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Abstract: The overall task of a supermarket refrigeration system is to maintain the quality of
the foodstuff. This is done by making use of a refrigeration cycle in which a refrigerant transport
heat from the refrigerated display-cases to the outdoor surroundings. Typically the system
is equipped with a decentralized control system neglecting interactions between subsystems.
Though these interactions are minor they from time to time lead to a synchronization of the
operation of the display-cases which causes an inferior control performance and increased energy
consumption. In this paper we will analyze the synchronization using bifurcation theory and
show that the system has a chaos-like behavior when it is not synchronized. Therefore, it is a
good choice to de-synchronize the system by making the system chaotic. The positive maximal
Lyapunov exponent is usually taken as an indication that the system is chaotic, it is used in
this paper as a measure of performance for the tendency of the system to synchronize.
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Complex system.

1. INTRODUCTION

A supermarket refrigeration system consists of a central
compressor rack that maintains the required flow of re-
frigerant to the refrigerated display cases located in the
supermarket sales area. Each display case has an inlet
valve for refrigerant that needs to be opened and closed
such that the air temperature in the display case is kept
within tight bounds to ensure a high quality of the goods.
For many years, the control of supermarket refrigeration
systems has been based on distributed control systems,
which are flexible and simple. For example, each display
case used to be equipped with an independent hysteresis
controller that regulates the air temperature in the display
case by manipulating the inlet valve. The major drawback,
however, is that the control loops are vulnerable to self-
inflicted disturbances caused by the interaction between
the distributed control loops. In particular, practice and
simulations show that the distributed hysteresis controllers
have the tendency to synchronize [Larsen (2006)], meaning
that the opening and closing actions of the valves coincide.
Consequently, the compressor periodically has to work
hard to keep up the required flow of refrigerant, which
results in low efficiency, inferior control performance and
a high wear on the compressor. The control problem is
significantly complicated by the fact that many of the
control inputs are restricted to discrete values, such as the

opening/closing of the inlet valves and the stepwise con-
trol of the compressor. Furthermore, the system features
switched dynamics turning the supermarket refrigeration
system into a hybrid system.

The intense focus on limiting energy consumption and the
global environmental awareness calls for energy efficient
solutions. By monitoring the performance of the refrig-
eration system the ”goodness” of the operation can be
measured and early warnings about undesired behaviors
can be given such that the control system can accommo-
date these and continuously optimize the system perfor-
mance. In this paper we will focus on the monitoring of
the synchronization phenomenon. By analyzing the system
behavior using bifurcation and chaos theory [Crawford
(1991), Devaney (2003)] it can be shown that the system
has a chaos-like behavior. Bifurcation and chaos theory
is most commonly applied to the mathematical study
of dynamical systems to investigate dramatic changes in
the qualitative or topological structure of a system. It
can be dated back to 1975 when the first mathematical
definition of ’chaos’ was given [Li and Yorke (1975)]. The
synchronization in the paper can be interpreted as a low
order limit cycle [Wisniewski and Larsen (2008)]. It will
be shown how the system jumps between low order and
high order limit cycles varying the hysteresis bounds of the
temperature controller. If the system converges towards a



low order limit cycle it can be seen as an indication of a
risk that the system may synchronize. Therefore, it is a
good choice to de-synchronize the system by making the
system chaotic. The positive maximal Lyapunov exponent
is usually taken as an indication that the system is chaotic.
A huge number of references are available on calculation
of the Lyapunov exponents [Müller (1995); Benettin et al.
(1980); Wolf et al. (1985)]. We suggest using the maximal
Lyapunov exponent as a measure of performance for the
tendency of the system to synchronize.

2. SYSTEM DESCRIPTION

The overall task for a supermarket refrigeration system
is to maintain the quality of the stored foodstuff. The
goods are usually stored in open display cases in the sales
area of the supermarket. The working principle of the
supermarket system is a refrigeration cycle which utilizes
a refrigerant to transport heat from the display cases to
the outdoor surroundings.

A simplified supermarket refrigeration circuit is shown
in Fig. 1. The compressors and the display cases are in
the majority of supermarket refrigeration systems con-
nected in parallel. The compressors supply the flow by
compressing the low pressure refrigeration which is drained
from the suction manifold. The refrigerant then passes
through the condenser and into the liquid manifold. Each
display case has an expansion valve which is connected to
the liquid manifold where from the refrigerant then flows
through the expansion valve and into the evaporator of
the display case. In the evaporator the refrigerant absorbs
heat from the stored goods and thereby changes phase.
The vaporized refrigerant flows into the suction manifold,
thus closing the refrigerant cycle. The typical layout of a

Fig. 1. Simplified supermarket refrigeration layout

display case can be seen in Fig. 2. The refrigerant is fed
into the evaporator at the bottom of the display case and
as the air is passed over the surface of the evaporator heat
is absorbed which render a vaporization of the refrigerant.
The resulting air flow creates an air curtain of cold air over
the stored good. The air takes up the heat flow Q̇goods−air

from the stored goods and as a side effect the heat flow
Q̇load from the surroundings. The temperature of the air,
Tair, is measured by a sensor mounted in the inlet air
stream to the evaporator the goods to provide an indirect
measure for the temperature of the goods.

Fig. 2. Cross sectional view of a refrigerated display case.

2.1 Traditional Control

The typical controller structure for a supermarket refriger-
ation system is decentralized. Each of the display cases is
fitted with an air temperature controller and a superheat
controller, which ensures the desired filling of the evapo-
rator. The compressor rack controls the suction pressure
controller and the condenser fans control the condensing
pressure. The only controllers considered in this paper
is the suction pressure controller and the temperature
controllers in the display cases.

The temperature in the display cases is controlled by a
hysteresis controller that opens and closes the expansion
valve, i.e. the valve opens when Tair reaches a predefined
upper temperature limit and stay open until Tair decreases
to the lower temperature limit and the valve closes again.

The suction pressure is controlled by switching compres-
sors in the compressor rack on or off. A dead band around
the reference is introduced to avoid excessive switching of
the compressors. If the pressure exceeds the upper bound
of the dead band one or more compressors are switched on.
If the pressures drops below the lower bound of the dead
band a compressor is switched off. This control strategy
prevents moderate changes in the suction pressure from
initiating compressor switching.

In a common supermarket many of the display cases
will be alike and in addition be working under the same
conditions. Thus, the switching frequency , for each of the
expansion valves for the different display cases, will be
close to each other. The display cases have a tendency
to synchronize because there individual dynamics are
coupled through the suction pressure. Synchronization of
the display cases lead to periodic high and low amount
of vaporized refrigerant flow into the suction manifold.
Hence, large fluctuations in the suction pressure will be a
consequence which then leads to higher switch frequency
of the compressors and therefore excessive wear on the
compressors. The result from synchronizing display cases
can be seen in Fig. 3

3. MODEL OF THE REFRIGERATION SYSTEM

The model for the supermarket refrigeration system is
composed of a number of sub-models which each repre-
sent a component in the refrigeration system. That is,
individual models are made for the display cases, the
suction manifold, the compressor rack, and the condensing
unit. Because the emphasis of the paper is to examine



Fig. 3. The effect of synchronization

the synchronization phenomenon the modeling will be
concentrated on the display cases and the suction manifold
such that only the dynamics relevant for the control of the
hysteresis control and the compressors are captured. The
dynamic of the compressors are usually much faster than
the dynamics of the rest of the refrigeration system. Thus,
the modeling of the compressors dynamic is neglected.

The mathematical model presented in this section is a
summary of the supermarket refrigeration model devel-
oped in [Larsen et al. (2007)]. The suction pressure Psuc,
comprises the common state for the combined models.
Each display case, i = 1, . . . , N where N is the number
of display cases in the system, is described by four states.
That is, the temperature of the goods Tgoods,i, the air
temperature Tair,i, the temperature of the evaporator wall
Twall,i, and the mass of the refrigerant in the evaporator
Mr,i. The input is the volumetric flow generated by the
compressors V̇comp, and the binary state of the ith inlet
valve δi (closed or opened, δi ∈ {0, 1}). The systems are
affected by the heat load from the surroundings of the
display case Q̇load.

dTgoods,i

dt
= − Q̇goods−air,i(·)

Mgoods,i Cp,goods,i
(1)

dTwall,i

dt
=

Q̇air−wall,i(·) − Q̇e,i(·)
Mwall,iCp,wall,i

(2)

dTair,i

dt
=

Q̇goods−air,i(·) + Q̇load,i(·) − Q̇air−wall,i(·)
MairCp,air,i

(3)

dMr,i

dt
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mr,max,i − Mr,i

τfill,i
if δi = 1

− Q̇e,i(·)
Δhlg(Psuc)

if δi = 0 and Mr,i ≥ 0

0 if δi = 0 and Mr,i = 0
(4)

dPsuc

dt
=

ṁin−suc(·) + ṁr,const − V̇comp ρsuc(Psuc)
Vsuc ∇ρsuc(Psuc)

(5)

The enthalpy difference across the two-phase region of the
evaporator is denoted by Δhlg, the density of the refrig-
erant is denoted by ρsuc, and ∇ρsuc denotes the pressure
derivative of the refrigerant density. Te is the evaporation
temperature for the refrigerant. The subscripts for the
mass M and the heat capacity Cp denotes the media. The

heat flow is denoted by Q̇ where the subscript indicates the
media between which the thermal energy is exchanged. In
addition, the varies heat flows are defined by the following
functions:

Q̇goods−air,i(Tgoods,i, Tair,i) =
UAgoods−air,i · (Tgoods,i − Tair,i) (6)

Q̇air−wall,i(Tair,i, Twall,i) = UAair−wall,i · (Tair,i − Twall,i)
(7)

Q̇e,i(Mr,i, Twall,i, Psuc) =
UAwall−ref,i(Mr,i) · (Twall,i − Te(Psuc)) (8)

UAwall−ref,i(Mr,i) = UAwall−ref,max,i · Mr,i

Mr,max,i

(9)

The overall heat transfer coefficient is denoted by UA and
the subscript denotes the media from which the heat is
transferred. In addition the mass flow rate in the suction
manifold is given by:

ṁin−suc(Mr,i, Twall,i, Psuc) =
N∑

i=1

Q̇e,i(·)
Δhlg(Psuc)

(10)

The functions Δhlg, ρsuc, and Te are refrigerant specific.
Detailed description of these functions are given in [Larsen
et al. (2007)]. In (4) it can be seen that the system
have a hybrid nature due to the the discrete input which
represents the opening and closing of the expansion valves.

3.1 Simplified model

In order to obtain a model that is suitable for analyzing
the synchronization phenomenon the equation system (1)
through (5) are further simplified to a second order affine
switched system.

The simplification of the model is based on the following
assumptions:

• The heat capacity of the goods is large, thus the
temperature of the goods in a display case is constant
and equal Tg0.

• The heat capacity of the air is small.
• The evaporator is instantly filled (emptied) when the

inlet valve is opened (closed).
• The mass flow out of the display case when the valve

is open is constant and equal ṁ0.
• The evaporation temperature Te and the density ρsuc

of the refrigerant in the suction manifold are affine
functions of suction pressure Psuc,

Te = aT Psuc + bT and ρsuc = aρPsuc + bρ

• The gradient ∇ρsuc(Psuc) ≡ ∇ρsuc0(Psuc0) is con-
stant.

• The compressor delivers a constant volume flow
V̇comp.

• The heat load Q̇load on the display cases is constant.

Based on these assumptions the dynamic of the air tem-
perature Tair,i in the ith display case can be formulated as
follows:



dTair,i

dt
=

Q̇goods−air,i + Q̇load,i − δiQ̇e,max,i(
1 + UAgoods−air,i

UAair−wall,i

)
Mwall,iCpwall,i

with

(11)

Twall,i =Tair,i − Q̇goods−air,i + Q̇load,i

UAair−wall,i
, (12)

Q̇goods−air,i =UAgoods−air,i(Tg0,i − Tair,i), (13)

Q̇e,max,i =UAwall−ref,max,i(Twall,i − aT Psuc − bT ),
(14)

The suction manifold dynamics is governed by the expres-
sion

dPsuc

dt
=

N∑
i=1

δiṁ0,i + ṁr,const − V̇comp(aρPsuc + bρ)

Vsuc · ∇ρsuc0
.

(15)
Thus, the non-linear hybrid system has been reduced to a
two order (for each display case) affine system with discrete
inputs. For a refrigeration system with two display cases,
the system states of the simplified model are Tair,i(i = 1, 2)
and Psuc. The discrete inputs are δi ∈ {0, 1}, which
indicate if the valves are closed or open. The input δ is
controlled by a hysteresis controller which changes the
value of δ in the following way:

δi(k + 1) =

⎧⎪⎨
⎪⎩

1 if Tair,i ≥ Tair,i

0 if Tair,i ≤ Tair,i

δi(k) if Tair,i < Tair,i < Tair,i,

(16)

where k denotes the time index, Tair,i is the upper bound
the air temperature and Tair,i is the lower bound .

4. DYNAMICAL ANALYSIS

In this section, we will analyze dynamics of the simplified
refrigeration model through bifurcation and chaos theory.
The theory is most commonly applied to the mathematical
study of dynamical systems. The aim of the theory is to
investigate dramatic changes in the qualitative or topolog-
ical structure of a system by changing smoothly a system
parameter. For the refrigeration system we will analyze the
system behavior by changing smoothly the lower bound
in one of the display cases. The resulting behavior will be
depicted in a so-called bifurcation diagram, from which the
synchronization phenomenon will be studied, thereafter
a measure will be developed to evaluate the tendency of
synchronization. All simulation results in the section are
based on the following parameter settings:

4.1 Phase plots w.r.t Tair,2

We shall study bifurcation, i.e. the influence of changes of
system parameters on the system behavior at large. There
are two system parameters, i.e. the upper bound and the
lower bound of the temperature in the air temperature
control of the display case. Here, we examine the lower
bound of the second display case Tair,2. This will provide
an example which will help understand how the system
behaves with the varying parameter.

Fig. 4 shows some typical phase plots of the system
states Tair,1 and Tair,2. When the parameter Tair,2 = 0,

Table 1. Parameters for a simplified supermar-
ket refrigeration system

Display cases

UAwall−ref,max 500 J
s·K Tg0 3.0 0C

UAgoods−air 300 J
s·K ṁ0 1.0 kg/s

UAair−wall 500 J
s·K Q̇load 3000 J/s

ṁr,const 0.2 kg
s

Mwall 260 kg

∇ρsuc0 4.6 kg
m3bar

Cp,wall 385 J
kg·K

The same parameters has been used for all disp.
Compressor

V̇comp 0.28 m3

s
Suction manifold

Vsuc 5.00 m3

Air temperature control

Tair,i 0.00 0C Tair,i 5.00 0C

i for the disp.

Coefficients

aT = 16.2072 bT = 41.9095 aρ = 4.6 bρ = 0.4

the limiting behavior of the system switches between the
two points (0, 0) and (5, 5) within an accepted tolerance
(1E − 6 in the paper). Here, we call it as a 2-periodic
limit cycle. The period of a limit cycle is defined by the
sum of a number of switching points on the boundary
∂� = ∂([Tair,1, Tair,1]×[Tair,2, Tair,2]). The phase plot of the
2-periodic limit cycle corresponds to the synchronization
phenomenon mentioned in the above section, where the
two states Tair,1 and Tair,2 agree all the time. When the
parameter Tair,2 increases slightly to the value of 0.15,
a 4-periodic limit cycle appears, which is similar to the
synchronization but with a bigger difference of the two
states; we will call it the quasi-synchronization. When
Tair,2 = 0.2, another topology of 4-periodic limit cycle
appears in the phase plot, which is totally different from
the state agreement in the synchronization. If we continue
increasing Tair,2 to the value of 0.3, we will find that the
system tends to a high-periodic limit cycle with many
switching points in the boundary of ∂�. It looks like
chaos, the common phenomenon in the nonlinear system
[Devaney (2003)]. It is far away from the synchronization.
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Fig. 4. Typical limiting behaviors with the various values
of the parameter Tair,2. (a) 2-periodic limit cycle
(synchronization, Tair,2 = 0), (b) 4-periodic limit
cycle (Tair,2 = 0.15), (c) another 4-periodic limit cycle
(Tair,2 = 0.2), (d) high-periodic limit cycle (Tair,2 =
0.3).



Synchronization of the display cases leads to large fluctu-
ations in the suction pressure which then result in higher
switch frequency of the compressors. It reduces lifetime of
the compressors and enlarges energy consumption. Fig. 5
shows the comparison of the suction pressures between the
synchronization and the chaos-like situation. We can see
that in the chaos-like situation, the fluctuation range of
the suction pressure decreases occasionally; even for the
part with the same fluctuation amplitude as the synchro-
nization, the pressure jumps so fast that the traditional
PI controller in the compressor can fix it. Therefore, we
conclude that good control performance can be achieved
if the system behaves like chaos.
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Fig. 5. The suction pressure Psuc in the situations of (a)
synchronization and (b) chaos-like (Tair,2 = 0.3).

4.2 Bifurcation diagram w.r.t Tair,2

To show how the system behaves with the smooth change
of the parameter, we usually use the bifurcation diagram.
A bifurcation diagram exhibits the possible long-term
values (equilibria/fixed points or periodic orbits) of a
system as a function of parameters in the system. A
bifurcation occurs when a small smooth change made to
the values of the bifurcation parameter causes a sudden
’qualitative’ or topological change in its behavior. In this
paper, the lower bound of the second display case Tair,2

is considered as the bifurcation parameter. Fig. 6 shows
the limiting behavior of the state Tair,1 with respect to
the parameter Tair,2. The system exhibits very complicated
behaviors. When Tair,2 = 0, the system stabilizes at a 2-
periodic limit cycle with the phase plot shown in Fig. 4a.
As the parameter Tair,2 increases, the 2-periodic limit
cycle becomes unstable, and a stable 4-periodic limit cycle
appears (the phase plot is like Fig. 4b). The limit cycle
retains the similar shape until another stable 4-periodic
limit cycle occurs at Tair,2 = 0.186 (the phase plot is like
Fig. 4c). The shape keeps until Tair,2 = 0.234, a higher
order oscillation, like chaos, is generated (the phase plot
is like Fig. 4d). If the parameter continuously rise, we can
see that the system behavior becomes very complex and
keeps switching between order and chaos-like oscillations.

The bifurcation diagram demonstrates that the simple
refrigeration model is very sensitive to a change in the
parameter Tair,2. If we change the parameter slightly,
we obtain a totally different topology of the behavior.
Therefore, we may ask: is it possible to suppress the
synchronization phenomenon we found in the practice of
the supermarket refrigeration system by adjusting a little
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Lower bound of Tair,2
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Fig. 6. Bifurcation diagrams of the system state Tair,1 w.r.t
the parameter Tair,2.

bit value of the bounds Tair or Tair? It is obvious for a
small ’toy’ system with only two display cases that by
changing the bound of the temperature, the system can be
de-synchronized by making it chaotic. However, for a real
plant with many different display cases, it is not obvious
how to select the bounds. Hence, we are seeking a method
to identify whether the bounds are selected such that the
system will synchronize or not. For this purpose we will
use the maximal Lyapunov exponent.

4.3 Description of Lyaponov exponent

The Lyapunov exponent characterizes the averaged rate
of separation of two close trajectories in the phase space
[Oseledec (1968)]. Quantitatively, two trajectories x1(t)
and x2(t) in phase space with initial separation δx(0)
diverge

|δx(t)| ≈ eλt |δx(0)| , (17)
where δx(t) = x1(t) − x2(t), λ is the Lyapunov exponent.
The negative Lyapunov exponent measures the exponen-
tial convergence of trajectories, and the positive measures
the exponential divergence of trajectories.

There are n Lyapunov exponents in the spectrum of an n-
dimensional dynamical system. It is common to just refer
to the largest one, i.e. the maximal Lyapunov exponent
(MLE), which is defined as follows:

λmax = lim
t→∞

1
t

ln
|δx(t)|
|δx(0)| . (18)

The positive MLE is usually taken as an indication that
the system is chaotic. It is used in this paper as a
measure of performance for the tendency of the system
to synchronize, that is, the higher value of the MLE the
lower risk for synchronization.

4.4 Algorithm for computation the MLE

Algorithms for computing the Lyapunov exponents of the
”smooth” dynamical system are well established [Benettin
et al. (1980),Wolf et al. (1985)]. Let us consider the system

ẋ = f(x(t)), (19)
where f ∈ C1 is a continuously differentiable vector
function with the initial condition x(t0) = x(0). The
algorithm is based on the integration of the linearized
equation (20) as follows:

δẋ = J(t)δx, (20)



where

J(t) =
∂f(x)
∂xT

∣∣∣∣
x=x(t)

(21)

is the Jacobian matrix of f w.r.t the trajectory under
consideration. The MLE λmax is given as the average for
some different initial conditions δx(0) as Eq. (18).

For the ”non-smooth” dynamical system with discontinu-
ities like the refrigeration system in this paper, the above
algorithm cannot be directly applied. One way to calculate
the MLE is to supplement the transition conditions at
the instants of discontinuities into the linearized equations
[Müller (1995)]. This model-based method requires exact
system information and the calculation complexity greatly
increases with the number of the sub-systems. It is not
suitable for the refrigeration system especially with many
display cases in the supermarket. Besides, to apply this
method one needs to know the switching sequence of the
sub-systems in advance. It is also impossible in our case.
We prefer to take the practical view of calculating the MLE
from experimental data. Two well-known papers are [Wolf
et al. (1985), S. Sato and Sawada (1987)]. Basic computing
steps are given in the following:

(1) Based on the N−point time series x1, x2, ..., xN , re-
construct the phase space:

Yi = [xi, xi+τ , ..., xi+(m−1)τ ] ∈ Rn (i = 1, ..., M),
where M = N − (m − 1)τ , τ is the reconstruction
delay, m is the embedding dimension.

(2) Find the nearest neighbor, Yî, by searching for the
point that minimizes the distance to the particular
reference point Yi, that is, di(0) = min

Yî

‖Yi − Yî‖.
After j discrete-time steps, the distance di(0) goes
to di(j).

(3) Estimate the averaged rate of distance separation as
the MLE:

λmax =
1

j · Δt
· 1
(M − j)

M−j∑
i=1

di(j)
di(0)

,

where Δt is the sampling period of the time series.

5. CONCLUSION

The main focus of this paper was on dynamic analysis of a
simple system with two display cases by using bifurcation
and chaos theory. Interpreting synchronization as a low
periodic limit cycle and by varying the hysteresis bounds
of the temperature controller it was shown that the system
exhibited a complex chaos-like behavior when it was not
synchronized, i.e. it switches between low and high peri-
odic limit cycles. Synchronization of the system has proven
to result in an inferior performance due to the resulting
large pressure variations. It was, however, indicated in this
paper that by de-synchronizing the system (by making
it chaotic) it is possible to significantly reduce the pres-
sure variations and hence improve the performance. The
positive maximal Lyapunov exponent, usually used as the
indication of chaos, was in this paper used as a measure
of performance for the tendency of the system to synchro-
nize. These findings for the small ”toy” system may seem
obvious, however they can easily be scaled to (realistic)
large scale systems, where it is harder to distinguish and
evaluate ”good” and ”bad” behavior.
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