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Abstract: This paper investigates the formulation of nonlinear model-predictive control
problems with economic objectives on an infinite horizon.
The proposed formulation guarantees nominal stability for closed-loop operation. Furthermore,
a novel solution method of the infinite horizon method through a transformation of the
independent time variable is employed. The closed-loop optimization with infinite horizon
is compared to a finite-horizon formulation. A small case study is presented for illustration
purposes.
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1. INTRODUCTION

The interest in economic Dynamic Real-Time Opti-
mization (DRTO) or Nonlinear-Model Predictive Control
(NMPC) with economic objectives has increased (Backx
et al. (2000), Helbig et al. (2000), Engell (2007), Rawlings
and Amrit (2008), Zavala (2008)), as the development
of efficient methods for solving these types of optimiza-
tion problems has significantly progressed in recent years.
Compared to the traditional formulation of NMPC prob-
lems with quadratic cost criteria minimizing the deviation
from a fixed steady-state set-point, the economic dynamic
optimization problem exploits all the dynamic degrees of
freedom available to maximize the profit of the plant on a
given time horizon. Furthermore, the profit is maximized
at a sampling rate of high frequency, whereas the tradi-
tional steady-state optimization is performed at a slow
rate and only when the process is in a steady-state. Thus,
disturbances with a favorable impact on the profit can also
be exploited efficiently instead of compensating them by
minimizing a steady-state offset.
However, theoretical studies of DRTO and NMPC prob-
lems with economic objectives are still lacking. Huesman
et al. (2008) have pointed out that certain formulations
with linear economic objective functions lead to multiple
solutions. They concluded that some degrees of freedom
are left for optimization. These degrees of freedom can be
exploited by introducing a second optimization problem to
improve the operability.
Rawlings and Amrit (2008) have shown that in order
to optimize process economics it is sometimes advanta-

geous not to reach the steady-state quickly. Secondly,
they pointed out that the formulation with an economic
objective results in characteristic trajectories behaving like
a turnpike. The trajectory is attracted to a constant path
and finally moves away from the constant path at the end
of the horizon. The turnpike is a characteristic property
of the economic optimization problem with finite-horizon,
which has been introduced and studied in the economics
literature before (Carlson et al., 1991).
In the economics literature an infinite horizon formula-
tion is often employed. Infinite horizons have also been
considered in the MPC literature as stabilizing although
impractical for online application. A review of methods
providing stability but circumventing infinite horizons by
adding a terminal constraint, a terminal cost function,
or by employing a terminal constraint set with a local
stabilizing controller have been reviewed by Mayne et al.
(2000).

An infinite-horizon formulation for (nonlinear) economic
dynamic optimization on a receding horizon is explored
in this paper. There are several advantages related to an
infinite horizon formulation:

(1) The somewhat arbitrary choice of the final time of
the optimization horizon is avoided. A natural for-
mulation of the optimization problem is achieved for
continuous processes if the final time is not specified.

(2) The infinite-time horizon formulation leads to closed-
loop operation with guaranteed stability. This prop-
erty was also exploited in the literature of linear
MPC, where the infinite-horizon formulation can



be transformed into a finite horizon formulation by
adding a terminal term to the cost functional (Muske
and Rawlings, 1993).

In the following, the formulation of the economic opti-
mization problem will be investigated and a comparison
between finite and infinite horizon problems will be carried
out. A new approach is presented for solving the infinite-
horizon problem numerically. We use a transformation of
the infinite-time onto a finite-time horizon and combine
this transformation with an adaptive discretization. As
already noted in the literature investigating stability in
MPC, very long horizons provide stable control but lead
to high computational costs. Many solution methods em-
ployed in MPC use a discretization of the control variables
with a uniform spacing of grid points. An alternative adap-
tive discretization (Schlegel et al., 2005) introduces grid
points mainly within the transient parts of the profile and
reduces the computational load. Note that this method
can also be applied to solve the infinite-horizon problem
in the MPC regulator case to track a given set-point.

2. ECONOMIC DRTO PROBLEM

2.1 Finite-Horizon Formulation

The moving horizon formulation of the DRTO problem
is similar to the formulation used in nonlinear model-
predictive control, although an economic objective is cho-
sen to provide an economically optimal operation at all
times (Helbig et al., 2000). The moving horizon problem
is defined as follows:

min
uj(t)

Φ(x, u, t0, tf ) (1)

s.t. ẋ(t) = f(x(t),uj(t)) , (2)
y(t) = g(x(t),uj(t)) , (3)
x(tj) = x̂j , (4)
0 ≥ h(x(t),y(t),uj(t)) , (5)

0 ≥ e(x(tjf )) , (6)

t ∈ [tj , tjf ] , (7)

tj := tj−1 + Δt , (8)
j = 0, 1, ...J . (9)

x(t) ∈ R
nx are state variables with initial conditions x̂j ;

y(t) ∈ R
ny are algebraic output variables. The dynamic

process model (2) is given by f(·). The time-dependent
control variables u(t) ∈ R

nu are degrees of freedom for
the optimization problem. The optimization problem is
solved on the time horizon [tj , tjf ] at each sampling instant
tj ; the control is implemented on the current sampling
interval (assuming negligible computational time), and
the optimization horizon is then shifted by the sampling
interval Δt. Equations (5) and (6) describe the path
constraints h(·) on the input and state variables and the
endpoint constraints e(·) on the state variables. Process
operation is determined by economic decision criteria,
which enter into the definition of the objective function
Φ(·). Exemplarily the profit function can be defined as
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Fig. 1. Finite horizon

Φ = −
∫ T

0

(cprodṅprod − creacṅreac − q̇)dt, (10)

where cprod and creac are the costs of the products and
reactants, and ṅprod and ṅreac are the flowrates of the
products and reactants. The term q̇ includes utility costs,
depreciation, and other expenses.

If we choose a finite horizon in a dynamic optimization
problem with economic objective, we often observe a so-
called turnpike effect when looking at the solution profile
(Rawlings and Amrit (2008), Carlson et al. (1991)). The
turnpike effect means that the trajectory spends most time
at a balanced equilibrium path, which is independent of
the initial condition and the final time. Under certain
conditions, this turnpike reduces to a singleton. In that
case, the characteristic behavior is that the trajectory is
attracted by a stationary path, at a certain time tm and
stays on this constant path, until it reaches a point tn close
to the end of the horizon and moves away from the path
at the end of the horizon. This gives rise to trajectories
as shown in Figure 1. The trajectories represent the inlet
flowrate of the reactant of the CSTR presented in Section
5; they were computed for different final times. In these
figures the solution path strongly depends on the choice of
the final time. In the first figure, the final time is not long
enough to let the process reach the turnpike. However, if a
long horizon is chosen, the process gets on a constant path
k̄ (Carlson et al., 1991). The optimal steady-state path
represents an attractor for the finite horizon path.

In practice, often a long horizon length is chosen to
achieve closed-loop stability (Mayne et al., 2000). For
stable plants, the final time T is often chosen to be large
compared to the settling time of the plant. The somewhat
arbitrary choice of the final time suggests that more



research is required to reconsider the current formulations
and to look for adequate formulations of economic dynamic
optimization problems providing stability in closed loop.

2.2 Infinite Horizon Formulation

For a given optimal trajectory, according to Bellmann’s
optimality principle, the trajectory starting from any point
on the optimal trajectory is optimal for the corresponding
problem initiated at that point on the trajectory. This
implies that the formulation of the optimization problem
on an infinite horizon is providing stability in closed loop.

If the profit function is optimized on a long or an infinite
horizon, the time value of money should be accounted for.
This is accomplished through the parameter ρ discounting
the future profit to the present value. If we deal with
discrete payment periods, discounting the future amounts
to today’s value can be included in the calculation of the
net present value. The objective function maximizing the
net present value of cash flows Ck in N discrete time
periods and with discounting rate ρ is formulated as

Φ =
N∑

k=0

Ck

1 + ρk
, (11)

where k is the index of the time period. In this work we
investigate an objective function with continuous discount-
ing on an infinite horizon:

Φ = −
∫ ∞

0

e−ρt(cprodṅprod − creacṅreac − q̇)dt. (12)

The exponential formulation is usually employed for opti-
mal control problems in continuous time and is equivalent
to the discrete-time formulation in equation (11). Both
formulations use, however, the same discount factor ρ,
which can be chosen as the annual market interest rate.

Note that researchers in macroeconomics have included
infinite horizons in their problem formulations very early
to model e.g. economic growth (Barro and Sala-i-Martin,
1995). This is due to the fact that there is no natural finite
time in these types of problems and the consequences of
investment are very long-lived. Since this theory is not
well-known in the systems and control community, an
example of an economic growth model by Cass (1966) is
shown here for illustration of the economic growth problem
formulation:

y(t) = f(k(t)) (13)
c(t) = y(t) − z(t) (14)

k̇(t) = z(t) − μk(t) (15)
k(0) = k0 (16)

k(t) is the stock of capital accumulated at time t. The
production function f(·) associates an output y with the
capital stock k. The output y(t) can be either consumed
at a rate c(t) or invested at a rate z(t). The capital stock
depreciates at a constant rate μ. Cass (1966) considered
the welfare functional

W =
∫ T

0

e−ρtU(c(t))dt, (17)

where U(c) is the concave utility function depending on
the level of consumption c(t). The maximization of W is
the standard optimal control problem and the final time T

is often assumed to be infinite in economic growth theory.
If the discount factor ρ is strictly positive, the objective
function on an infinite horizon is bounded. However, if the
discount factor is zero, the objective function becomes un-
bounded. Methods for reducing the unbounded objective
on an infinite horizon to finite rewards have been presented
by Carlson et al. (1991). We consider in this paper the case
where the discount factor is positive, as it seems to be a
reasonable assumption to include the time value of money
on a long or infinite-time horizon. The discount factor is
chosen in the range of the interest rate of the market.
Very few numerical solution methods exist in the liter-
ature of mathematical economics to solve the infinite-
time horizon problem. Often, the indirect methods of op-
timal control are used to derive the First-Order Necessary
Conditions of Optimality and a two-point boundary-value
problem has to be solved. In the following, we will apply a
numerical solution method with adaptive grid refinement
to solve nonlinear infinite-horizon problems.

3. INFINITE HORIZON SOLUTION APPROACH

Solving the infinite-horizon problem is not straightforward
and several attempts approximating the infinite horizon
with finite horizons or reformulating the infinite-time
problem exist in the literature.

3.1 Time Transformation

A common approach replaces the infinite-time horizon by a
finite-time horizon, thereby introducing a truncation error.
A second possibility is to use a variable transformation to
transform the infinite-horizon into a finite-horizon prob-
lem. We choose the second approach in this work, since it
does not introduce truncation errors and allows to obtain
a solution of higher accuracy of the optimization solution
on the infinite horizon.
The infinite horizon with t ∈ [0,∞) can be transformed
into a finite horizon with τ ∈ [0, 1] using the variable
transformation

τ = t/(1 + t) (18)
of the independent variable t. A similar variable trans-
formation was presented by Kunkel and Hagen (2000)
to obtain solutions of the infinite-horizon optimal control
problem. The variable transformation of eq. (2) yields the
transformed system:

dx

dτ
=

f(x(τ), u(τ))
(1 − τ)2

. (19)

We can see that a singularity is introduced at τ = 1, which
corresponds to t = ∞.
In order to study the singularity at τ = 1, we will restrict
the analysis to the scalar system

dx

dτ
=

f(x(τ))
(1 − τ)2

. (20)

The eigenvalue problem corresponding to eq. (19) is
dx

dτ
=

λx

(1 − τ)2
. (21)

The general solution of this differential equation is

x(τ) = ce
λ

1−τ . (22)



If we assume that the system is within the region of
attraction of a stable steady-state, we obtain the limit

lim
τ→1

ce
λ

1−τ = 0, (23)

if λ < 0 and the system will reach steady-state as τ → 1.

However, if λ > 0, the system is unstable, and

lim
τ→1

ce
λ

1−τ = ∞. (24)

In that case we have to handle the singularity at τ = 1
by imposing a boundary condition at final time. The
steady-state solution can be imposed as terminal boundary
condition. If we are dealing with an unstable system,
a numerical solution approach different from the single-
shooting method presented in the following section must
be employed. The boundary value problem problem could
be solved using multiple-shooting or orthogonal colloca-
tion methods. In order to generalize the analysis of the
singularity above, an extension to the multivariable case
should be performed including an analysis of the stable
and unstable modes of the system.

3.2 Adaptive Discretization

The continuous control variables in optimization problem
(1) are discretized after the time transformation with eq.
(18) using piecewise-constant or piece-wise linear approx-
imations. The discretization and the formulation of the
NLP for the piecewise constant approximation reads as

ui(τk) = cui,k
, k = 1, ..., N, i = 1, ..., nu, (25)

where N is the number of discretization intervals and nu

the number of control variables. Choosing the discretized
controls zi := [cui,k

], as the nz optimization variables, the
dynamic optimization problem can be transcribed into the
NLP

min
z

f(z) := Φ(z) (26)

s.t. g(z) ≥ 0. (27)
The nonlinear program can be solved by employing a
standard SQP algorithm. Since the optimization algorithm
requires repetitive function evaluations and gradients, the
objective function Φ, constraints g(·) and their gradients
are evaluated by a simultaneous integration of the process
model and the sensitivity equation system.
The optimization problem is solved using the dynamic op-
timization software DyOS (2002), which adopts an adap-
tive control vector parameterization (Schlegel et al., 2005).
The adaptation is done using a refinement method based
on a wavelet analysis of the control profile. If the hori-
zon of the optimization problem is infinite or has a long
finite time, an adaptive discretization is essential to deal
with the computational load associated with these long
or infinite horizons. The adaptive discretization allows to
introduce the grid points selectively in transient regions
of the control profile, and therefore avoids overloading the
optimization problem with many optimization parameters.
Furthermore, a highly accurate solution profile can be
obtained.

3.3 Closed-loop Implementation

The solution approach outlined in the previous section
is implemented in an algorithm for closed-loop dynamic

optimization. The optimization is performed on the trans-
formed timehorizon [0, 1], and the results are converted
back to the original timehorizon.

for j = 1, N (number of sample intervals) do

(1) Solve the optimization problem (26), where the con-
trol variables uj(τ) have been discretized on [0, 1], to
obtain the solution zj .

(2) Transform the control variables uj(τ), τ ∈ [0, 1]
back to the original representation uj(t), t ∈ [0,∞).

(3) Implement the control variables uj(t) for one sam-
pling interval [tj , tj+1]. Get measurements and com-
pute state estimates.

(4) Horizon shift: Reduce the time horizon by one
sampling interval and use the shifted solution as
initial guess for the next optimization problem.

(5) Transform the shifted variables uj(t) to the finite
horizon representation uj(τ), τ ∈ [0, 1] using eq. (18).

end for

4. INFINITE-HORIZON NMPC

Apart from the economic dynamic optimization problem,
the presented solution method for infinite-horizon formu-
lations can also be used for the NMPC regulator problem,
if we deal with a pure tracking problem. In that case the
economic objective function is replaced by the quadratic
objective function

Φ =
∫ ∞

0

(ΔuT QΔu + (yset − y)T W (yset − y))dt, (28)

minimizing the deviation from fixed set-points yset and
the control moves Δu. As a finite horizon is traditionally
used in NMPC, some methods guarantee closed-loop sta-
bility by introducing e.g. a terminal constraint. However,
introducing a terminal constraint can lead to feasibil-
ity problems. By employing the infinite-horizon solution
method, the disadvantages of the finite-horizon methods
to guarantee closed-loop stability can be avoided.

5. CASE STUDY

The approach is applied to the benchmark case of the
Williams-Otto continuous stirred tank reactor, as intro-
duced by Forbes (1994). The reactions taking place in the
reactor are

A + B
k1−→ C, C + B

k2−→ P + E, P + C
k3−→ G.

Reactant A is already present in the reactor, whereas
reactant B is fed continuously to the reactor. During the
exothermic reactions the desired products P and E as well
as the side-product G are formed. At the end of the batch,
the conversion to the main products P and E should be
maximized. During the batch, constraints on the inlet flow
rate of reactant B (FBin

) and the reactor temperature
(Tr) must be fulfilled. The manipulated control variables
of this process are FBin

and Tr. The CSTR is assumed
to be well-mixed and the dynamics of the cooling system
are neglected. The reactor system is open-loop stable and
therefore the singularity issues at τ = 1 do not arise in
this case study.
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Fig. 2. Infinite horizon results

5.1 Economic DRTO Problem

The economic objective is to maximize the profit, which
consists of the revenue obtained from the products minus
the costs of the reactants over the infinite time horizon.
Furthermore, an annual discount rate of 5% is chosen to
account for the time value of money. The optimization
problem is formulated as follows:

max
FBin

(t),Tr(t)
Φ =

∫ ∞

0

e−ρt(cpṅp + ceṅe − caṅa − cbṅb)dt

(29)
s.t. process model, and

0
kg
sec

≤ FBin
(t) ≤ 5.784

kg
sec

, (30)

0 ℃ ≤ Tr(t) ≤ 150 ℃. (31)

5.2 Closed-Loop Results

The economic performance of the operation of the CSTR is
optimized for both infinite and finite horizon formulations
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Fig. 3. Finite horizon results

on a receding horizon. The results for the infinite-horizon
case are shown in Figure 2. The open-loop optimization
problem is solved using the time transformation for τ
∈ [0, 1] and the results are simulated on a long horizon
in the original time variable. The closed-loop results are
obtained using the algorithm with adaptive grid refine-
ment as sketched in Section 3.3. Figure 2 shows that
the nominal trajectories in open-loop and closed-loop are
almost identical except minor deviations due to the online
adaptation scheme. This result confirms that the solution
of the optimal problem on an infinite horizon in closed-loop
is providing a nominally stable control with an economic
objective. Furthermore, the computational effort has been
low as only few degrees of freedom are required in the
adaptive grid refinement approach. It is interesting to
observe that the control variables reach their steady-state
values very fast, but the state variables require more time
to reach the steady-state values.
The results for the finite-horizon formulation with a final
time of 4000 s are shown in Figure 3. In this case, the
open-loop trajectory shows the turnpike behavior. Since



only the first control interval is implemented in closed-
loop, the end of the trajectory in open-loop is actually
never implemented. This leads to a discrepancy between
the open-loop and the closed-loop behavior, as Bellmann’s
optimality principle is not fulfilled. Nevertheless, the fig-
ures show that the system reaches the steady-state quite
fast.
Comparing the closed-loop results obtained with the
infinite- and the finite-time horizon formulation, the fig-
ures show that the transient part of the trajectories at the
beginning is quite different, but that the steady-states ob-
tained after a certain time are identical. The temperature
profile is different in the infinite-horizon (Figure 2.b) and
the finite-horizon cases (3.b), as the temperature increases
from 65 ◦C to 90 ◦C in (2.b) and the temperature decreases
from 102 ◦C to 91 ◦C in (3.b). It was observed that this
difference only occurs for relatively short horizons. If the
final time chosen for the finite-horizon case increases,
the trajectory of the finite-horizon case approximates the
infinite-horizon case more closely. As expected, the longer
the horizon becomes, the closer the solution of the finite-
horizon problem will be to the infinite-time solution. This
is due to the fact that the transient parts of the trajectories
have less impact on the profit function for increasing length
of the time horizon. As the same steady-state is reached
by both finite- and infinite-time horizon formulations, the
same profit is also obtained at steady-state.
These results show that also the finite-horizon formulation
with economic objective can provide closed-loop stability,
as the system gets on the turnpike (which corresponds to
a stationary path in this case) and stays there for most
of the time. Hence, by choosing a long time horizon it is
possible to achieve closed-loop nominal stability, because
the trajectory is attracted to the stationary path. However,
as shown in Figure (1.a), if the finite time horizon is not
long enough the resulting trajectories will not reach the
optimal stationary path.

6. CONCLUDING REMARKS

The closed-loop solution of nonlinear DRTO or NMPC
problems was studied. Nominal stability in closed-loop
economic optimization is achieved via an infinite-horizon
formulation. The comparison of the infinite- to the finite-
horizon formulation shows that the formulation of DRTO
problems on finite horizons can also provide closed-loop
stability, if the optimization time horizon is chosen long
enough such that the trajectory is attracted to a constant
path.
Secondly, a new numerical approach was introduced for
solving infinite-horizon problems addressed in NMPC and
DRTO. The method achieves high computational accu-
racy because the infinite horizon is transformed into a
finite horizon through a simple variable transformation.
The advantage is that the truncation error occurring by
choosing an arbitrary final time is avoided. Furthermore,
the computational load is still low because of adaptive grid
refinement resulting in low number of degrees of freedom
for optimization.
In the future, it is of interest to further investigate
the properties of the finite-horizon economic optimization
problem required to achieve closed-loop stability. On the
other hand, the infinite-horizon formulation with adap-
tive grid refinement is a promising approach to guarantee

closed-loop stability. The solution method for infinite-
horizon problems will be further developed and extended
to open-loop unstable systems.
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