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the interval between two successive measurements of the process state, two separate Lyapunov-
based model predictive controllers that coordinate their actions and take asynchronous mea-
surements explicitly into account are designed. The proposed distributed control design only
requires one directional communication between the two distributed controllers and provides
the potential of maintaining stability and performance in the face of new or failing actuators.
The results are illustrated through a chemical process example.
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1. INTRODUCTION

We are currently witnessing an augmentation of the ex-
isting, dedicated local control networks, with additional
networked (wired and/or wireless) actuator/sensor devices
which have become cheap and easy-to-install the last few
years. Such an augmentation in sensor information and
networked-based availability of data has the potential (Yd-
stie (2002); Neumann (2007); Christofides et al. (2007)) to
be transformative in the sense of dramatically improving
the ability of the control systems to optimize process
performance and prevent or deal with abnormal situations
more quickly and effectively. However, augmenting dedi-
cated, local control systems (LCS) with control systems
that may utilize real-time sensor and actuator networks
gives rise to the need to design/redesign and coordinate
separate control systems that operate on a process. Model
predictive control (MPC) is a natural control framework
to deal with the design of coordinated, distributed control
systems because of its ability to handle input and state
constraints, and also because it can account for the actions
of other actuators in computing the control action of a
given set of control actuators in real-time. Motivated by
the lack of available methods for the design of networked
control systems (NCS) for chemical processes, in a pre-
vious work (Liu et al. (2008)), we introduced a decen-
tralized control architecture for systems with continuous
and asynchronous measurements. In this architecture, the
local, pre-existing control system uses continuous sens-
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ing and actuation and an explicit control law. On the
other hand, the NCS uses networked (wired or wireless)
sensors and actuators and has access to heterogeneous,
asynchronous measurements that are not available to the
LCS. The NCS is designed via Lyapunov-based model
predictive control (LMPC). Following up on this work, in
another recent work (Liu et al. (in press)), we proposed a
distributed model predictive control method for the design
of networked control systems where both the pre-existing
local control system and the networked control system are
designed via Lyapunov-based model predictive control.

With respect to available results on distributed MPC
design, several distributed MPC methods have been pro-
posed in the literature that deal with the coordination of
separate MPC controllers that communicate in order to
obtain optimal input trajectories in a distributed manner
(Rawlings and Stewart (2007); Dunbar (2007); Richards
and How (2007); Keviczky et al. (2006); Magni and Scat-
tolini (2006); Raimondo et al. (2007)). All of the above re-
sults on distributed MPC design are based on the assump-
tion of continuous sampling and perfect communication
between the sensor and the controller. However, one may
encounter asynchronous measurement samplings because
of measurement difficulties in process control applications.

In this work, we address distributed model predictive con-
trol of nonlinear process systems subject to asynchronous
measurements. Assuming that there exists an upper bound
on the interval between two successive measurements of
the process state, two separate Lyapunov-based model
predictive controllers that coordinate their actions and



take asynchronous measurements explicitly into account
are designed. Sufficient conditions are derived for the pro-
posed distributed control design to guarantee that the
state of the closed-loop system is ultimately bounded in a
region that contains the origin. In addition, the proposed
distributed control design only requires one directional
communication between the two distributed controllers
and provides the potential of maintaining stability and
performance in the face of new or failing actuators. The
results are illustrated through a chemical process example.

2. PRELIMINARIES

2.1 Control problem formulation

We consider nonlinear process systems described by the
following state-space model

ẋ(t) = f(x(t), u1(t), u2(t), w(t)) (1)
where x(t) ∈ Rnx denotes the vector of process state
variables, u1(t) ∈ Rnu1 and u2(t) ∈ Rnu2 are two separate
sets of manipulated inputs and w(t) ∈ Rnw denotes
the vector of disturbance variables. The two manipulated
inputs are restricted to be in two nonempty convex sets
U1 ⊆ Rnu1 and U2 ⊆ Rnu2 and the disturbance vector is
bounded, i.e., w(t) ∈ W where

W := {w ∈ Rnw s.t. |w| ≤ θ, θ > 0} 2 .

We assume that f is a locally Lipschitz vector function
and f(0, 0, 0, 0) = 0. This means that the origin is an
equilibrium point for the nominal system (system (1) with
w(t) = 0 for all t) with u1 = 0 and u2 = 0. System (1)
is controlled with the two sets of manipulated inputs u1

and u2, which could be multiple inputs of a system or
a single input divided artificially into two terms (e.g.,
ẋ(t) = f̂(x(t), u(t), w(t)) with u(t) = u1(t) + u2(t)).

2.2 Lyapunov-based controller

We assume that there exists a Lyapunov-based controller
u1(t) = h(x(t)) which satisfies the input constraint on u1

for all x inside a given stability region and renders the
origin of the nominal closed-loop system asymptotically
stable with u2(t) = 0. Using converse Lyapunov theorems
(Massera (1956); Lin et al. (1996)), this assumption im-
plies that there exist functions αi(·), i = 1, 2, 3, 4 of class
K 3 and a continuously differentiable Lyapunov function
V for the nominal closed-loop system that satisfy the
following inequalities

α1(|x|) ≤ V (x) ≤ α2(|x|)
∂V (x)

∂x
f(x, h(x), 0, 0) ≤ −α3(|x|)

|∂V (x)
∂x

| ≤ α4(|x|)
h(x) ∈ U1

(2)

for all x ∈ D ⊆ Rnx where D is an open neighborhood
of the origin. We denote the region Ωρ

4 ⊆ D as the
stability region of the closed-loop system under the control
u1 = h(x) and u2 = 0.
2 | · | denotes Euclidean norm of a vector.
3 A continuous function α : [0, a) → [0,∞) is said to belong to class
K if it is strictly increasing and α(0) = 0.
4 We use Ωr to denote the set Ωr := {x ∈ Rnx |V (x) ≤ r}.

By continuity and the local Lipschitz property assumed
for the vector field f(x, u1, u2, w) and the fact that the
manipulated inputs u1 and u2 are bounded in convex sets,
there exists a positive constant M such that

|f(x, u1, u2, w)| ≤ M (3)
for all x ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W . In addition,
by the continuous differentiable property of the Lyapunov
function V and the Lipschitz property assumed for the
vector field f(x, u1, u2, w), there exist positive constants
Lx, Rx, Rw such that

|∂V

∂x
f(x, u1, u2, 0) − ∂V

∂x
f(x′, u1, u2, 0)| ≤ Lx|x − x′| (4)

and
|f(x, u1, u2, w)−f(x′, u1, u2, 0)| ≤ Rx|x−x′|+Rw|w| (5)

for all x, x′ ∈ Ωρ, u1 ∈ U1, u2 ∈ U2 and w ∈ W .

These constants will be used in section 4 in the proof of
the main results of the present work.

2.3 Modeling of asynchronous measurements

Most control systems assume that measurements from sen-
sors are obtained in a continuous periodic pattern. How-
ever, in many chemical processes, this assumption does not
hold due to a host of measurement difficulties. In this case,
the system is subject to asynchronous measurements. In
the present work, we assume the state of system (1), x(t),
is sampled and available asynchronously at time instants
tk where {tk≥0} is a random increasing sequence of times.
The distribution of {tk≥0} characterizes the time needed
to obtain a new measurement in the case of asynchronous
measurements. In general, there exists the possibility of
arbitrarily large (but finite) periods of time in which a
new measurement is not available. In such a case, it is
not possible to provide guaranteed stability properties,
because there exists a non-zero probability that the system
operates in open loop for a period of time large enough for
the state to leave the stability region. In order to study the
stability properties in a deterministic framework, in the
present work, we assume that there exists an upper bound
Tm on the interval between two successive measurements,
i.e., max

k
{tk+1 − tk} ≤ Tm. This assumption is reasonable

from a process control perspective.

3. DISTRIBUTED LMPC

3.1 Distributed LMPC formulations

In our previous work (Liu et al. (in press)), we in-
troduced a distributed model predictive control method
where both the pre-existing LCS and the NCS are designed
via Lyapunov-based model predictive control as shown in
Fig. 1. The LMPCs computing the input trajectories of
the LCS (i.e., u1) and the NCS (i.e., u2) are referred to as
LMPC 1 and LMPC 2, respectively. Under the assumption
of continuous and flawless measurements, in Liu et al. (in
press), it was proved that this control scheme guarantees
practical stability of the closed-loop system and has the
potential to maintain the closed-loop stability and perfor-
mance in the face of new or failing actuators (for exam-
ple, the failure of the actuator of the NCS (zero input)
does not affect the closed-loop stability) and to reduce
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Fig. 1. Distributed LMPC design for networked control
systems with continuous measurements (i.e., x(t) is
available to the controllers at tk = tk−1 + Δ where Δ
is a fixed sampling time for all k).
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Fig. 2. Distributed LMPC design for networked control
systems subject to asynchronous measurements.

computational burden in the evaluation of the optimal
manipulated inputs compared with a centralized LMPC.
However, when asynchronous measurements are present as
shown in Fig. 2, these results do not hold. In this work, the
distributed model predictive control method is extended to
take into account asynchronous measurements explicitly,
both in the constraints imposed on the LMPCs and in the
implementation strategy.

In the presence of asynchronous measurements, the con-
trollers need to operate in open-loop between successive
new state measurements. We propose to take advantage of
the model predictive control scheme to update the input
based on a prediction obtained using the model. This is
achieved by having the control actuators to store and
implement the last computed optimal input trajectory.
The proposed implementation strategy in the presence of
asynchronous measurements is as follows:

(1) When a measurement x(tk) is available at tk, LMPC 2
computes the optimal input trajectory of u2;

(2) LMPC 2 sends the entire optimal input trajectory to
its actuators and also sends the entire optimal input
trajectory to LMPC 1.

(3) Once LMPC 1 receives the entire optimal input tra-
jectory for u2, it evaluates the future input trajectory
of u1;

(4) LMPC 1 sends the entire optimal input trajectory to
its actuators.

(5) When a new measurement is received (k = k + 1), go
to step 1.

Note that in the proposed distributed scheme, only
LMPC 2 is required to send its optimal input trajectory to
LMPC 1 each time when a new measurement is available.
This minimizes the communications required between the
two controllers. Note also that the communication between
LMPC 1 and LMPC 2 is in general done using a reliable
link, and hence, it is not subject to data losses or delays.

We first design the optimization problem that charcterizes
LMPC 2. This optimization problem depends on the latest
state measurement x(tk), however, LMPC 2 does not have

any information about the value that u1 will take. In order
to take a decision, LMPC 2 must assume a trajectory for u1

along the prediction horizon. To this end, the Lyapunov-
based controller u1 = h(x) is used. LMPC 2 is based on
the following optimization problem:

min
ud2∈S(Δ)

∫ NΔ

0

L(x̃(τ), ud1(τ), ud2(τ))dτ (6a)

˙̃x(τ) = f(x̃(τ), h(x̃(jΔ)), ud2(τ), 0), (6b)
∀τ ∈ [jΔ, (j + 1)Δ)

˙̂x(τ) = f(x̂(τ), h(x̂(jΔ)), 0, 0),∀ τ ∈ [jΔ, (j + 1)Δ) (6c)
ud2(τ) ∈ U2,∀τ ∈ [0, NΔ) (6d)
x̃(0) = x̂(0) = x(tk) (6e)
V (x̃(τ)) ≤ V (x̂(τ)),∀τ ∈ [0, NRΔ) (6f)

where S(Δ) is the family of piece-wise constant functions
with sampling time Δ, N is the prediction horizon,

L(x, u1, u2) = xT Qcx + uT
1 Rc1u1 + uT

2 Rc2u2

is the performance index, Qc, Rc1 and Rc2 are positive
definite weight matrices that define the cost, x̃ is the
predicted trajectory of the nominal system with u2 being
the input trajectory computed by the LMPC of Eq. 6 (i.e.,
LMPC 2) and u1 being the Lyapunov-based controller h
applied in a sample-and-hold fashion with j = 0, ..., N −
1, x̂ is the predicted trajectory of the nominal system
with u1 being h applied in a sample-and-hold fashion and
u2 = 0, x(tk) is the state measurement obtained at tk
and NR is the smallest integer that satisfies the inequality
Tm ≤ NRΔ. To take full advantage of the nominal model
in the computation of the control action, we take N ≥ NR.

The optimal solution to this optimization problem is
denoted by u∗

d2(τ |tk). Once this optimal input trajectory
of u2 is available, it is sent to LMPC 1 as well as the control
actuators controlled by LMPC 1.

In order to inherit the stability properties of the Lyapunov
based controller, u2 must satisfy the constraint (6f) which
guarantees that the predicted decrease of the Lyapunov
function from tk to tk + NRΔ, if u1 = h(x) and u2 =
u∗

d2 are applied, is at least equal to the one obtained if
the Lyapunov-based controller h is applied in a sample-
and-hold fashion. Note that we have considered input
constraints, see Eq. 6d.

The optimization problem of LMPC 1 depends on the
latest state measurement x(tk) and the decision taken by
LMPC 2 (i.e., u∗

d2). This allows LMPC 1 to compute an
input u1 such that the closed-loop performance is opti-
mized, while guaranteeing that the stability properties of
the Lyapunov-based controller are preserved. Specifically,
LMPC 1 is based on the following optimization problem:

min
ud1∈S(Δ)

∫ NΔ

0

L(x̌(τ), ud1(τ), ud2(τ))dτ (7a)

˙̌x(τ) = f(x̌(τ), ud1(τ), ud2(τ), 0),∀τ ∈ [0, NΔ) (7b)
˙̃x(τ) = f(x̃(τ), h(x̃(jΔ)), ud2(τ), 0), (7c)
∀τ ∈ [jΔ, (j + 1)Δ)

ud2(τ) = u∗
d2(τ |tk),∀τ ∈ [0, NΔ) (7d)

ud1(τ) ∈ U1,∀τ ∈ [0, NΔ) (7e)
x̌(0) = x̃(0) = x(tk) (7f)
V (x̌(τ)) ≤ V (x̃(τ)), ∀τ ∈ [0, NRΔ) (7g)



where x̌ is the predicted trajectory of the nominal system if
u2 = u∗

d2 and u1 = ud1 are applied, and x̃ is the predicted
trajectory of the nominal system if u2 = u∗

d2 and the
Lyapunov-based controller h are applied in a sample-and-
hold fashion.

The optimal solution to this optimization problem is
denoted by u∗

d1(τ |tk). The contractive constraint (7g)
guarantees that the predicted decrease of the Lyapunov
function from tk to tk + NRΔ, if u1 = u∗

d1 and u2 = u∗
d2

are applied, is at least equal to the one obtained when
u1 = h(x) and u2 = u∗

d2 are applied.

Note that the trajectory x̃(τ) predicted by constraint (7c)
is the same optimal trajectory predicted by LMPC 2.
This trajectory and the two contractive constraints (6f)
and (7g) allow proving the closed-loop stability properties
of the proposed controller.

The manipulated inputs of the proposed control scheme
are defined as follows:

u1(t) = u∗
d1(t − tk|tk), ∀t ∈ [tk, tk+1)

u2(t) = u∗
d2(t − tk|tk), ∀t ∈ [tk, tk+1).

(8)

Note that, as explained before, the controllers apply the
last evaluated optimal input trajectory between two suc-
cessive state measurements.

4. STABILITY PROPERTIES

In this section, we present the stability properties of the
proposed distributed control scheme. We prove that the
contractive constraints (6f) and (7g) guarantee that the
proposed distributed control scheme inherits the stability
properties of the Lyapunov-based controller (implemented
in sample and hold and using the model to estimate
the state of the system when a new measurement is not
available). This property is presented in Theorem 1 below.
To state this theorem, we need the following propositions.
Proposition 1. (c.f. Muñoz de la Peña and Christofides
(2008)). Consider the nominal sampled trajectory x̂ of sys-
tem (1) in closed-loop with the Lyapunov-based controller
h applied in a sample-and-hold fashion and u2(t) = 0. Let
Δ, εs > 0 and ρ > ρs > 0 satisfy

−α3(α−1
2 (ρs)) + α4(α−1

1 (ρ))LxMΔ ≤ −εs/Δ. (9)
Then, if ρmin < ρ where

ρmin = max{V (x̂(t + Δ)) : V (x̂(t)) ≤ ρs} (10)
and x̂(0) ∈ Ωρ, the following inequality holds

V (x̂(kΔ)) ≤ max{V (x̂(0)) − kεs, ρmin}. (11)

Proposition 1 ensures that if system (1) with w(t) = 0
for all t under the control law u1 = h(x) implemented
in a sample-and-hold fashion and u2 = 0 starts in Ωρ,
then it is ultimately bounded in Ωρmin . The following
proposition provides an upper bound on the deviation of
the state trajectory obtained using the nominal model,
from the real-state trajectory when the same control input
trajectories are applied.
Proposition 2. (c.f. Liu et al. (2008)). Consider the follow-
ing state trajectories

ẋa(t) = f(xa(t), u1(t), u2(t), w(t))
ẋb(t) = f(xb(t), u1(t), u2(t), 0) (12)

with initial states xa(t0) = xb(t0) ∈ Ωρ. There exists a
class K function fW (·) such that

|xa(t) − xb(t)| ≤ fW (t − t0), (13)
for all xa(t), xb(t) ∈ Ωρ and all w(t) ∈ W with

fW (τ) =
Rwθ

Rx
(eRxτ − 1).

The following proposition bounds the difference between
the magnitudes of the Lyapunov function of two different
states in Ωρ.
Proposition 3. (c.f. Liu et al. (2008)). Consider the Lya-
punov function V (·) of system (1). There exists a quadratic
function fV (·) such that

V (x) ≤ V (x̂) + fV (|x − x̂|) (14)
for all x, x̂ ∈ Ωρ with

fV (s) = α4(α−1
1 (ρ))s + Ms2.

In Theorem 1 below, we provide sufficient conditions
under which the proposed distributed LMPC design (8)
guarantees the closed-loop stability of system (1) in the
presence of asynchronous measurements.
Theorem 1. Consider system (1) in closed-loop with the
distributed LMPC design (8) based on a controller h(x)
that satisfies (2). Let Δ, εs > 0, ρ > ρmin > 0, ρ > ρs > 0
and N ≥ NR ≥ 1 satisfy (9),(10) and the following
inequality

−NRεs + fV (fW (NRΔ)) < 0. (15)
If x(t0) ∈ Ωρ, then x(t) is ultimately bounded in Ωρc

⊆ Ωρ

where
ρc = ρmin + fV (fW (NRΔ)).

Proof: In order to prove that the closed-loop system is
ultimately bounded in a region that contains the origin,
we will prove that V (x(tk)) is a decreasing sequence of
values with a lower bound.

The proof consists of two parts. In the first part, we will
prove that the stability results stated in Theorem 1 hold
for the case where tk+1−tk = Tm for all k and Tm = NRΔ.
The proof of the stability results for the general case, that
is tk+1 − tk ≤ Tm for all k and Tm ≤ NRΔ, will be shown
in the second part.

Part 1: In this part, we prove that the stability results
stated in Theorem 1 hold in the case that tk+1 − tk = Tm

for all k and Tm = NRΔ. This case corresponds to the
worst possible situation in the sense that LMPC 1 and
LMPC 2 need to operate in open-loop for the maximum
possible amount of time.

In order to simplify the notation, we will denote x̃(t) the
nominal closed-loop trajectory of system (1) with u1 = h
implemented in a sample-and-hold fashion and u2 = u∗

d2
from x(tk), x̂(t) the nominal closed-loop trajectory of
system (1) under the Lyapunov-based controller u1 =
h implemented in a sample-and-hold fashion and u2 =
0 from x(tk), and denote x̌(t) the nominal closed-loop
trajectory of system (1) with u1 = u∗

1d and u2 = u∗
2d from

x(tk).

By Proposition 1 and the fact that tk+1 = tk + NRΔ, the
following inequality can be obtained:

V (x̂(tk+1)) ≤ max{V (x̂(tk)) − NRεs, ρmin}. (16)
From the contractive constraints (6f) and (7g) in LMPC 2
and LMPC 1, the following inequality can be written:



V (x̌(t)) ≤ V (x̃(t)) ≤ V (x̂(t)),∀t ∈ [tk, tk + NRΔ). (17)
From inequalities (16) (17) and taking into account that
x̂(tk) = x̃(tk) = x̌(tk) = x(tk), the following inequality is
obtained:

V (x̌(tk+1)) ≤ max{V (x(tk)) − NRεs, ρmin}. (18)
When x(t) ∈ Ωρ for all times (this point will be proved
below), we can apply Proposition 3 to obtain the following
inequalities:

V (x(tk+1)) ≤ V (x̌(tk+1))
+fV (|x̌(tk+1) − x(tk+1)|). (19)

Applying Proposition 2 we obtain the following upper
bound on the deviation of x̌(t) from x(t):

|x(tk+1) − x̌(tk+1)| ≤ fW (NRΔ) (20)
From inequalities (19) and (20), the following upper bound
on V (x(tk+1)) can be written:

V (x(tk+1)) ≤ V (x̌(tk+1)) + fV (fW (NRΔ)). (21)
Using inequality (18), we can re-write inequality (21) as
follows:

V (x(tk+1)) ≤ max{V (x(tk)) − NRεs, ρmin}
+fV (fW (NRΔ)). (22)

If condition (15) is satisfied, from inequality (22), we know
there exists εw > 0 such that the following inequality
holds:

V (x(tk+1)) ≤ max{V (x(tk)) − εw, ρc} (23)
which implies that if x(tk) ∈ Ωρ/Ωρc

, then V (x(tk+1)) <
V (x(tk)), and if x(tk) ∈ Ωρc

, then V (x(tk+1)) < ρc. Using
inequality (23) recursively, it is proved that if x(t0) ∈
Ωρ, the closed-loop trajectories of system (1) under the
proposed distributed LMPC design (8) satisfy

lim sup
t→∞

V (x(t)) ≤ ρc.

This proves that the closed-loop system is ultimately
bounded in Ωρc

for the case where tk+1 − tk = Tm for
all k and Tm = NRΔ.

Part 2: In this part, we extend the results proved in Part 1
to the general case, that is, tk+1 − tk ≤ Tm for all k
and Tm ≤ NRΔ which implies that tk+1 − tk ≤ NRΔ.
The proof is divided into two cases. The first case is that
tk+1 − tk ≤ Δ. In this case, the stability results hold as
shown in Liu et al. (in press). The second case is that
Δ < tk+1 − tk ≤ NRΔ. Because fV and fW are convex
and strictly increasing functions of their arguments (see
Propositions 2 and 3 for the expressions of fV and fW )
and following similar steps in Part 1, we can show that
inequality (22) still holds. This proves that the stability
results stated in Theorem 1 hold.

5. APPLICATION TO A CHEMICAL PROCESS

The process considered in this example is a three vessel,
reactor-separator process consisting of two continuously
stirred tank reactors (CSTRs) and a flash tank separator.A
feed stream to the first CSTR F10 contains the reactant
A which is converted into the desired product B. The
desired product B can then further react into an undesired
side-product C. The effluent of the first CSTR along with
additional fresh feed F20 makes up the inlet to the second
CSTR. The reactions A → B and B → C (referred to as 1
and 2, respectively) take place in the two CSTRs in series

before the effluent from CSTR 2 is fed to a flash tank.
The overhead vapor from the flash tank is condensed and
recycled to the first CSTR and the bottom product stream
is removed. A small portion of the overhead is purged
before being recycled to the first CSTR. All the three
vessels are assumed to have static holdup. The dynamic
equations describing the behavior of the system, obtained
through material and energy balances under standard
modeling assumptions, can be found in Liu et al. (in press).

Each of the tanks has an external heat input. The manip-
ulated inputs to the system are the heat inputs, Q1, Q2

and Q3, and the feed stream flow rate to vessel 2, F20.

The process was numerically simulated using a standard
Euler integration method. Process noise was added to sim-
ulate disturbances/model uncertainty and it was generated
as autocorrelated noise of the form wk = φwk−1+ξk where
k = 0, 1, . . . is the discrete time step of 0.001 hr, ξk is
generated by a normally distributed random variable with
standard deviation σp, and φ is the autocorrelation factor
and wk is bounded by θp, that is |wk| ≤ θp.

We assume that the measurements of the temperatures T1,
T2, T3 and the measurements of mass fractions xA1, xB1,
xA2, xB2, xA3, xB3 are available asynchronously at time
instants {tk≥0} with an upper bound Tm = 3Δ on the
maximum interval between two successive measurements,
where Δ is the controller sampling time and chosen to be
Δ = 0.02 hr = 1.2 min.

For each set of steady-state inputs Q1s, Q2s, Q3s and
F20s corresponding to a different operating condition, the
process has one steady-state xs. The control objective is
to steer the process to the steady state
xT

s = [0.61, 0.39, 425.9, 0.61, 0.39, 422.6, 0.35, 0.63, 427.3].

The process belongs to the following class of nonlinear
systems

ẋ(t) = f(x(t)) + g1(x(t))u1(t) + g2(x(t))u2(t) + w(t)
where xT = [x1 x2 x3 x4 x5 x6 x7 x8 x9] = [xA1 −
xA1s xB1 − xB1s T1 − T1s xA2 − xA2s xB2 − xB2s T2 −
T2s xA3 − xA3s xB3 − xB3s T3 − T3s] is the state, uT

1 =
[u11 u12 u13] = [Q1 − Q1s Q2 − Q2s Q3 − Q3s] and
u2 = F20 − F20s are the manipulated inputs which are
subject to the constraints |u1i| ≤ 106 KJ/hr (i = 1, 2, 3)
and |u2| ≤ 3 m3/hr, and w = wk is a time varying noise.

To illustrate the theoretical results, we first design the
Lyapunov-based controller u1 = h(x) which can stabilize
the closed-loop system and the explicit expression of the
controller can be found in Liu et al. (in press). We consider
a Lyapunov function V (x) = xT Px with P being the
following weight matrix

P = diag 5 (5.2 × 1012
[
4 4 10−4 4 4 10−4 4 4 10−4

]
).

The values of the weights in P have been chosen in a way
such that the Lyapunov-based controller h(x) satisfies the
input constraints, stabilizes the closed-loop system and
provides good closed-loop performance.

Based on the Lyapunov-based controller h(x), we design
LMPC 1 and LMPC 2. The prediction horizons of both
LMPC 1 and LMPC 2 are chosen to be N = 6 and NR is
5 diag(v) denotes a matrix with its diagonal elements being the
elements of vector v and all the other elements being zeros.



0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

x A
1

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x B
1

0 0.2 0.4 0.6 0.8 1
380

400

420

440

T 1

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

x A
2

0 0.2 0.4 0.6 0.8 1
0

0.5

1
x B

2

0 0.2 0.4 0.6 0.8 1
380

400

420

440

T 2

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x A
3

Time (hr)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

x B
3

Time (hr)
0 0.2 0.4 0.6 0.8 1

380

400

420

440

T 3

Time (hr)

Fig. 3. State trajectories of the process under the proposed
distributed LMPC design (8) (solid lines) and the
original distributed LMPC design in Liu et al. (in
press) (dashed lines) under continuous measurements.
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Fig. 4. State trajectories of the process under the proposed
distributed LMPC design (8) (solid lines) and the
original distributed LMPC design in Liu et al. (in
press) (dashed lines) in the presence of asynchronous
measurements.

chosen to be 4 so that NRΔ ≥ Tm. The weight matrices
for the LMPC designs are chosen as: Qc = diag(103Qv)
with Qv = [2 2 0.0025 2 2 0.0025 2 2 0.0025], Rc1 =
diag(

[
5 · 10−12 5 · 10−12 5 · 10−12

]
) and Rc2 = 100.

We first carried out simulations to compare the proposed
distributed LMPC design (8) with the original distributed
LMPC design in Liu et al. (in press) in the case where
no asynchronous measurements are present (i.e., state
measurements x(tk) are available continuously with the
interval between two successive measurements being Δ).
The state trajectories under the two control designs are
shown in Fig. 3. From Fig. 3, we can see that both
the proposed and the original distributed LMPC designs
stabilize the closed-loop system at the desired steady state.

We also carried out another set of simulations to compare
both control laws in the presence of asynchronous mea-
surements. To model the time sequence {tk≥0}, we use
an upper bounded random Poisson process. The Poisson

process is defined by the number of events per unit time
W . The interval between two successive concentration
sampling times (events of the Poisson process) is given by
Δa = min{−lnχ/W, Tm}, where χ is a random variable
with uniform probability distribution between 0 and 1.
This generation ensures that max

k
{tk+1 − tk} ≤ Tm. In

this example, W is chosen to be W = 20. The state
trajectories of the system in closed-loop with both con-
trollers are shown in Fig. 4. From Fig. 4, we can see
that the proposed distributed LMPC design, which takes
into account asynchronous measurements explicitly, can
stabilize the closed-loop state at the desired steady state;
however, the original distributed LMPC design failed to
drive the closed-loop state to the desired steady state.
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Liu, J., Muñoz de la Peña, D., and Christofides, P.D.
(2009). Distributed model predictive control of nonlin-
ear process systems. AIChE Journal, 55, 1171-1184.

Magni, L. and Scattolini, R. (2006). Stabilizing decen-
tralized model predictive control of nonlinear systems.
Automatica, 42, 1231–1236.

Massera, J.L. (1956). Contributions to stability theory.
Annals of Mathematics, 64, 182–206.
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