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Abstract: For a successful application of any industrial Z. mobilis facility, it is necessary to have an 
efficient and simple control strategy. This paper analyzes the control and optimization problem of a
continuous ZM bioreactor modeled by Jöbses et al. (1986). This system has steady state multiplicity in 
part of the operating range. The idea is to maintain the process close to the manifold border where is 
achievable the highest ethanol production. Based on a systematically analysis of the operational 
controllability using the nonlinear RPN indices it is identified that the process can be controlled using a 
linear controller.  Finally the paper proposes a variable transformation that makes easy to maintain the 
bioreactor close to the optimum. 
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1 INTRODUCTION

Zymomonas mobilis has attracted considerable interest over 
the past decades as a result of its unique metabolism and 
ability to rapidly and efficiently produce ethanol from simple 
sugars. However, despite its apparent advantages of higher 
yields and faster specific rates when compared to yeasts, no 
commercial scale fermentations currently exist which use Z. 
mobilis for the manufacture of fuel ethanol. In addition to 
ethanol depending on the substrate other fermentation 
products can occur, such as lactic acid, acetic acid, formic 
acid, acetone, and sorbitol. See (Rogers et al., 2007), for a 
detailed review.

In the literature, Zymomonas mobilis has been proposed as a 
more promising microorganism than conventional yeast 
Saccharomyces cerevisiae for industrial production of 
ethanol (Rogers et al., 2007). A major drawback of this 
microorganism is that it exhibits sustained oscillations (i.e., 
Hopf bifurcation) for low dilution rates (i.e., 
when grown in continuous mode. This leads to decreased 
ethanol productivity and less efficient use of available 
substrate (Zhang and Henson, 2001). Various models have 
been proposed to describe the oscillatory dynamics of 
continuous Zymomonas mobilis cultures. Two of them are the
Daugulis et al. (1997) and Jöbses et al. (1986) models. Even 
though the model predictions can be considered similar at 
low dilution rates, where the models have been fitted to the 
experimental data, they are quite different for higher dilution 
rates (Trierweiler and Diehl, 2009).

The Jöbses’s model was fitted to experimental data with low 
dilution rate (i.e., and middle inlet substrate 
concentration (i.e., . Later, it was 
extrapolated outside of this operating region by Elnashaie et 
al. (2006), who have found a much more profitable operating 
region at higher dilution rates ( and inlet 
concentrations ( . Notwithstanding the 
Jöbses’s model has not been validated at this region, our
contribution will assume that this extrapolation is acceptable 
and we will propose a control strategy to maintain the system 
working at this more profitable operating region. 

This paper is structured as follows: In section 2 the Jöbses’s 
models is presented, section 3 it is analyzed the operational 
controllability which is used as basis for the proposed control 
strategy developed in section 4 and later validated by 
simulation. Final conclusions and remarks are then 
summarized in section 5. 

2 MODEL DESCRIPTION AND 
OPERATING POINT DEFINITIONS

Since the Jöbses’s model can predict a branch with higher 
ethanol production, which has been experimentally 
confirmed (at least for low dilution rates) by Elnashaie et al. 
(2006), we decide to analyze the control problem of a 
continuous bioreactor with the Jöbses et al. (1986) kinetic 
model, which is shortly described in the next subsection. 



2.1 Model Description
The Jöbses’s model consists of the following 4 differential 
equations:

      

(1)

where is the substrate (glucose) concentration, is the 
biomass (Z. mobilis), is the product (ethanol) 
concentration, and is an auxiliary variable used to lag the 
effect of the ethanol concentration in the kinetic model. The 
insertion of the parcel together with 

makes possible the model to depict the oscillatory 
behavior of the Hopf bifurcation. In the model, dilution rate 
Df is the inversion of the residence time and is defined as the 
relation between the inlet flow rate and the bioreactor 
volume. The model parameters are summarized in Table 1.

Table 1: Model parameters

Parameters Values Parameters Values
0.00383 2.160

59.2085 1.100

70.5565 (0.02445,
0.05263)

0.500 1.0

Fig. 1 shows the steady-state solutions for ethanol 
concentration in function of dilution rate and inlet 
substrate concentration .

Fig. 1: Steady-state ethanol concentration as a function 
of Dilution rate and inlet substrate concentration .

2.2 Operating points
The optimal condition for the bioreactor is achieved with a 
high ethanol production. For the Jöbses’s model, it can be 
shown that the main decision operating criterion for the best 
operating point is the ethanol production ( , which is 

given by the multiplication of the dilution rate ( and the 
ethanol concentration ( , i.e., 

. (2)

Fig. 2 is produced for the iso-inlet substrate concentrations
of 180, 200, and 220 kg/m³ that were already shown in 

Fig. 1. Note that the dashed and dashdot lines are the same 
for all three operating conditions, therefore only one line for 
each branch is shown in Fig. 2.

Fig. 2: Steady-state ethanol concentration for three inlet 
substrate concentrations .

Considering the curves generated for in 
Fig. 2, we can see that in the range of the 
system has three possible steady-state solutions. Two of them 
are stables (solid and dashdot lines) and one unstable (i.e., the 
middle branch illustrated by dashed line). The best operating 
point is located in the above curve close to the saddle point 
formatted by the intersection of the stable and unstable 
branches. The star in the above branch depicts a typical 
optimal operating point. From a control point of view the 
main difficult is to maintain the system working in this point 
avoiding a migration to the bellow operating point – the dash-
dot line in Fig. 2.  This migration can occur if the dilution 
rate is above the corresponding to the bifurcation saddle point 
or by a reduction to the inlet substrate concentration. Fig. 3
shows the case where the dilution rate is increased from 2 h-1

to 2.5 h-1 and then at 10 h again reduced to 2 h-1. To bring the 
system to the more profitable operating point it is necessary 
to apply a pulse in the inlet ethanol concentration ( as 
shown at 15 h.

Fig. 3: Dynamic simulation to show how it is easy to move 
the operating point from the high to the low 
production branch. 



2.3 Operating regions 
The manifold that separate the region where occurs 
multiplicity in the ethanol concentration is defined by the 
saddle bifurcation points and is shown in Fig. 4.  This 
manifold limits the operating region with possible high 
ethanol concentration (region A) from the region where only 
a low ethanol concentration is achievable (region B), where 
the operating conditions goes outside de operating region A, 
the ethanol concentration will fall down as it was depicted in 
Fig. 3.  

Fig. 4: Manifold of saddle points defining the operating 
region A (where exists multiplicity) and operating 
region B (where exits one solution only).  

To characterize the differences between the high and low 
ethanol concentration branches, the system was linearized in 
five different operating points defined in Table 2 and placed 
in Fig. 4, where Pn is considered as the nominal/optimal 
operating point. The other four can occurs during a normal 
operation in the region A. Of course, P4 has higher EP than 
Pn, but since the Jöbses model cannot describe higher CS0
correctly, we will just assume that Pn is the best operating 
point, but the same analysis could be performed considering 
P4 as nominal model.  

Table 2: Definition of Op ating Regioner

�������	 
��
����� OP1- high 
��
�� 
����* OP2 - low 
��
�� 
����*
Pn 2.0 200 (92.57, 1.23) (41.29, 111.34) 
P1 2.25 200 (91.83, 2.75) (39.94,114,22) 
P2 1.3 200 (93.07, 0.40) (45.56, 102.29) 
P3 0.5 180 (84.24, 0.31) (52.09,68.90) 
P4 4.0 220 (101.38, 2.04) (32.02, 151.16) 
*�
�� 
���� means steady-state values for ethanol and 
substrate concentration for a given �� and 
��.
Figures 5 and 6 respectively show the step response of the 
dynamic linearized models for high and low ethanol 
concentration branches. Essentially the high ethanol branch 

has an over-damped behavior, whereas for the low branch the 
system is under-damped. 

From: Df
0

-2

Time [h] 
Fig. 5: Step response of the linearized models at the 

operating points defined in Table 2 corresponding to 
the high ethanol concentration branch for 
� and 
�
outputs.  

Time [h] 
Fig. 6: Step response of the linearized models at the 

operating points defined in Table 2 corresponding to 
the low ethanol concentration branch for 
� and 
�
outputs.  
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3 OPERATIONAL CONTROLLABILITY ANALYSIS 
3.1 Manipulated and controlled variables 
Ethanol and substrate concentrations are two natural 
controlled variables of the system and can be in principle 
measured on-line using 2D-fluorescence spectroscopy 
(Hantelmann et al., 2006). As candidates for manipulated 
variables, we have the dilution rate ����, inlet substrate 
concentration �
���, and inlet ethanol concentration (
���. In 
principle, 
�� should be used only in critical situations, just 
to bring the system back to the higher production branch (as 
shown in Fig. 3). Therefore we will not consider it in our 
operational controllability analyses, where only the input-
output pairs ���� 
��� � �
�� 
�� is further considered. 

3.2 Nominal Operational Control ility lab
The determinant and the elements ��� and ��� of the RGA – 
relative gain array (Skogestad and Postlethwaite, 2005) – are 
calculated using the steady state gain matrix for each one of 
the linearized models defined in Table 2. These results are 
summarized in Table 3, where we can see that the 
determinant (Det) does not change its sign when the system 
goes from the operating region 1 (OR1) with high ethanol 
concentration to OR2 with low ethanol concentration. 
Nevertheless the recommended pairing using steady state 
RGA changes from OR1 to OR2. Usually, when the pairing 
recommendation is changed it is normally associated with a 
change in the determinant sign, what it does not happens for 
this system. When the determinant changes its sign it is 
equivalent to the change in the multivariable gain, what is 
quite critical for the success of any control strategy. The 
reason for this unusual behavior is related to the gain sign 
change of channel 
�� � 
������ �� � ���� as it can been seem 
by the gain matrix for the nominal operating point PN for the 
high and low et nol con  br es, which are given 
by: 

ha centration anch

 !"#�"  (3) �� $ %&'�() )�**+�** &)�',-�
�� !./0 $ %&*�** )�)))1''�,+ )�222 - (4) 

Similar behavior occurs for all other OPs.  

Table 3: Determinant and Steady State RGA

Det
OR1 

Det
OR2 

RGA – OR1 ����� ����* RGA – OR2 ����� ����*
Pn -1.16 -5.55 (-0.20, 1.20) (0.99, 0.01) 
P1 -10.58 -5.25 (-1.89, 2.89) (0.99, 0.01) 
P2 -0.26 -6.78 (-0.05, 1.05) (0.99, 0.01) 
P3 -0.48 -10.26 (-0.11, 1.11) (0.99, 0.01) 
P4 -1.6 0.001) 6 -3.98 (-0.38, 1.38) (0.999, ����� ����* it was calculated considering the pairing �� � 
��

and 
�� � 
�.
3.3 RPN and rRPN Analysis 
The Robust Performance Number (RPN) was introduced in 
(Trierweiler, 1997) and (Trierweiler and Engell, 1997) as a 
measure to characterize the operational controllability of a 

system. The RPN indicates how potentially difficult it is for a 
given system to achieve the desired performance robustly. 
The RPN is influenced by three terms: the desired closed 
loop performance, nonminimum phase behavior (i.e., RHP 
pole, zero, and pure time delays), and its degree of 
directionality.  

The RPN is a measure of how potentially difficult it is for a 
given system to achieve the desired performance robustly. 
The easiest way to design a controller is to use the inverse of 
the process model. An inverse-based controller will have 
potentially good performance robustness only when the RPN 
is small. As inverse-based controllers are simple and 
effective, it can be concluded that a good control structure 
selection is one with a small (< 5) RPN (Trierweiler and 
Engell, 1997).  

Table 4: RPN Analysis for the high
nol con e anchetha

$ '
c ntration br

$ )34 �) � 34 �*)�� 34 $ )�+* �567 8567 567 8567 567 8567
Pn 1.66 0.088 1.61 0.085 1.58 0.086 
P1 2.27 0.152 1.90 0.1201 1.78 0.097 
P2 1.52 0.069 1.53 0.074 1.51 0.0790 
P3 1.50 0.068 1.53 0.0725 1.52 0.0781 
P4 1.91 0.124 1.80 0.110 1.69 0.101 

Table 4 shows the 567 calculated by three different desired 
performance specified by the rise times 34 $ '� )�*�9:;�)�+*�� and 10% overshoot for both outputs, what makes 
the system 2, 4, and 8 times faster than open loop response 
for the high ethanol concentration branch and all operating 
points. The results shown in Table 4 allow us to conclude that 
considering each operating point independently they will be 
easily controllable. It is important to mention that the 567
does not give a clear idea of the control difficulties for that it 
is necessary to analyze the relative RPN (8567), which has 
been introduced by Trierweiler (2002) (see also (Trierweiler 
and F  2002) for an additional discussion).  arina,

The 8567 is the relative distance between the RPN curve 
and the minimum RPN curve and it is quantified by the areas 
under the curves. Values less than 1 and close to zero means 
that the desired performance is easily achievable. Again, 
since we are considering only the two stable branches, no 
nonminimum phase component occurs in the analyzed 
operating points. In this case, typically faster performance 
will usually reduce the 8567. Table 4 depicts that it is 
possible to design a controller that achieves the desired 
performance for each one of the analyzed operating points. 
Similar analyses (not shown here) performed for the low 
ethanol concentration branch produce similar conclusions 
with a 567� and 8567 in the order of 1.5 and 0.004, respect.  

The local operational controllability analyses clearly 
conclude that for each one of the considered models it is 
possible and easy to design a controller with the desired 
performance. Although each point is easily controllable, 



nothing can be said about all operating points together. Is 
there possible to design a controller that will produce a good 
performance for all operating points? Moreover, if a 
controller designed for OR1 will work in OR2? Based on the 
steps responses of the linearized models shown in Figures 5 
and 6, it seems the responses are quite different, especially if 
we compare the under-damped behavior shown by OR2 and 
the over-damped of the OR1. In the next subsection, we 
answer these questions through the nonlinear RPN analysis. 

3.4 Nonlinear degree – nRPN Analysis 
In (Farenzena and Trierweiler, 2004) three novel indices were 
introduced to measure system's nonlinearity. These nonlinear 
measurements are derived from the Robust Performance 
Number (RPN) concept. The total system's nonlinearity can 
be measured by the nonlinear RPN (<567), while the purely 
static nonlinearity is captured by nonlinear static RPN
(<567�=>=) and the dynamic component by the nonlinear 
dynamic RPN (<567?@ ). These indices do not require a 
nonlinear model, being enough a set of linear models. 
Therefore, they can easily be applied to quantify the 
nonlinearities of industrial plants and used to answer several 
practical important questions such as: how nonlinear is the 
system? Is it necessary to apply a nonlinear controller? What 
kind of nonlinear controller is required? 

In the definition of the nonlinear RPN indices was introduced 
the logarithm function to make easier their interpretation. 
Values smaller than 1 indicate that the performance 
difference between nonlinear and linear controllers is not 
significant, so that a linear controller is recommended. 
Indices greater than 2 clearly indicate that a nonlinear 
controller is necessary. Between 1 and 2 is a transition zone, 
where in many times a robust controller can stabilize all 
possible plants, but the performance loss can be significant if 
the values are close to 2. This analysis is made for all three 
indices. For instance, if <567 and <567�=>= are high and <567?@  is small, it indicates that the nonlinearity is 
essentially static and can be compensated by gain scheduling 
controller. If the all values are big (greater or close to 2), then 
a nonlinear m controller is recommended.  odel predictive 

Table 5 < 67�=>=, and <567 ses: 567, <5
34 $ '�)��

?@ . Analy

34 $ )�*) �<567 STAT. DYN. <567 STAT. DYN. 
H 0.86 0.58 -0.052 0.79 0.58 -0.21 
L 0.31 -0.28 0.455 0.27 -0.28 0.40 
T 1.68 0.88 0.74 1.50 0.88 0.51 34 $ )�+*�� 34 $ )�') �<567 STAT. DYN. <567 STAT. DYN. 
H 0.74 0.58 -0.35 0.69 0.58 -0.54 
L 0.27 -0.28 0.39 0.29 -0.28 0.42 
T 1.32 0.88 0.24 1 2 .1 0.88 -0.12 
�  Stat. and Dyn. mean nRPNSTAT and nRPNDYN, respect. 

H: polytope model for the high 
� branch, L: polytope 
model for the low 
� branch, and A $ B C D.

To quantify the nonlinearity using the nonlinear RPN it is 
necessary to construct a set of linearized models, called as 
polytope model. The operating points defined in Table 2 have 
been used to define the polytopes. Three polytope sets have 
being formed: H formed with the 5 linearized models at the 
high ethanol concentration branch; L formed from the 
linearized models corresponding to the low 
� branch; and T
formed by the union of all 10 models. 

Table 5 summarizes the results of the <567 analysis, which 
indicates that in general the polytope H is more nonlinear 
than the polytope L and the nonlinearity found in H is 
essentially static, whereas for L the nonlinearity is of the 
dynamic type.  Of course, the combination of both polytopes 
(T) exhibits the highest nonlinearity, which has similar 
dynamic and static components for low performance, but for 
the highest desired performance (E� F� � 34 $ )�')��it becomes 
essentially static. Moreover, for this performance it is 
expected that a linear controller will be able to control the 
system in both operating regions. To verify this prediction, 

v design a multivariable PI controller, given by:  we ha e 6G�H� $�
I&)�'J' K �' L ������MN� '�J2,' K �' L �����OPN�'+�+,Q K �' L ���O�MMN� J�1+)1 K �' L ���PO�ON�R (5) 

This quite simple controller can control all 10 linearized 
models with a good performance as it is shown in Fig. 7, 
where it has been simulated a setpoint change in 
� of one 
unit at 1 h and a simultaneous load disturbance of S�� $)�+���� and S
�� $ '�TUVWP at 6 h. 

Cs

Fig. 7: Closed loop simulation with a multivariable PI
controller for all 10 linearized models  

4 CONTROL STRATEGY 
Note that the predictions made by nonlinear RPN indices 
were confirmed by the closed loop simulation using the 
linearized models. Similar results are obtained using the fully 
nonlinear model (Trierweiler and Diehl, 2009). In this 
section, it is shown the basic ideas of the recommended 
control strategy.  
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The RPN analysis is reliable – the RPN analysis, especially 
using the nonlinear RPN indices made possible very easily to 
check and quantify the nonlinearity degree and based on 
these analyses prescribe the appropriated controller. It was 
shown that if a fast controller is designed a simple linear 
controller can be used. To confirm this prediction a simple 
multivariable PI controller has been tuned and simulated. 

4.1 General control strategy 
It is recommended to use an Extended Kalman Filter (EKF) 
technique to filter the measurements from the 2D-
fluorescence spectroscopy. The EKF is important also to 
estimate the biomass concentration and to take the input and 
model uncertainties into account. A multivariable controller 
should be used with the pairing ���� 
��� � �
�� 
�� and the 
inlet ethanol concentration (
��� should be only used in 
exceptional cases to bring the system back to the high ethanol 
concentration branch as shown in Fig. 3.  

Procedure for analysis a bioprocess optimization and 
control problem – finally the paper illustrate the typical 
steps necessary to develop a control and optimization strategy 
for a bioprocess system. Before designing a controller, it is 
necessary to systematically analyze the system as have been 
done in the paper. 

4.2 Solving the constraint problem 
A single linear controller can be used to control the 
bioreactor in all operating conditions. The only special 
problem is to constraint the range of the manipulated 
variables, which should be limited by the saddle point 
manifold. This can be easily guaranteed by a single variable 
transformation as shown in Fig. 8. Instead to use directly the 
physical variables �S
��� S��� the controller calculate the 
control actions for �SX� SY� using the simple restriction SX Z ). The conversion to �S
��� S��� is performed by the 
multiplication with the rotation matrix

Jöbses’s Model – we have assumed that the model could 
predict the system behavior at high dilution rate and inlet 
substrate concentration. Of course, this extrapolation is 
totally questionable considering a real application.  
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written.5, given by:  

5 $ 
[\]�^�� _ ]E: �^�]E:��^� [\] �^� �
where ^ is the rotation 
angle.  

Fig. 8: Simple variable 
transformation for 
guarantee the feasible 
region A
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