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Abstract: Membrane ltration processes are often operated cyclically, where
one cycle comprises a ltration and a backwashing phase. Due to the complex
mechanisms involved, these ltration processes are mostly operated with xed
values of the manipulated variables. In this paper, a model-based process control
approach is introduced, which is based upon run-to-run control theory. To evaluate
the controller, a suitable model of submerged membrane ltration in wastewater
applications is developed, which describes the main process phenomena while
being computationally inexpensive. The model-based controller is then tested in a
simulation environment employing a validated reference model. Excellent results
with respect to prediction quality and optimality are obtained. Copyright c©2006
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1. INTRODUCTION

Filtration, and more recently, membrane ltra-
tion, are well-known and established technologies
for the separation of particles, macromolecules or
even dissolved molecules from uids. Depending
on the size of the separable substances, di er-
ent technologies are known as ltration, micro l-
tration (MF), ultra ltration (UF), nano ltration
(NF), and reverse osmosis (RO). This paper ad-
dresses ltration technologies where the separa-
tion principle is based on the di erence in size
of macromolecules/particles and of the diameter
of the pores of the ltration medium. This in-
cludes regular ltration applications as well as
MF and UF. For simplicity, all lters belonging
to this broad class will subsequently be termed
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membranes. For these applications, the driving
force facilitating ltration is usually a pressure
di erence across the membrane, that drives those
particles through the membrane pores which are
small enough to pass. Together with the solvent
uid, they leave the system as permeate, while

particles larger than the pores are held back as
retentate.

In most applications, the repelled particles con-
centrate on the feed side of the membrane and
build a lter cake, which increases the ltration re-
sistance (organic fouling). Furthermore, pores can
be blocked by intruding particles (pore blocking).
Finally, microorganisms can grow on the mem-
brane and pore surfaces, leading to bio lms, which
decrease the performance and can also damage
the membrane (biofouling). When repelled by the
membrane, soluble substances concentrate on the
feed side of the membrane, and after reaching
maximum solubility, they crystallize and add to
cake layer formation (scaling, anorganic fouling).
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All of these phenomena, which are known to con-
tribute to membrane fouling, can be counteracted
by membrane and module design as well as by ap-
propriate process control strategies. In this paper,
the focus will be on the process control aspect.

There are three main concepts for limiting mem-
brane fouling. Firstly, high cross- ow velocities
along the membrane surface (perpendicular to the
pores) decrease the deposition of substances. Sec-
ondly, the ow direction through the membrane
is periodically reversed, such that the membrane
pores are ushed with uid (usually permeate).
The third measure is to chemically or mechani-
cally clean the membranes, which is usually per-
formed at a much lower frequency.

1.1 Filtration process control: State-of-the-art

State-of-the-art process control for ltration pro-
cesses usually employs xed values for the manip-
ulated variables, which are only adjusted to meet
the required net ux

Jnet =
Jf tf Jb tb

tf + tb
. (1)

The manipulated variables are the permeate and
the backwashing uxes Jf and Jb and the l-
tration and backwashing durations tf and tb,
respectively. A further manipulated variable is the
cross- ow velocity uc.

The reason for the rather simple control strate-
gies lies in the high complexity of the ltration
process. It is characterized by the periodic change
between ltration and backwashing, the drift of
the membrane permeability due to irreversible
membrane fouling, and the typically non-steady-
state operation. Furthermore, only very limited
measurement information is available in industrial
installations.

1.2 Membrane ltration modeling

The rigorous modeling of ltration processes is
a highly complex task due to the many physical
and possibly chemical and biological phenomena,
which take place on very di erent time scales.
There are numerous works in literature, which
deal with the detailed modeling of various aspects
of ltration processes. At the same time, there are
several approaches to describe ltration processes
only from a phenomenological point of view using
simple, empirical correlations.

From a model-based process control point of
view, both the mechanistic and the empirical
models have advantages and drawbacks. If the
uncertainty can be su ciently reduced by mea-
surements, mechanistic models can yield a much

higher prediction quality. Simpler, possibly empir-
ical models have a lower computational demand
and can often be identi ed from less data.

1.3 Outline of the paper

Our aim is to operate the ltration process at its
economical optimum at every point in time while
regarding safety constraints. In the framework
of nonlinear model predictive control (NMPC),
this objective is achieved by repeatedly solving
a nonlinear, dynamic, and constrained optimiza-
tion problem on a moving horizon. Its objective
function resembles the operational cost, and its
constraints re ect operational limitations. In the
general case of measurement and process uncer-
tainty, the optimization model needs to be regu-
larly updated with current state information. Fur-
thermore, the model has to be adapted to current
process behavior, which is usually achieved by
tting the parameters to past measurements on a

suitably chosen estimation horizon. The success of
the approach strongly depends on the ful llment
of the following objectives:

• Satisfactory prediction and optimization,
• online applicability,
• robustness against disturbances, and
• adaptation to process drift and changes.

The key idea pursued throughout this paper is
the following: A simple model is required to ful ll
the online requirements of low computational cost
and su cient identi ability. The lack of prediction
precision is overcome by a frequent adaptation to
plant measurements. This allows decent predic-
tions at least in the vicinity of the current oper-
ating point. The ltration process is divided into
ltration and backwashing phases. One ltration

phase followed by one backwashing phase makes
up one ltration cycle. The sequence of cycles can
be exploited to update the process model after
each cycle based on the available measurement
data from the last cycle. In order to make the ap-
proach widely applicable in the process industry,
only the transmembrane pressure (TMP) across
the entire membrane module is assumed to be
measured. The manipulated variables are then op-
timized for each upcoming cycle based on a model
identi ed on the previous cycle. This concept is
known as run-to-run control. It is introduced and
adapted to ltration processes in Section 2. The
resulting controller is evaluated in Section 3.

2. RUN-TO-RUN CONTROL FOR
FILTRATION PROCESSES

Run-to-run process control is the strategy of ap-
plying one control action between two batches (cy-
cles) in a process, while continuous control actions
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during the cycle are taken by base controllers. The
task of the run-to-run controller is to issue set-
points for the base controllers. Fig. 1 illustrates
the embedding of the run-to-run controller into
the control system. The run-to-run controller is
activated only once between two cycles. The pa-
rameter update of the model is performed employ-
ing the measurement information of the previous
cycle. The updated model is used to determine
optimal set-points for the next cycle.

base control process

setpoint
optimization

parameter
update

u
u*

p

model

run-to-run controller

Fig. 1. Run-to-run control

An extensive review of theory and applications of
run-to-run theory is provided by del Castillo and
Hurwitz (1997). For the ltration systems treated
in this paper, a very general problem formulation
is required, which also has to account for the fact
that each cycle is divided into a ltration (index f)
and a backwashing phase (index b). First, the op-
timal control problem is formulated. To correctly
represent the repeated solution of the problem on
a moving horizon, the cycle index k should be
introduced for every variable. The parameters p

should be stated as pk|k 1, indicating that the
parameters used in cycle k were estimated on the
measurements of cycle k 1. However, to simplify
the notation, this correct indexing is omitted:

min
uj ,tj,e

φ (P1)

s.t. fj (ẋj ,xj ,yj ,uj ,pj ,dj , t) = 0, (2)

gj (xj ,yj ,uj ,pj ,dj , t) ≤ 0, (3)

hj,eq (xj ,yj ,uj ,pj ,dj , tj,e) = 0, (4)

hj (xj ,yj ,uj ,pj ,dj , tj,e) ≤ 0, (5)

Γ (xf (tf,e) ,xb (tb,0)) = 0, x (t0) = x0, (6)

t0 = tf,0 ≤ tf,e = tb,0 ≤ tb,e = te, (7)

t ∈ [t0, te], j =

{
f for t ∈ [tf,0, tf,e],

b for t ∈ [tb,0, tb,e].
(8)

x are di erential and y are algebraic variables, d

are disturbances, and t is the time. φ is the ob-
jective function representing the operational cost.
fj is the set of di erential-algebraic equations of
index 1 describing the respective process, and gj ,
hj , and hj,eq represent equality (endpoint) and
inequality (path and endpoint) constraints. Eq.
(6) states initial conditions and linking conditions
between the di erential states at the end of the
ltration phase and the beginning of the back-

washing phase. Eqs. (7)-(8) de ne the optimiza-
tion horizon and the phase durations.

In a similar fashion the parameter estimation
problem is formulated. With the additional as-
sumption of white process and measurement
noise, the parameter estimation problem reduces
to a least squares optimization problem, whose
formulation is omitted here for brevity.

The run-to-run control framework up to this point
is generic for a wide range of ltration appli-
cations. In the following, its application to sub-
merged MF/UF membrane ltration in wastewa-
ter applications is demonstrated.

2.1 Process model

The model proposed in the following is based
on simple descriptions of the main phenomena of
MF/UF membrane ltration processes. The trans-
membrane pressure p is commonly described
using Darcy’s law,

p = JηR, (9)

where J is the ux, η is the uid’s viscosity, and
R is the membrane resistance (e.g. Broeckmann
et al., 2005). While J is a manipulated variable,
η depends on the feed suspension properties. As
the TMP is assumed to be measurable, Eq. (9)
represents the system’s output equation. In the
model proposed in the following, the resistance
is described by di erent state equations for the
ltration and the backwashing phase.

Filtration phase During ltration, the mem-
brane resistance Rf can be described by

dRf

dt
= mJf

αuc
β , Rf (tf,0) = R0

f . (10)

R0
f is the initial membrane resistance. Assuming

that the ltration ux Jf and the cross- ow ve-
locity uc are constant, a linear increase of mem-
brane resistance results. It describes the cake layer
formation, which is the dominating e ect on this
timescale and which strongly depends on the ux
and on the cross- ow. m, α, and are parameters
to adapt the model to a particular process.

Backwashing phase While often a linear increase
of membrane resistance can be observed during
ltration, its decrease during backwashing takes

rather an exponential form, which converges to
an irreversible resistance R∞

b :

dRb

dt
=

nJb
γ

τbJb
δ

Re

t tf,e

τbJb
δ (11)

Rb (tb,0) = nJb
γ R + R∞

b ,

R = Rf (tf,e) R∞

b . (12)
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Eqs. (11) and (12) are formulated such that a
simple analytical expression for Rb can be ob-
tained (Section 3). R describes the reversible re-
sistance. The initial resistance Rb (tb,0) is the sum
of the irreversible and the reversible resistance,
but just like the resistance Rb it depends on the
ux Jb due to unmodeled e ects. n, τb, γ, and

are parameters.

Cost function Finally, those operating cost are
described that can be in uenced by the process
control system. They consist of the cost for elec-
trical energy to provide the TMP and the cross-
ow and the cost for membrane replacement. The
rst two are given by

dEE

dt
=

| pjJjA|

ηP

+ ec, EE (t0) = 0, (13)

where A is the membrane area, ηP is an e ciency
factor of the permeate pump, and ec is the neces-
sary power to provide the cross- ow. The cost for
membrane replacement ER cannot be described as
straightforwardly as the energy cost. In fact, there
is no quantitative insight to describe the in uence
of the manipulated variables on the membrane
lifetime. Depending on the ltration system under
consideration, di erent models for ER have to be
developed. For MF/UF membranes in wastewa-
ter applications, it has been observed in practice
that a strong increase of the resistance within a
ltration cycle indicates an overstraining of the

membrane. Therefore, its gradient is penalized:

ER = ξ
dRf

dt
= ξmJf

αuc,f
β , (14)

where ξ is a parameter that needs to be speci ed
for each application based on process experience.
The overall objective function φ comprising the
power consumption and the penalty term ER is

φ (te) =
EE (te)

te t0
+ ER. (15)

2.2 Run-to-run controller

In this section, the run-to-run controller is de-
signed. First the estimation problem is considered,
then the optimal control problem, and nally the
control algorithm itself.

Estimation In industrial practice, only the TMP
across the membrane is measured. In order to
make the proposed approach widely applicable,
it is therefore assumed that only this TMP is
available as measurement. Since the uxes Jf

and Jb and the cross- ow uc are set to constant
values for each phase, α, , γ, and cannot
be estimated on a horizon of one cycle due to
the missing excitation. This is referred to as the

dual control problem (Wittenmark, 1995). The
concerned parameters are estimated offline using
historical data from several cycles and then set
constant in the run-to-run control scheme.

The estimation problems for the ltration and the
backwashing phase are coupled through Eq. (12).
In order to simplify the problem and decrease the
computational demand, they are, however, solved
sequentially. Since the model structure is simple
enough, the di erential equations are solved an-
alytically. The discretized estimation problem for
cycle k using the measurement data from cycle
k 1 for the ltration phase is then

min
m,R0

f

nf,l∑
l=1

1

2
( p̃f,l pf,l)

2
(P2)

s.t. pf,l = JfηRf,l, (16)

Rf,l = R0
f + mJα

f uβ
c tl, (17)

where p̃f,l are discrete measurements at the
sampling points tl, l ∈ {1, ..., nf,l}, in cycle k 1,
and pf,l are the corresponding simulated TMP
samples.

The parameters of the backwashing model are
estimated from

min
n,τb,R∞

b

nb,l∑
l=1

1

2
( p̃b,l pb,l)

2
(P3)

s.t. pb,l = JbηRb,l, (18)

Rb,l = R∞

b + RnJ
γ
b e

tl tnf,l

τbJδ
b , (19)

R = Rf tnf,l

)
R∞

b . (20)

Optimal Control The control problem, which is
solved based upon the updated parameters, is

min
Jf ,Jb,uc,tf,e,tb,e

φ (P4)

s.t. pj = JjηRj , (21)

Rf = R0
f + mJα

f uβ
c t, (22)

Rb = R∞

b + RnJ
γ
b e

t tf,e

τbJδ
b , (23)

R = Rf (tf,e) R∞

b , (24)

Jnet =
Jf (tf,e t0) Jb (te tb,0)

te t0
, (25)

Rb (tb,e) ≤ νR∞

b , ν ≥ 1, (26)

Jf ≤ Jb, (27)

pmin ≤ p ≤ pmax, (28)

umin ≤ u ≤ umax, (29)

t0 = tf,0 ≤ tf,e = tb,0 ≤ tb,e = te, (30)

t ∈ [t0, te], j =

{
f for t ∈ [tf,0, tf,e],

b for t ∈ [tb,0, tb,e].
(31)

The net ux Jnet is considered a set-point speci ed
by the operator or an upper level controller. Eq.
(26) forces the nal resistance Rb (tb,e) to be close
to the irreversible resistance R∞

b at the end of
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the cycle. The backwashing ux Jb is forced to be
at least equal to the ltration ux Jf (Eq. (27)),
which is a safety measure to limit pore blocking.
Eqs. (28) and (29) give bounds on the TMP and
on the manipulated variables Jf , Jb, tf,e, tb,e, and
uc. φ is de ned as in Section 2.1.

Algorithm Ideally, the model identi cation and
optimization takes place between two cycles k 1
and k, and the optimized values for the manipu-
lated variables are applied at the beginning of the
new cycle k. This would require zero calculation
time. Hence, a delay in the implementation of the
new set-points is inevitable. The reader is referred
to Findeisen and Allgöwer (2003) for a rigorous
discussion of possible stability problems due to
computational delay in NMPC applications.

3. CASE STUDY - SUBMERGED MF/UF IN
WASTEWATER TREATMENT

In order to evaluate the proposed model and
control algorithm, it is tested against simulated
data from a rigorous membrane ltration model,
which describes MF/UF with submerged mem-
branes in a wastewater treatment plant. The uid
feed consists of water, in which a variety of or-
ganic and inorganic particles and dissolved sub-
stances are present. Organic fouling, biofouling,
and pore blocking are therefore the dominating
fouling e ects. Usually hollow bre membranes
or plate modules with nominal pore sizes around
1 m are employed. The cross- ow is realized with
air bubbles that are periodically injected at the
bottom of the modules.

In order to study the highly complex process,
a rigorous model has been developed, which is
discussed in detail by Broeckmann et al. (2005)
and Cruse (2006). It has been shown to adequately
represent real plant behavior, and is used as a
reference model in the following.

The model proposed in Section 2.1 is adapted
to re ect the speci c characteristics of the given
process. The cross- ow velocity uc is usually not
explicitely available as manipulated variable, since
air is injected with a constant, yet intermitted vol-
ume ow Q. The periodically changing intervals
with and without aeration have the lengths ton
and toff. uc is then heuristically described as

uc = Q
ton

ton + toff
, (32)

and toff is chosen as manipulated variable. The
power for the aeration ec is expressed as

ec =
QTRgγa

[
(1 + pa)

γa
γa 1 1

]
ton

va (γa 1) (ton + toff) ηA

, (33)

assuming that the compression is a polytropic
process. T is the ambient air temperature, va is
the molar volume of air, Rg is the gas constant,
γa = 1.4 is the polytropic coe cient, pa is the
pressure di erence across the compressor (in bar),
and ηA is an e ciency factor.

3.1 Results

Three aspects are analyzed in the following: the
quality of the TMP prediction, the adaptation
to process changes, and the predicted optimal
solutions. The simulation results based on the ref-
erence model will be referred to as measurements.

TMP prediction Fig. 2 depicts a snap-shot of
the simulated controlled process. It shows the
measured and the predicted TMP for cycles k

and k + 1, between which the ux is increased.
Each cycle comprises a ltration (positive TMP)
and a backwashing phase (negative TMP). The
parameters α, , γ, and , which are not estimated
online, have been tted a priori. During ltration
the predicted and the measured TMP are almost
identical, and only small errors are observed dur-
ing backwashing. The relative deviation is below
1%. The same results are achieved with respect to
changing backwashing uxes, ltration and back-
washing durations, and cross- ow intensities. This
shows the excellent prediction capability of the
model.

-35

-25

-15

-5

5

15

25

0 100 200 300 400 500

Time [s]

T
M

P
[k

P
a]

cycle k cycle k+1

filtration

backwashing

Fig. 2. TMP measurement and prediction

Model adaptation Next, the performance in the
presence of unforeseen process changes is eval-
uated. In Fig. 3, the ltration ux after cycle
k is reduced by 20%. This could be caused by
an unexpected problem with a pump. The TMP
prediction is false in cycle k+1, but the controller
adapts by solving the estimation problems (P2)
and (P3) with data from cycle k + 1. Reliable
predictions are provided from cycle k + 2 on.

Control In the following an updated model is
assumed to be available, and the optimization
for the next cycle is carried out for di erent
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required net uxes. Fig. 4 presents the results
for the ltration ux and the aeration pause.
The ltration ux increases almost linearly with
higher net uxes. The ltration time is at its
upper bound of 600s. The backwashing ux always
equals the ltration ux, and together with the
minimum backwashing time of 15s, the constraint
on the minimum resistance removal (Eq. (26)) is
always met. The aeration pause becomes smaller
with increasing ux.
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Fig. 4. Variation of the net ux

Finally, the performance of the proposed con-
troller is compared against manual operation with
xed set-points. A typical choice in an industrial

installation is e.g. Jf = 40 l
m2h

, Jb = 50 l
m2h

,
tf = 240s, tb = 20s, and toff = 6s, which gives a
net ux of Jnet = 33.1 l

m2h
. For the same net ux,

the optimized solution depicted in Fig. 4 requires
20% less energy despite employing a 14% higher
aeration.

3.2 Discussion

Assuming a decent choice and adaptation of the
parameters α, , γ, and in the ltration models,
an excellent prediction of the TMP is achieved.
Furthermore, the controller quickly adapts to un-
expected changes in the process.

The interpretation of the optimization results is
straightforward. Low uxes with long ltration
times are preferred over small ltration periods
with high uxes. This is in line with current ob-
servations in MBR installations. Instead of placing
an upper bound on the ltration time, a more

sophisticated approach could be designed, which
e.g. establishes a link between the upper bound
and the ux, if according process knowledge is
available. The shortening of the aeration pauses
with increasing uxes is clearly due to the penalty
term, which prevents long-term damage to the
membranes. In the case study, the backwashing
intensity is at its lower bounds, yet this depends
on the cleaning e ciency of the process, which is
detected in the parameter estimation step. The re-
maining tuning parameter ξ (Eq. (14)) re ects the
balance between short-term (energy) and long-
term (replacement) cost.

Finally, employment of the approach does not only
promise substantial economical bene t, but also
implies continuous adaptation of the membrane’s
operation to process drifts and changes. This
enables not only optimal, but also safe process
operation.

4. CONCLUSIONS

A methodology for the model-based control of
membrane ltration processes is proposed. It is
based on run-to-run control concepts and em-
ploys a newly developed process model. The pro-
posed controller is tested in a simulation sce-
nario describing submerged membrane ltration
in wastewater applications. It is shown to achieve
excellent results concerning the prediction quality,
the adaptation to process changes, and the process
optimization with respect to power consumption
and membrane replacement cost. Its performance
is currently experimentally veri ed in an indus-
trial pilot plant.
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