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Abstract: In this paper, a modified independent component analysis (ICA) and its 

application to process monitoring are proposed. The basic idea of this approach is to use 

the modified ICA to extract some dominant independent components from normal 

operating process data and to combine them with statistical process monitoring 

techniques. The proposed monitoring method is applied to fault detection and 

identification in the Tennessee Eastman process and is compared with the conventional 

PCA based monitoring method. The monitoring results demonstrate that the proposed 

method outperforms PCA in terms of the fault detection rate while attaining comparable 

false alarm rate. Copyright © 2006 IFAC
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1. INTRODUCTION 

In order to extract useful information from a large 

amount of process data and to detect and diagnose 

various faults in an abnormal operating situation, a 

number of multivariate statistical process monitoring 

(MSPM) approaches based on principal component 

analysis (PCA) have been developed. PCA is a 

second-order method, considering only mean and 

variance of the data. It gives only uncorrelated 

components, not independent components. PCA 

performs well in many cases, but gives limited 

meaningful representations for non-Gaussian data, 

which can be typical in industrial measurement data 

(Kermit and Tomic, 2003).  

More recently, several MSPM methods based on 

independent component analysis (ICA) have been 

proposed (Kano et al., 2003, 2004; Lee et al., 2003, 

2004, Yoo et al., 2004; Albazzaz and Wang, 2004).  

The goal of ICA is to decompose observed data into 

linear combinations of statistically independent 

components. In comparison to PCA, ICA involves 

higher-order statistics, i.e., not only does it 

decorrelate the data (second order statistics) but also 

reduces higher order statistical dependencies (Lee,  
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1998). However, conventional ICA-based monitoring 

method has some drawbacks for MSPM. First, it is 

not easy to determine how many independent 

components (ICs) should be extracted in order to 

establish a stable ICA model (Kermit and Tomic, 

2003). Generally, ICs are extracted up to the 

dimension of given data, which causes high 

computational load. Second, the extracted ICs are not 

ranked in any order as is the case for PCA. In 

addition, random initialization of the demixing 

matrix in the whitened space can give different 

solutions when performing the ICA algorithm. 

In this paper, a modified ICA algorithm is proposed 

to extract dominant ICs from multivariate data. The 

basic idea is to estimate the variance and the axes of 

dominant ICs using PCA and then perform ICA to 

update the dominant ICs while maintaining the 

variance. This article is organized as follows. The 

original ICA algorithm is introduced, followed by a 

modified ICA algorithm and its application to 

process monitoring. Then, the performance of 

process monitoring using the modified ICA is 

illustrated through the Tennessee Eastman process. 

Finally, a conclusion is given. 

IFAC - 1133 - ADCHEM 2006



     

2. ORIGINAL ICA 

The model of ICA is given by 

Asx  (1) 

where T

mxxx ],,,[ 21x is an m-dimensional 

observation vector, A pmR  is an unknown mixing 

matrix and T

psss ],,,[ 21s is a p-dimensional 

independent component vector. The objective of ICA 

is to estimate both A and s  from only x . This 

solution is equivalent to finding a demixing matrix 

W whose form is such that the elements of the 

reconstructed vector ŝ , given as 

Wxŝ  (2) 

become as independent of each other as possible.  

In the original ICA algorithm, it is assumed that m

equals p and all ICs have unit variance for 

convenience. The initial step in ICA is to remove all 

the cross-correlation of x , given as  

QxxUz
T2/1  (3) 

where Izz
TE , TUQ 2/1 , and U  and  are  

eigenvector and eigenvalue matrix, respectively, 

generated from the eigen-decomposition of 
TTE UUxx . Then, Eq. (3) can be expressed as 

BsQAsQxz  (4) 

where QAB  is an orthogonal matrix since 

TTTT EE BBBssBzzI .  (5) 

Thus, s  can be estimated from Eq. (4)  

QxBzBs
TTˆ . (6) 

From Eq. (2) and Eq. (6),  

QBW
T . (7) 

To calculate B, each column vector ib  is randomly 

initialized and then updated so that the i-th 

independent component zb
T

iis )(ˆ  may have 

maximized non-Gaussianity. As a measure of non-

Gaussianity, negentropy, the difference of the 

differential entropy between the given data and 

Gaussian distribution data, has been used. Hyvärinen 

and Oja (2000) introduced a reliable approximation 

of negentropy:  
2

)()()( vGEyGEyJ  (8) 

where y  is assumed to be of zero mean and unit 

variance, v  is a Gaussian variable of zero mean and 

unit variance, and G is any non-quadratic function. 

Hyvärinen and Oja (2000) suggested three functions 

for G:

)cosh(log
1

)( 1

1

1 ua
a

uG  (9) 

)2/exp()( 2

22 uauG  (10) 

4

3 )( uuG  (11) 

where 21 1a  and 12a . 2G  and 3G  are more 

suitable for super-Gaussian and sub-Gaussian 

components, respectively. 1G  is a good general-

purpose contrast function and is therefore selected 

for use in this paper.  

Hyvärinen (1999) introduced a highly efficient fixed-

point algorithm for ICA based on the approximate 

form for the negentropy. The algorithm, called 

FastICA, calculates each column of the matrix B one 

by one and allows the identification of each 

independent component. More details on the FastICA 

algorithm are well described in Hyvärinen and Oja 

(2000), Hyvärinen (1999), Hyvärinen et al. (2001). 

3. MODIFIED  ICA 

ICA not only decorrelates the data (second order 

statistics) but also reduces higher order statistical 

dependencies; hence it can extract underlying hidden 

factors efficiently and capture the essential structure 

of the data. Based on this merit, some researchers 

have illustrated that applying ICA to process 

monitoring is useful to detect and identify various 

faults generated from abnormal situations (Kano et

al., 2003; Lee et al., 2004).  

However, the conventional ICA-based monitoring 

method has some drawbacks. A fundamental 

assumption behind original ICA is that the number of 

ICs equals that of variables of given data. In case that 

the number of measured variables is very large, it has 

high computational load and may extract additional 

ICs which are unimportant for detecting faults. Of 

course, one can reduce data dimension in advance 

using PCA before performing ICA (Hyvärinen et al.,

2001). However, much information needed to extract 

essential ICs is ignored by data reduction with PCA. 

The second problem in the original ICA algorithm is 

that ICs are not ordered in the same fashion as with 

PCA since the variance of extracted ICs is assumed 

to be all one (Kermit and Tomic, 2003). There is no 

standard criterion to order ICs. Furthermore, random 

initialization of demixing matrix B in the whitened 

space can lead to different solutions when 

performing ICA algorithm (Kermit and Tomic, 2003). 

In order to solve these problems, a modified ICA 

algorithm is suggested in this paper. The modified 

ICA algorithm can extract a few dominant ICs, 

determine the order of ICs, and give a consistent 

solution. The basic idea is to first use PCA to 

estimate initial ICs where the variance of each IC is 

the same as that of each PC and then to update a few 

dominant ICs using FastICA algorithm. Here, it is 

reasonable to expect the space spanned by the major 

ICs to be essentially similar to the ones associated to 

the largest principal components (PCs) because ICA 

can be viewed as a modified PCA (centering and 

whitening) and an additional iterative process 

(Kocsor et al., 2004).  

The objective of the modified ICA can be defined as 

follows: to find a demixing matrix W
mpR   whose 

form is such that the elements of the extracted 

vector y , given as 

Wxy   (12) 

become as independent of each other as possible and 

have been ordered by their variances that are the 

same as the variances of the corresponding PCs.  

To solve above problem, first of all, all score 

components are extracted from PCA  

xUt
T  (13) 
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where t is the score vector with tt }{ TE

mm

m Rdiag },,{ 1  and mmRU  is the 

loading matrix obtained from TTE UUxx }{ ,

respectively. In some cases, the last a few 

eigenvalues in   are so small that they are close to 

zero. In that case, the eigenvalues and the 

corresponding eigenvectors can be excluded. 

However, it is important to retain as many 

eigenvalues as possible because the extracted score 

components give additional information to find 

essential ICs even though their variances are small.  

Eq. (13) can be changed as follows through the 

whitening transform: 

Qxz   (14) 

where z  is the normalized score vector, tz
2/1 ,

and T
UQ

2/1 .

From mRz , a few dominant ICs,  pRy

satisfying },,{}{ 1 p

T diagE Dyy , should be 

found such that the elements of  y  are as 

independent of each other as possible, using 

zCy
T   (15) 

where pmRC , DCC
T . Dyy }{ TE  reflects 

that the variance of each element of  y  is the same 

as that of scores in PCA, hence ICs can be ordered 

according to their variances.  

Eq. (15) can be arranged as a simpler model by 

multiplying 
2/1

D  to each side: 

zCy
T

nn  (16) 

where yDy
2/1

n ,
T

n

T
CCD

2/1 , ICC n

T

n ,

and Iyy }{
T

nnE . Consequently, the problem of 

finding an arbitrary demixing matrix W is reduced to 

the simpler problem of finding a matrix nC  which 

has fewer parameters to estimate as a result of the 

orthogonality. Note that z  is the normalized score 

vector generated from PCA, that is uncorrelated and 

had been ordered by its original variance. The first 

p  components of z can be a good initial value of 

ny  since statistical dependencies of data have been 

removed up to the second order (mean and variance) 

by PCA. To do this, the initial matrix of 
T

nC  should 

be set to be 

0IC p

T

n  (17) 

where pI  is the p-dimensional identity matrix and 0

is p by m-p zero matrix. This initialization is based 

on the assumption that extracted PCs are good initial 

estimates of ICs, and thereby can give a consistent 

solution unlike random initialization.  

The detail procedures to find a few dominant ICs are: 

1) Determine p, the number of ICs to estimate. Set 

counter 1i .

2) Denote in,c  as the i-th column vector of nC  and 

take the initial vector in,c  to be i-th column vector 

of pI  in Eq. (17) 

3) Let in

T

in

T

inin gEgE ,,,, )()( czczczc , where 

g  is the first derivative and 'g  is the second 

derivative of G, where G takes the form of Eq. (9), 

(10) or (11). This step is an approximate Newton 

iteration procedure for the maximization of the 

negentropy given in Eq. (8).  

4) Do the orthogonalization:  
1

1

,,,,, )(
i

j

jnjn

T

ininin ccccc .

 This step removes the information contained in 

the solutions already found. 

5) Normalize ininin ,,, / ccc

6) If in,c  has not converged, go back to Step 3).  

7) If in,c  has converged, output the vector in,c . Then, 

if pi  set 1ii  and go back to Step 2).  

Once nC  is found, then final demxing matrix W

and mixing matrix A  can be obtained from 

QCDW
T

n

2/1
 (18) 

2/12/1
DCUA n  (19) 

At last, we can obtain some dominant ICs from Eq. 

(12). The extracted ICs reveal the majority of 

information and represent a meaningful 

representation about the observed data x .

4. MODIFIED ICA FOR MONITORING 

In the proposed monitoring method, two types of 

statistics are considered: the D-statistic to monitor 

the systematic part change of the process variation 

and the Q-statistic to monitor the residual part of the 

process variation. The D-statistic, also known as the 

Hotelling’s T2 statistic, is the Mahalanobis distance 

defined as follows: 

yDy
12 TT  (20) 

where y  is obtained from Eq. (12) and D  is the 

diagonal matrix of the eigenvalues associated with 

the retained dominant ICs. In this paper, kernel 

density estimation is used to define the control limit 

for T2 because y  is not Gaussian (Silverman, 1986; 

Martin and Morris, 1996; Lee et al., 2004). 

The Q-statistic, also known as the SPE statistic is 

defined as follows: 

xxxxee ˆˆ TTSPE  (21) 

where xxe ˆ  and x̂  can be calculated as follows: 

AWxAyx̂ . (22) 

If the number of ICs is chosen such that the majority 

of non-Gaussianity is included in the ICs, the 

residual subspace will contain mostly random noise 

which can be treated as normal distribution. The 

upper control limit of SPE can then be calculated 

from Jackson and Mudholkar (1979). 

The contribution based approach is simple to identify 

faults and can be generated without prior knowledge 

(Qin, 2003). In the proposed method, the 
2T statistic 

can be decomposed as: 
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Therefore, the contribution to the T2 statistic for a 

data x , is given as follows (Westerhuis et al., 2000): 

jj

T

j xTc wSy 12  (24)  

where 2Tc j  is the contribution of the j-th variable 

to the 2T  statistic, jx  is the j-th element of x , and 

jw is the j-th row of the demixing matrix W .

Similarly, the contribution of process variable j at 

given time to the SPE statistic is defined as follows: 
2

jj eSPEc  (25)  

where je  is the j-th variable of xxe ˆ .

In this paper, the upper control limits for 2Tc j  are 

calculated as the mean of the contributions plus three 

standard deviations of the contributions for each 

process variable (Westerhuis et al., 2000). Control 

limits for SPEc j  are calculated the same way as 

the Q-statistic control limit (Westerhuis et al., 2000). 

5. CASE STUDY 

In this section, the proposed method is applied to the 

Tennessee Eastman process simulation data and is 

compared with PCA monitoring results. The details 

on the process description are well explained in 

Chiang et al. (2001). A total of 33 variables listed in 

Table 1 are used for monitoring in this study. A 

sampling interval of 3 minutes was used to collect 

the simulated data. Both the training and testing data 

sets for each fault are composed of 960 observations. 

A set of programmed faults (Fault 1-21) is listed in 

Table 2. All faults in the test data set were introduced 

from sample 160. The data can be downloaded from 

http://brahms.scs.uiuc.edu (Chiang et al., 2001). 

All the data were auto-scaled prior to the application 

of PCA and the modified ICA. In the modified ICA, 

30 whitened vectors are extracted from Eq. (13) to 

update and find ICs. 9 PCs are selected for the PCA 

by cross-validation and the same number of ICs is 

chosen for fair comparison.  

The false alarm rates and the fault detection rates of 

the two multivariate methods, PCA and modified 

ICA, for all 21 fault data were computed and 

tabulated in Table 3. For the data obtained after the 

fault occurrence, the percentage of the samples 

outside the 99% control limits was calculated in each 

simulation and termed as detection rate. Maximum 

detection rate achieved for each fault is marked with 

a bold number. With 9 PCs and 9 ICs, false alarm 

rates of PCA and modified ICA are comparable 

though they are different for each fault data. As 

shown in Table 3, the modified ICA can detect most 

faults more effectively than PCA except Fault 4 and 

11. For Faults 10 and 16, the detection rate of the 

proposed method is more than twice as high as that 

of PCA, which shows that the modified ICA with 

acceptable false alarm rate can detect small events 

that are difficult to detect by PCA. One thing that 

needs to be noted is T2 ability of the proposed 

method for detecting faults. For all cases, the 

detectability of T2 is considerably enhanced by the 

proposed method. It means the proposed method can 

extract essential features in a process much more 

sensitively than PCA. This result demonstrates that 

the proposed method is expected to be more effective 

than PCA to diagnose fault patterns in the feature 

space.  

The monitoring charts of PCA and modified ICA in 

the case of Fault 10 are shown in Fig. 1. PCA can 

detect the fault from about sample 200, however, 

there are lots of samples below the 99% control limit 

despite the presence of the fault. On the other hand, 

the modified ICA detects the fault earlier than PCA 

by 11 samples and gives a consistent fault alarm up 

to the end of the processing time. Also, the random 

pattern changes caused by the fault are reflected well 

in the proposed method. The results of this example 

indicate the proposed method has a superior 

capability in detecting faults that are difficult to 

detect by the conventional method. Fig. 2 shows 

contribution plots to T2 and SPE at sample 195, 

respectively, in the case of Fault 10. From this figure, 

variables 16 (Stripper pressure) and 18 (Stripper 

temperature) make the largest contribution to the T2

statistic while variables 19 (Stripper steam flow) and 

31 (Stripper steam valve) give dominant effects on 

SPE statistic. This contribution plot correctly 

indicates the major variable groups affected by the 

fault. Thus, the fault detection and identification 

ability of the proposed method is much worthy of 

consideration. 

Table 1 Variables in the Tennessee Eastman process 

1 A feed 18 stripper temperature 

2 D feed 19 stripper steam Flow 

3 E feed 20 compressor work 

4 total feed 21
reactor cooling water outlet 

temperature 

5 recycle flow 22
separator cooling water outlet 

temperature 

6 reactor feed rate 23 D feed flow valve  

7 reactor pressure 24 E feed flow valve  

8 reactor level 25 A feed flow valve  

9 reactor temperature 26 total feed flow valve  

10 purge rate 27 compressor recycle valve 

11
product separator 

temperature 
28 purge valve  

12 product separator level 29 separator pot liquid flow valve

13 product separator pressure 30
stripper liquid product flow 

valve 

14
product separator 

underflow 
31 stripper steam valve 

15 stripper level 32 reactor cooling water flow

16 stripper pressure 33 condenser cooling water flow

17 stripper underflow   
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Table 2 List of Process faults for the Tennessee 

Eastman process

No. Description Type 

1 A/C feed ratio, B composition constant  Step 

2 B composition, A/C ratio constant) Step 

3 D feed temperature  Step 

4 Reactor cooling water inlet temperature Step 

5 Condenser cooling water inlet temperature Step 

6 A feed loss  Step 

7 C header pressure loss - reduced availability Step 

8 A, B, C feed composition  Random 

9 D feed temperature  Random 

10 C feed temperature  Random 
11 Reactor cooling water inlet temperature Random 

12 Condenser cooling water inlet temperature Random 

13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking

15 Condenser cooling water valve Sticking

16

~

20

Unknown 

21
The valve for Stream 4 was fixed at the 

steady state position 
Constant 
Position

Table 3 Representative detection rates of PCA and 

modified ICA

False alarm rate Detection rate 

PCA Modified ICA PCA Modified ICAFaults 

T2 SPE T2 SPE T2 SPE T2 SPE

1 0 1.25 0 1.88 99 100 100 100

2 0.63 0 0 0.63 98 96 98 98 

3 0.63 0.63 0 0 2 1 1 1 

4 0.63 0 0 1.88 6 100 65 96 

5 0.63 0 0 1.88 24 18 24 24 

6 0.63 0 0 0 99 100 100 100

7 0 0.63 0 0.63 42 100 100 100

8 0 1.88 0 0 97 89 97 98 

9 1.25 0.63 0.63 3.75 1 1 1 2 

10 0.63 1.25 0 0.63 31 17 70 64 

11 0.63 0 0 0 21 72 43 66 

12 0.63 1.25 0 0 97 90 98 97 

13 0 0.63 0 0 93 95 95 94 

14 0 1.88 0 0.63 81 100 100 100

15 0.63 1.25 0.63 0 1 2 1 2 

16 3.13 0.63 1.25 1.25 14 16 76 73 

17 0 1.88 0 1.25 74 93 87 94 

18 0 1.88 0.63 1.88 89 90 90 90 

19 0 0 0 0 0 29 25 29 

20 0 1.88 0 0 32 45 70 66 

21 0 0 1.25 0.63 33 46 54 19
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Fig. 1. Monitoring charts of a) PCA and b) Modified 

ICA for Fault 10. 
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Fig. 2. Variables contribution plots to T2 and SPE at 
sample 195 for Fault 10 
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6. CONCLUSION 

This paper proposes a novel approach to process 

monitoring that uses modified ICA. Some problems 

of original ICA are analyzed and a modified ICA 

algorithm is developed and applied to MSPM. 

Compared to original ICA, the proposed algorithm 

has the following advantages: (1) It extracts a few 

dominant factors needed for process monitoring; (2) 

High computational load is attenuated by extracting a 

few dominant ICs, not all ICs; (3) The ordering of 

ICs is considered; (4) It gives a consistent solution.  

The proposed method was applied to the fault 

detection and identification of Tennessee Eastman 

process. The fault detection performance was 

evaluated and compared with that of conventional 

PCA-based monitoring. This example demonstrates 

that the proposed method can detect various faults 

more efficiently than PCA. In particular, the 

extracted dominant ICs are expected to be more 

useful to diagnose fault patterns in the feature space. 

In addition, contribution plots of the proposed 

method can reveal the group of process variables 

responsible for the process to go out of control.  
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