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Abstract: In this paper we consider a hierarchical approach to solve an optimal control problem
for a hybrid chromatographic batch process. The plant consists of several chromatographic
columns which can be connected in an arbitrary way. The plant configuration can therefore be
considered as a discrete-valued control input. The dynamics of each chromatographic column
is described by two coupled nonlinear partial differential equations. Hence, we have a hybrid
optimisation problem with highly nonlinear dynamics.
To handle complexity, we propose a hierarchical two-level optimisation scheme: first, we solve
a number of continuous optimisation problems that correspond to fixed configurations. In a
subsequent step, on the basis of these solutions, we solve a discrete optimisation problem to
generate the optimal configuration or configuration signal.
Because of the imposed structure, we can of course not expect the overall solution to be optimal.
However, we demonstrate that, by using the plant configuration as an an additional control
input, performance may be considerably improved when compared to the constant configuration
scenario.
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1. INTRODUCTION

Column chromatography using solid and liquid phases is a
key technique for the isolation and purification of valuable
products, which has found a large number of successful
applications in petrochemical, food and pharmaceutical
industries during the last decades. Chromatographic sepa-
ration processes can be operated in continuous or batch
mode. Continuous separation is usually realised by the
well-known simulated moving bed (SMB) process and its
various modifications. This scheme has been proven to be
very efficient for large-scale separation tasks. A drawback
is, however, that the start-up procedure may take consid-
erable time. Hence, this technology may not be suitable for
the separation for relatively small amounts of mixtures. In
this case, batch chromatography is an attractive alterna-
tive. Currently, a considerable number of chromatographic
separations are operated in batch mode. Therefore the
efficient operation and control of these processes is an
important topic in order to exploit the economic potential
and reduce the production cost.

There are a number of papers devoted to the optimisation
and parameter identification of batch separation processes,
see, e.g., (Dünnebier et al., 2001; Gao and Engell, 2005;
Nagrath et al., 2003; Pia̧tkowski, 2006) for details and
references. These papers study the problem of optimisation
of the process w.r.t. different performance criteria (e.g.,
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productivity, or more specific criteria, like in (Felinger and
Guiochon, 1996, 1998)). These criteria describe the overall
(integral) performance of the system, but they are not very
suitable if there are additional operational restrictions such
as fixed batch volume, separation time and so on. Such re-
strictions naturally appear if the chromatographic system
is a part of a complex chemical plant whose operation must
follow a certain schedule. Moreover, in some applications
the configuration of the plant is an additional degree of
freedom, as the plant consists of a number of chromato-
graphic columns that can be arranged in different ways.
This degree of freedom has not been widely investigated
up to now. An exception is (Ziomek et al., 2006), where
the plant configuration is a design parameter, but constant
over time. Also, additional operational restrictions (e.g.,
fixed batch size etc.) are not considered there.

In this contribution, we aim to develop a general frame-
work to optimal (open loop) control of a chromatographic
batch process. It includes several practically important
problem statements and covers the scenario where the
plant configuration may change during the operation of
the plant. The latter introduces an additional, discrete-
valued, degree of freedom, which makes the overall control
problem an intrinsicly hybrid one. To deal with the inher-
ent complexity of this hybrid problem, we suggest a hier-
archical approach, where a lower control level determines
the continuous inputs and a higher control level solves the
remaining discrete optimisation problem.



This paper is organised as follows: In Section 2, we define
the plant and a suitable PDE model. In Section 3, we
motivate different optimisation problems for this plant.
Section 4 suggests a hierarchical approach to solve these
problems, and Section 5 presents a numerical example.

2. PLANT DESCRIPTION

2.1 Mathematical model

The system consists of N identical chromatographic
columns, which can be arranged in N� ≤ N parallel lines.
Via valves connected to the columns, their configuration
can be changed within a very short time. The column
configuration can therefore be interpreted as a control
input. The number of columns in the i-th line is denoted

by N i
col(t), with the obvious restriction

∑N�(t)
i=1 N i

col(t) =
N, ∀t.

Figure 1 shows a configuration with (at time t) N = 5,
N�(t) = 2, N1

col(t) = 3, and N2
col(t) = 2.
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Fig. 1. Example configuration.

The dynamics of a single column is described by two non-
linearly coupled second order PDEs (so called equilibrium-
dispersive model, (Guiochon et al., 2006)):

∂ck(t, x)

∂t
+ F

∂qk(t, x)

∂t
+ u

∂ck(t, x)

∂x
= Dap

∂2ck(t, x)

∂x2
,

k ∈ {A, B},

where ck and qk are the liquid phase and solid phase
concentrations, t, x are the temporal and spatial coordi-
nates, u is the velocity of the liquid phase in the column,
F = (1 − εt)/εt is the phase ratio, and εt is the column
total void fraction. Dap is the apparent axial dispersion
coefficient defined as a function of u: Dap = uf(u)/2,
where f(u) = (αD + βDu) represents the linearised van
Deemter equation, αD and βD are constant coefficients. In
the following, we shall often use the volumetric flowrate
Q = uπD2εt/4 instead of u, where D is the diameter of
the column.

The concentrations of the components in the solid and
liquid phases are related via the isotherm equation. To
describe adsorption, the competitive Langmuir model is
employed:

qk(cA, cB) =
Hkck

1 + KAcA + KBcB

, k ∈ {A, B},

where Hk and Kk are the Henry and the equilibrium
constants. Component A is assumed to be less retained
than component B, therefore, HA < HB.

The initial and boundary conditions are defined in a
standard way: the initial concentration of the components
in the columns is equal to zero. We employ the Danckwerts
boundary conditions for the inlet of the first and the outlet
of the last column in each line:[

uck(t, x) − Dap

∂ck(t, x)

∂x

]
x=0

= uck,in(t)

∂ck(t, x)

∂x

∣∣∣∣
x=L

= 0,

where k ∈ {A, B}, L is the column length. The “inter-
column” boundary conditions reflect the continuity of the
concentrations profiles.

The functioning of a single chromatographic column is
shown schematically in Fig.2. The solution containing a
binary mixture is injected at the inlet of the column during
the time interval tinj . Injections are repeated cyclically,
with the interval between two subsequent injections tcyc

(Fig.2a). The mixture is transported through the column
with velocity u. During transportation, separation occurs
because one of the components (in our example component
A) is less retained than the other one. Fig.2b shows a
snapshot of the concentration profiles within the column
at two time instants: at an “early” time instant, the
separation effect is weak, and the concentration profiles
for the two components are very close (dashed lines).
At a later time instant, the profiles have moved further
apart. Finally, component A is collected from the outlet
during the fractionation interval tfr. Fig.2c shows the
concentration signals cA,out(t) and cB,out(t) at the outlet
of the column. t1 denotes the time instant when the
concentration of the less retained component A exceeds
a given threshold cA,thr and t4 denotes the time when the
concentration cB becomes less than another threshold.

The following entities are used to characterise the sepa-
ration process within each line and during each injection
cycle. For component A, they are:

• The mass output

mA,out =

∫ t2

t1

cA,out(t)Qdt.

• The purity

PurA =

∫ t2

t1
cA,out(t)dt∫ t2

t1
cA,out(t)dt +

∫ t2

t1
cB,out(t)dt

.

• The yield

YA =
mA,out

VinjcA,in

,

where Vinj = Q tinj is the injection volume.

• The productivity

PrA =
mA,out

tcyc

=
VinjcA,inYA

tcyc

. (1)

For component B, they are defined in an analogous way.

There are also a number of technological constraints im-
posed on the system. Some of them are listed below (for
details see Ziomek et al. (2006)). For example, for each line
of columns, we have:

• Two restrictions on the volumetric flowrate. The first
one is caused by the the maximal pressure drop
ΔPmax, namely Q ≤ Qmax(ΔPmax). The maximal
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Fig. 2. a)input signal; b) concentration profiles within the column; c) concentration signals at the outlet.

pressure drop is calculated from the Darcy equation.
Furthermore, there is a restriction on the maximal
capacity of the pump Qp

max. Hence, the resulting
constraint is written as follows (Guiochon et al.,
2006):

Q ≤ min(Qmax(ΔPmax), Qp
max).

• Minimal fractionation time caused by technical limi-
tations: tfr ≥ tfr,min.

2.2 Decision parameters

There are a number of parameters that can be chosen to
optimise the process. We can divide them into two groups:
discrete parameters, which can take values in a finite set,
and continuous parameters, which can take values in a
dense subset of R. The continuous parameters are defined
for each line i ∈ {1, N�}:

(1) The velocity of the liquid phase, ui,
(2) The injection time, tiinj ,

(3) The cycle period, ticyc,

(4) The fractionation time, tifr.

The first parameter enters the PDEs directly whereas the
second and the third one enter the boundary conditions
of the first column within a line. The last parameter is
usually determined to satisfy purity requirements.

The discrete parameters are the number of lines, N�, and
the number of columns in the i-th line, N i

col. These param-
eters describe the configuration of the plant. Furthermore,
for a given configuration, the number of injections N i

inj in
line i is also a degree of freedom. In the following, we shall
consider two cases:

(1) The configuration is constant during the entire oper-
ation of the process.

(2) The configuration changes over time.

In the second case, the sequence

{(N�(j), N
1
col(j), . . . , N

N�(j)
col (j), N1

inj(j), . . . , N
N�(j)
inj (j), τ(j))},

j = 0, Ns

can be interpreted as a control signal, with Ns the (a
priori fixed) number of configuration changes, τ(j) the
time interval during which the plant is operated in the
j-th configuration, N�(j) the number of lines for this
configuration, N i

col(j) the number of columns in the i-th

line in the j-th configuration, and N i
inj(j) the number of

injections for the i-th line in the j-th configuration.

In the remainder of this paper, we will use the following
assumptions:

A1 The continuous control parameters for all parallel
lines can be adjusted separately.

A2 The only component we are interested in is compo-
nent A (less retained). In the following, we shall omit
the subscript identifying the component if this is clear
from the context.

A3 The continuous control parameters do not change
within the interval of constant configuration τ(j).

A4 The cycle time is chosen to be equal to the duration
of the chromatogram: ticyc = ti4 − ti1, i ∈ {1, N�}.

A5 The inlet concentrations ck,in, k ∈ {A, B} are as-
sumed to be known and fixed ∀t.

3. OPTIMISATION PROBLEMS

We shall investigate the following overall optimisation
problems:

(1) Yield maximisation for fixed overall time span Tmax:

maximise YΣ

s.t. TΣ ≤ Tmax,
(2)

where overall yield YΣ is defined as

YΣ =

Ns∑
j=0

VΣ(j)YΣ(j)

Ns∑
j=0

VΣ(j)

. (3)

In (3), VΣ(j) and YΣ(j) are the processed volume and
the yield for the j-th configuration:

VΣ(j) =

N�(j)∑
i=1

N i
inj(j)V

i
inj(j),

YΣ(j) =

N�(j)∑
i=1

N i
inj(j)m

i
out(j)

cinVΣ(j)
.

Overall time TΣ is given by TΣ =
Ns∑
j=0

τ(j), where

τ(j) ≥ max
i=1,N�(j)

(N i
inj(j)t

i
cyc(j)).



(2) Produce required yield Ymin in minimal time:

minimise TΣ

s.t. YΣ ≥ Ymin.
(4)

In both cases, we have additional constraints for overall
batch size (volume): VΣ = Vbatch, and for overall purity:

PurΣ =

Ns∑
j=0

VΣ(j)YΣ(j)

Ns∑
j=0

VΣ(j)YΣ(j)
PurΣ(j)

≥ Purmin,

where

PurΣ(j) =

N�(j)∑
i=1

N i
inj(j)m

i
out(j)

N�(j)∑
i=1

N i
inj(j)

mi

out
(j)

Puri(j)

.

Note that mi
out and Puri are the mass output and the

purity in the i-th line for one cycle and depend on the
continuous decision parameters as well as on the number
of columns in line i, N i

col.

4. HIERARCHICAL APPROACH

The optimisation problems posed in Sec.3 are highly com-
plex tasks. In the variable configuration case, there is a
large number of discrete and continuous decision parame-
ters. In each iteration step during the optimisation proce-
dure, 2N� partial differential equations have to be solved.
Moreover, the values of the cost functions cannot be found
analytically and have to be calculated from the results of
numerical simulation. Since information about the deriva-
tives of the cost functions is not available, derivative-free
methods must be used, which substantially reduces the
efficiency of numerical optimisation. Therefore, standard
solvers normally fail to deliver a solution to these opti-
misation problems in reasonable time (if they provide a
solution at all).

Therefore, we propose to use a hierarchical optimisation
scheme to cope with complexity. In this scheme, opti-
misation of discrete and continuous decision variables is
decoupled.

4.1 Low-level (local) optimisation

On the low level, we define a set of continuous optimisation
problems for one line of columns over one cycle period.
The cost function for the low-level problem is productivity
(Eq.1). The set of low-level problems is parametrised by
the number of columns n (n=1, N) in a line and a (finite)
number of purity constraints Pur ≥ pm, m = 1, M :

maximise
(Q, tinj , tfr)

Pr

s.t. Ncol = n,

Pur ≥ pm.

(5)

For each low-level problem, the optimal solution (Q∗, V ∗

inj =

t∗injQ
∗, t∗fr) and the corresponding values (t∗cyc, m

∗

out) need
to be stored and will be used for the solution of a high-level

problem. This information can be conveniently collected in
the following table.

Pur

p1 . . . pM

1 · · ·

... · · ·

Ncol n · ·
Q∗, V ∗

inj , t∗fr ,

t∗cyc, m∗

out

.

.. · · ·

N · · ·

Table 1. Results of the local optimisation

4.2 High-level optimisation

a) Constant configuration case:

On the high level we maximise overall productivity

PrΣ =

N�∑
i=1

N i
injm

i
out

TΣ
(6)

s.t. PurΣ =

N�∑
i=1

N i
injm

i
out

N�∑
i=1

N i
inj

mi

out

Puri

≥ Purmin (7)

VΣ =

N�∑
i=1

N i
injV

i
inj = Vbatch (8)

and such that

TΣ = max
i=1,N�

(N i
injt

i
cyc), (9)

or such that

YΣ =

N�∑
i=1

N i
injm

i
out

cinVΣ

. (10)

Note that for fixed time TΣ and fixed batch volume VΣ, the
maximisation of overall productivity is equivalent to the
maximisation of overall yield. Conversely, for fixed batch
volume and fixed overall yield, the maximisation of pro-
ductivity is equivalent to the minimisation of the overall
processing time. Therefore, the optimisation problem (6-
8) and (9) or (10) can be seen as a general formulation
encompassing both our original optimisation problems de-
scribed in Sec. 3.

The decision variables for the high-level optimal problem
are N�, N i

inj , i = 1, N�, and pairs (ni, mi) representing

the entry in the ni-th row and mi-th column of Table

1. Naturally, the restriction
N�∑
i=1

ni = N has to hold. As

N i
inj , the number of injections in the i-th line, is always

bounded by the problem setup, the high-level problem has



a finite search space. Note that to evaluate the overall cost
function, only the values of the decision variables and the
corresponding entries in Tab. 1 are needed. In particular,
no numerical simulations are required. In effect, this means
that we assemble an overall solution from the solutions of
the low-level optimisation problem.

While we cannot expect the resulting solution to be
globally optimal, it seems reasonable that we shall obtain
a decent approximation.

b) Variable configuration case:

In the variable configuration case, the overall cost function
(6) changes to

PrΣ = cin

Ns∑
i=0

VΣ(j)YΣ(j)

Ns∑
i=0

τ(j)

(11)

with the obvious corresponding changes in (7)-(10). The
only difference in terms of the optimisation procedure is
an increase of the cardinality of the search space.

From a practical point of view, the question whether
a significant improvement is possible when allowing a
variable configuration is of prior interest. Our example
in the next section indicates that switching configuration
may indeed improve performance.

5. NUMERICAL EXAMPLE

As an example of the proposed approach we consider a case
with 5 chromatographic columns, N = 5. The numerical
values of parameters and restrictions for a single column
are listed in Appendix A. We investigate the maximisation
of yield within a given time. The required minimal purity
is 95%. Time Tmax is equal to 20000s. Different overall
batch volumes are considered.

5.1 Low-level optimisation

First, we solved a set of low-level optimisation problems
of the form (5). Optimisation was performed for the fol-
lowing values of required purity: pm ∈ {0.9, 0.91, . . . , 0.99}
and for different numbers of columns in the line: Ncol ∈
{1, 2, 3, 4, 5}. The optimal values of the continuous deci-
sion variables (Q∗, V ∗

inj , t
∗

fr), as well as the corresponding

values (t∗cyc, m
∗

out) were stored as a table as indicated in
the previous section.

An improved derivative-free Nelder-Mead method (Nelder
and Mead, 1965; Kelley, 1999) was used to solve these
nonlinear constrained optimisation problems. In the pro-
posed variant, the initial simplex was generated randomly
and a multi-restart strategy was taken to increase the
probability of locating the global optimum. For each sub-
sequent restart, only the vertex with the best solution
found previously was retained and the other vertices were
replaced with new random points. Moreover, the algorithm
was capable of handling the nonlinear constraints by using
the penalty function technique. During the optimisation, a
numerical simulation procedure was used to generate the
outlet concentration signals for given values of decision
variables. From this, we evaluate the objective function

and check the constraints. This information was then used
by the optimiser to find a new direction in the continuous
search space to improve the cost.

The coupled PDE model of the considered process with
Ncol columns connected in series was discretised using the
method of orthogonal collocations on finite elements (Ma
and Guiochon, 1991; Kaczmarski et al., 1997). The result-
ing system of differential algebraic equations was solved by
ode15s, a variable step-size and variable order integrator
implemented in Matlab (Shampine and Reichelt, 1997).
Information about the Jacobian contained in the discre-
tised model equations was fully exploited by the solver,
thereby significantly accelerating the integration.

5.2 High-level optimisation

a) Constant configuration case:

Next, we solved the discrete optimisation problem (2) for
the constant configuration case, as described in Sec.4.2a.
The results of the optimisation procedure are presented in
Tab. 2.

Volume of
the batch,
Vbatch, ml

Optimal
confi-
guration

Optimal puri-
ties, Puri, %

Resulting
producti-
vity Pr,
g/s

Resulting
yield Y

23000 {3 2} 0.94 0.97 5.942 e-4 0.517

25000 {3 2} 0.95 0.95 6.2404 e-4 0.4992

27000 {3 2} 0.96 0.94 6.4118 e-4 0.475

28000 {2 2 1} 0.95 0.96 0.97 6.0756 e-4 0.424

29000 {2 2 1} 0.95 0.95 0.98 6.2808 e-4 0.421

31000 {2 2 1} 0.95 0.96 0.94 6.6047 e-4 0.3901

Table 2. Results of high-level optimisation for
constant configuration scenario

b) Variable configuration case:

It can be seen from Table 2 that the configuration {3
2} ensures high productivity for smaller batch volumes.
For higher volumes, this configuration cannot process the
required volume within the required time. Hence, from
the certain batch volume Vbatch, one has to use another
configuration, for example {2 2 1}. This configuration
ensures higher throughput at the cost of productivity.
Therefore, it is intuitive to consider configuration as a
time-variant degree of freedom, i.e., a control variable. In
this way one expects to combine the advantages of both
configurations.

We considered the case with one possible configuration
change, i.e., Ns = 1. Indeed, our optimisation results show
an increase of performance for the variable configuration
case. The results are shown in Table 3. It is worth noting
that the improvement could be much bigger if there
were bigger differences in the productivity and in the
throughput between the different configurations.
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Volume of
the batch,
Vbatch

Optimal confi-
guration

Time,
τ(j),
j = 0, 1

Volume,
VΣ(j)

Optimal puri-
ties, Puri(j)

Resulting
produc-
tivity,
PrΣ

Resulting
yield, YΣ

Improvement
compared
to constant
configuration
case

28000 {2 2 1} 10600 16100 0.95 0.95 0.96 6.4305 e-4 0.4603 +5.84%
{3 2} 9400 11900 0.95 0.95

29000 {2 2 1} 10800 16675 0.95 0.95 0.96 6.5115 e-4 0.4509 +3.7%
{3 2} 9200 12325 0.96 0.94

Table 3. Results of the high-level optimisation with the change of structure
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Appendix A. LIST OF PARAMETERS

Name Unit Description Value

Physical (geometric) parameters

L cm Column length 25

D cm Column diameter 2

εt - Column total void fraction 0.78

αD - Coefficient of the linearised van
Deemter equation

0.012

βD - Coefficient of the linearised van
Deemter equation

0.156

H1 - Henry constant 5.7

H2 - Henry constant 7.4

K1 ml/g Equilibrium constant 170

K2 ml/g Equilibrium constant 370

Operating parameters

Ci,in,
i=A, B

g/ml Feed concentrations 0.001

Ci,thr g/ml Threshold concentrations 0.001Ci,in

N - Number of columns 5

tmin
fr

s Minimal collecting (fractionating)
time

5

ΔPmax bar Maximal pressure drop 100

Qmax ml/s Volumetric flowrate corresponding to
the maximal pump capacity

8.33


