the nonlinearities  required to shape the PDFs. For
the system under consideration,  the linearizing feedback is
given by:

u�� f � x��h � x�
g � x� .                      (5)

   
Here,  a  switching controller  of  the following form will  be
studied. The nonlinearity arises from  the gain schedule and
results in an asymmetrical PDF.

h � x���k 1� xsp�x� if x�xsp

k 2� xsp�x� if x�xsp� .               (6)

To  simplify  the  development,  no  measurement  noise  is
considered, while a zero-mean Gaussian measurement noise,
z, with  standard  deviation  �  will  be  added  to  the  set
point. Thus, the the system reads

�x�h� x��w�k cont � x� z

k cont � x���k 1 if x�xsp

k 2 if x�xsp�                     (7)

3.ANALYTICAL SOLUTION OF THE SCALAR FPK
EQUATION FOR SWITCHING CONTROLLER

In this section, the analytical  solution of the FPK equation
will be developed for the general  h(x) and later exploited to
suit the switching controller.



3.1 General case

Consider the system (8)  where the two random variables are
Brownian processes :

dx�h � x�dt�� d �w�kcont� x� � d �z , t�t 0 ,      (8)

where  �  and  �  are  the standard  deviations  of  the
process  and  measurement  noise  respectively, d� w and

d� z are  unit  variance  Brownian  processes.  These  two
noises  can be  clubbed  together  into  a  general  equation  as
follows:

dx�h � x�dt��� x� d � , t�t 0             (9)

where  � � x�  represents the  agglomerated  standard
deviation.

The evolution of its probability density function of x is given
by  the  Fokker-Planck-Kolmogorov  equation  (Jazwinsky
(1968)):

� p � x ,t �
� t

���	 p� x ,t �h � x��
� x

� 1
2
�2	 p� x , t ��� x�2�

� x2 . (10)

with  boundary  conditions   limx�� p�limx��� p�0

limx��
� p
� x

�limx���
� p
� x

�0 , 

��

�

p � x�dx�1 .

At steady state, this equation reads
d p h
d x

�1
2

d 2�2 p
d x2   .                    (11)

By integrating both sides of the equation:

2 ph� d �2 p
d x

�c .                      (12)

Using the boundary conditions it  can be seen that,  c = 0.
Rearranging the terms gives,

d p
p
�� 2 h

�2 �
2
�

d �
d x �d x .             (13)

The solution of the above equation is given by:

p � x�� p0 e


��

�

�2 h
�2 �

2
�

d �
d x � d x ,                (14)

where p0 is the normalizing constant to render the integral of
the probability to 1. 

3.2 Switching controller case

The analytical solution developed in Section 3.1 is applied to
a case of the switching controller. Let psp be the value of the
probability density function at x = xsp. From (6) and (7) it can
be seen that to the left of the set point 

h � x��k1� x�xsp� , �2� x���2�k 1
2 � 2 ,    (15)

and to the right 

h � x��k2� x�xsp� , �2� x���2�k2
2 �2. .       (16)

Thus, it can be seen that  

p � x���psp e
�2 k 1�x�xsp �

2

�2�k1
2�2

for x�xsp

psp e
�2 k 2�x�x sp�

2

�2�k 2
2�2

for x�xsp

 .         (17)

This can be interpreted as Gaussian function where the two
branches  are  not  symmetric.  The  variance  on  one  side  is
different from that of the other. The variances on either side
can be computed as follows:

�1�
��2�k 1

2�2

2� k1
and � 2�

��2�k 1
2�2

2� k2

.        (18)

Also, the normalisation constant can be computed
analytically as follows:

psp�
2

�2��� 1��2�
    .                (19)

From the expression of h(x) it can also be shown that

p �h ���ph0 e
�2 h2

k1���k1��
2

for h�0

ph0e
�2 h2

k2���k2��
2

for h�0

         (20)

with

�1h�
��2�k1

2�2� k1

2
, � 2h�

��2�k 2
2�2�k 2

2
    (21)

ph0�
2

�2��� 1h�� 2h�
 .                    (22) 

4.NON-OPTIMALITY OF THE SYMMETRIC SOLUTION 

In  this  section,  it  is  be  shown  that  a  symmetric  PDF  is
sufficient even for an asymmetric objective function, when
there is no input weighting. Also, when the objective function
is symmetric,  with or without input weighting a symmetric
PDF is indeed optimal. However, when there is asymmetry
and  input  weighting,  then  it  is  shown  that  a  symmetric
solution is not optimal.

Consider  equation  (4).  Since,  u is  a  function  of  x,  the
objective  function  �� x , u �  is  just  a  function  of  x.  In
particular,  consider  a  special  case  where  the  squared
deviation of  the control  action  h(x) is  included in the cost
function.  The  remaining  part  of  the  objective  function  is
termed l(x). So,

     �� x , u ��l �x ���h2� x�                  (23)



Due to the imposed control structure, the degree of freedom
for  the  optimization  problem  is  no  longer  u,  but  the
parameters xsp, k1 and k2. So, the optimization problem reads, 

min
xsp , k 1,k 2

J�

��

��

l � x� p � x�dx�

��

��

�h2 p �h�dh .          (24)

The  proof  of  non-optimality  proceeds  by  deriving  the
necessary conditions of optimality of the above optimization
problem  by  considering  that  k1 and  k2 are  varied
independently. Then an additional condition of symmetry, i.e.
k1 = k2 is imposed. This gives four conditions (3 necessary
conditions  and  one  condition  of  symmetry)  for  three
variables.  If  these  four  conditions  are  consistent  then  the
symmetric solution is indeed optimal. On the other hand, if it
leads to an inconsistency or contradiction then it shows that
the symmetric solution is not optimal in the case considered.

Theorem 1:  The symmetric switching controller is  locally
optimal  if  and  only  if  (i)  l(x)  is  symmetric  around  the
optimum, i.e., the third derivative evaluated at the optimum is
zero, or (ii) the input weighting � is zero.

Proof:  Without loss of generality let  x = 0, l(x) = 0, J = 0 be
the optimum in the absence of noise. Consider the third order
Taylor series expansion of  l(x) around  x = 0. The first two
terms are zero since l(0) = 0 and the first derivative is zero
due to optimality. Thus the expansion is given by

l � x��� x2� x3 ,                              (25)

where  �  and  �  are the second and third derivatives,
respectively, at the origin. The expected cost (5) is then given
by,

J��

��

��

x2 p �x �dx� 

��

��

x3 p � x�dx��

��

��

h2 p �h�dh .(26)

Analytical expressions for all the three terms can be obtained.

 

��

��

x2 p dx�xsp
2 �

4 xsp��1�� 2�
�2�

��� 1
2�� 1� 2��2

2� (27)



��

��

x3 p dx�xsp
3 �

6 xsp
2

�2�
�� 2�� 1��3 xsp��2

2�� 1� 2��1
2�

�4
�2�

�� 2��1���1
2�� 2

2�

(28)



��

��

h2 p �h�dh��� h1
2 �� h1� h2�� h2

2 �� 2
� ��h1�� h2�

2

(29)

The  optimality  condition  requires  that  the  derivatives  of  J
with  respect  to  xsp,  k1 and  k2 be  zero,  the  expressions  for
which  can  be  readily  obtained.  To  analyse  the  symmetric
solution,  consider  k1 =  k2 =  k.  Substituting  this  in  the
derivatives leads to 

� J
� xsp

�2� xsp�3 xsp
2 � 3 

4 k
��2�k 2�2��0 ,   (30)

� J
� k 1

� � J
� k2

���2�k2�2�

�2� k3 �2� xsp�3 xsp
2 � 

k
��2�k2�2��

= 0 ,
(31)

and
� J
� k 1

� � J
� k2

��2�k 2�2

4 k2 ���3 xsp��
�
4
��2�3k 2�2��0 .

(32)
It can be seen that there are 3 equations for 2 unknowns,  k
and xsp. Replacing the terms with xsp in (31) using (30), it can
be seen that

� J
� k 1

� � J
� k2

���2�k2�2�

�2� k3
 

4 k
��2�k2�2��0 .      (33)

Only if part:  !0,�!0"non�optimality

When  !0 ,  the only solutions of (33) are k�#�$�
But, plugging these values of  k in the sum of derivatives lead
to  ��0 . So, if  �!0 the symmetric controller is not
optimal .

If part: ��0"optimality      

When ��0  note that k�#�$�  satisfies all the three
necessary conditions of optimality .

If part:  �0"optimality    

Since  �0 ,  (31)  gives  xsp =  0.  (33) is  not  useful  in
determining  k.  However from (32),  it  can be seen that the
following 4th order equation can be used to compute k.  

3��k 4�������� k2����0                 (34)
�

5. EXAMPLE

In this section, an asymmetric example with input weighting
is presented.  The optimal  switching controller  is  computed
using  the  output  PDF  obtained  through  the  analytical
solution. It will be shown that such a controller indeed leads
to an asymmetric PDF.

A  cost  function  analogous  to  the  one  in  Figure  1  is
considered here. 

�� x ��26�10 x�D �c � x���10 h2� x�
D �c � x���0 if x�11

D �c� x���105 if x�11
          (35)

The system dynamics is given by 

�x��0.4x�0.2u�w    ,                 (38)

where the process noise  w has a mean of  0 and a standard
deviation ��1 .  A  measurement  noise  of   standard
deviation ��0.01 was considered. Though it is unrealistic
to consider a ratio of 100 between the standard deviations of



process and measurement noises, it is required in this case to
prove the principle. The asymmetric PDF gives better results
only in a narrow range of parameter values and so is such a
choice made.

5.1 Controller design

The controller (6) is used here. It has 3 parameters; gains k1,
k2 and the set point  xsp. These parameters are found via non
linear programming where the equation (24) is  minimized.
Equation  (24)  for  the  given  example  can  be  written  as
follows:

J�26�10

��

��

x p � x �dx�105

11

��

p � x�dx�10

��

��

v2 p �v�dv

(39)

Also, in this case an analytical  expression for all the three
terms can be derived using p(x) given in (20). The analytical
expression of the last term is already provided in (31).  The
expressions for the other terms are given as follows: 



c

��

p� x�dx�
� 2

� 1��2 �1�erf �
xsp�c
�2�2

��         (48)



��

��

x p � x�dx�xsp�� 2
� �� 2��1 � .            (49)

5.2  Results

The  optimal  parameters  for  a  switching  controller  and  a
constant  gain  control  have  been  found  numerically.  For
calculating  the  optimal  single-gain  controller,  the  same
calculations are used with k1  = k2. The optimal gains and the
value of the cost function are presented in Table 1. It can be
seen that with the switching controller, the cost is reduced by
around 6.7%. It is because by having 2 gains, the controller
can  be  aggressive  on  one  side,  the  side  of  the  constraint,
while having a low gain and thereby low input variance on
the other side.

Table 1: Results of the example
Controller type Switching

controller 
Single gain
controller

Set point 10.6 10.53

k1 0.41 2.94

k2 4.99 2.94

Cost 5.39 5.78

Figure 2 shows the output PDF for the both controllers. It can
be  seen  that  the  single  proportional  controller  leads  to  a
symmetric Gaussian PDF, while with the switching controller
results in an asymmetric PDF. It is equally interesting to see
in Figure 3 that the asymmetry in the input PDF is reversed. 
It can be explained by the fact that closer to the constraint,
the input works hard and has a larger variance, while far from

the constraint, the input does not work in order to reduce the
cost by decreasing its variance.

Several  tests  were  performed  with  varying  penalties,  with
varying input weights, and varying measurement noise levels.
Figure 4 shows the effect changing the penalty. It can be seen
that  increasing the weighting for  the  penalty  increases  the
difference between the cost functions of the symmetric and
asymmetric PDF. This tendency can be attributed to the fact
that  increasing the penalty  increases  the  asymmetry  of  the
cost function. Note that the x axis is logarithmic, i.e, a small
increase  in  the  difference  calls  for  a  order  of  magnitude
change in the weighting.  

Figure 5 shows the effect of changing the input weight. An
interesting effect can be observed here. The difference first
increases,  while  it  decreases  after  reaching  a  maximum.
Intuitively,  when  the  input  weight  is  zero,  the  symmetric
solution is indeed optimal and there can be no gain by using
an asymmetric controller. On the other hand, since the input
weighting  is  symmetric,  for  large  input  weightings  the
asymmetry of the cost function becomes negligible and so a
symmetric controller is again optimal. 

Figure 2: Output PDF with a switching controller (solid
line) and with a non-switching controller  (dotted line)
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Figure 3: Manipulated variable PDF with a switching
controller (solid line) and with a non-switching controller
(dotted line)
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Figure 6 shows the influence of measurement noise on the
difference.  The larger  the measurement  noise,  lesser  is  the
gain that can be obtained by using an asymmetric PDF. This
is due to the fact that with increasing measurement noise the
minimum variance controller as such has a fairly low gain
and not much manoeuvrability is left. 

6. CONCLUSION

This paper showed the non-optimality of a symmetric PDF
when the cost function was asymmetric and the manipulated
variable  was  constrained.  The  result  is  derived  using  the
analytical solution of the FPK equation for a scalar system
and a switching controller. Finally, a numerical example was
shown where the asymmetric PDF gave a better result than
the symmetric one.

The importance of this result lies in the fact that it clearly
demarks  the  cases  where  an  asymmetric  PDF is  required.
Also, a simple switching controller structure for PDF shaping
is proposed that can be easily implemented in an industrial
context. Finally, the analytical solution of the FPK equation
is  not  only  limited  to  PDF shaping,  but  could  have  more
impact in the general context of stochastic optimization.
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Figure 4: Effect of the weighting of the penalty on the
cost reduction due to switching controller 
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Figure 5  Effect of the input weighting on the cost
reduction due to switching controller
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Figure 6:  Effect of the measurement noise on the cost
reduction due to switching controller
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