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Abstract: This work presents the results from dynamic modeling and control of an 

azeotropic distillation system. The model was validated with experimental data from a 

packed distillation unit. The physically-based process dynamic model, developed in 

HYSYS, was linked online with the control software used in the process. Model 

parameters were modified online using a feedback configuration to eliminate the 

difference between the process and model outputs. The fundamental model was used in the 

implementation of different control strategies, including a multivariable control strategy 

using model predictive control (MPC) software Predict Pro, via an inferential control 

strategy to treat missing process measurements. Copyright © 2006 IFAC
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1. INTRODUCTION 

 
Distillation is clearly the largest energy-consuming 

separation process used in chemical industries to 

recover products, by-products and unreacted raw 

materials. Improving its process efficiency is an 

on-going goal of the chemical processing and 

refining industries, given recent increase in energy 

prices. The use of dynamic modeling software in 

chemical and refining applications has been 

intensified with the adoption of commercial 

process modeling software and increased computer 

processing capabilities. The modeling software is 

used in a broad range of applications like parameter 

estimation, process optimization, and control. Most 

modern control methods require some kind of 

process model to predict future process outputs but 

industrial applications typically do not link 

fundamental dynamic models in commercial 

software with the control software. Some model-

based control and optimization techniques are 

based on steady state physical models that account 

for the physical drifting of the process itself (such 

as fouling of a heat exchanger, temperature 

fluctuation of the feed, etc.) or changes in market 

demands and economic conditions, information 

that can be used to modify product specifications 

and plant schedules.   

Azeotropic distillation is a process widely used to 

separate non-ideal binary mixtures. This separation 

technique uses another component, known as an 

entrainer. Depending on the mixture, the entrainer 

forms an azeotrope with one of the components in 

the binary mixture or breaks an existing azeotrope 

in the binary mixture. There are three azeotropic 

distillation configurations: homogeneous 

azeotropic distillation, heterogeneous azeotropic 

distillation and extractive distillation.  

Azeotropic distillation presents multiple challenges 

in design and operation due to the presence of non-

idealities, phase splitting, possible multiple steady 

states, and distillation boundaries. When designing 

these systems, it is important to keep in mind that 

distillation boundaries cannot be crossed. For these 

reason, in order to isolate two pure components 

which lie in two different distillation regions, it is 

necessary to have two different feed compositions 

(one from each of the two regions) and two 

distillation columns (Doherty and Caldarola 1985). 

Published experimental work on azeotropic 

distillation has often analyzed the behavior of the 

azeotropic distillation systems in laboratory scale 

sieve columns (Baur, et al., 1999; Müller and 

Marquardt, 1997; Springer and Krishna, 2001; 

Wang, et al., 1998); in addition, some experimental 

studies (Chien, et al., 2000) have also implemented 
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different control strategies using temperature as the 

controlled variable. 

This work presents the results from experimental 

validation of dynamic models of an azeotropic 

distillation system of methanol, normal pentane and 

cyclohexane. All the experiments were performed 

in the homogeneous region without liquid phase 

splitting. The model was validated with 

experimental data from a pilot-scale size packed 

distillation unit configured at finite reflux. The 

approach presented in this work links the process 

fundamental dynamic model (HYSYS) with the 

control software used in the process. The model is 

modified online using a feedback configuration to 

eliminate the difference between the process and 

model outputs. The model is used in the 

implementation of different control strategies to 

infer process variables that cannot be determined 

with field instrumentation. Two different variable 

pairings are studied and the results from individual 

control loop configurations are compared with a 

multivariable control strategy using model 

predictive control (MPC). 

The dynamic model was developed using HYSYS 

from Aspen Technologies. The model was linked 

to Emerson Process Management's DeltaV digital 

automation system. The experiments were 

developed in the pilot plant of The Separation 

Research Program (SRP) at The University of 

Texas at Austin.

2. EXPERIMENTAL SYSTEM 
 
The chemical system selected for the experiments 

performed in this research was a ternary mixture of 

methanol, pentane and cyclohexane. The ternary 

mixture diagram is presented in Figure 1 where the 

two azeotropes in the system are apparent. The two 

azeotropes divide the diagram into two distillation 

regions. Figure 1 also identifies the feasible 

product region for a particular feed point using the 

intersections between the distillation and material 

balances lines.  

The highest pentane purity achievable in the 

distillate product was the azeotropic composition, 

which was a viable objective in both regions; 

however, the bottom composition objective 

changed from pure cyclohexane in the first region 

to pure methanol in the second. 

The plant where the experiments were carried out 

is located at the Separation Research Program, at 

the University of Texas at Austin. The column used 

in the experiments is a 6 in stainless steel column 

with 30 ft of contacting height packed with 0.7 

Nutter rings metal random packing. 

The system is well-instrumented with state of the 

art sensors and actuators from Fisher-Rosemount. 

The experimental plant is operated with Emerson 

Process Management's DeltaV digital automation 

system. The simulation was implemented in 

HYSYS from Aspen Technologies at the 

application station in the DeltaV system and 

connected to the controllers through an interface 

with the digital control system. Additional details 

on the equipment configuration can be found at the 

SRP website http://uts.cc.utexas.edu/~utsrp/. 
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Fig. 1. Ternary map (mass basis) for cyclohexane, 

normal pentane and methanol. P = 6 psig.   

Property Package: Split from Aspen Tech. 

An analytical procedure for the analysis of the 

samples collected from the system was developed 

and implemented in two HP 5890 gas 

chromatographs. The error in the measurement was 

calculated to be less than 3%. 

3. AZEOTROPIC DISTILLATION DYNAMIC 

MODEL 

The fundamental model was developed following a 

methodology that included five steps: (1) the 

system physical and thermodynamic behavior was 

identified and appropriate physical property 

relationships were determined; (2) different 

modeling approaches were studied and compared 

with process data to determine the most suitable 

method to model the system; (3) the model was 

developed and validated with process data; (4) the 

model parameters to be updated on-line were 

selected; and (5) the model updating method was 

implemented. 

Steady state simulation and ternary and binary 

diagrams were used to study the system’s 

thermodynamic behavior. After analyzing the 

ternary diagram and validating the simulated data 

with experimental data, it was concluded that the 

process did not display multiple steady states. The 

existence of multiple steady states could be 

determined based on the geometry of the 

distillation region boundaries and product paths in 

the ternary diagrams (Bekiaris et al., 1993; Bekiaris 

and Morari, 1996).   

Some studies have concluded that rate-based or 

non-equilibrium models are necessary to obtain a 

good description of the azeotropic system (Repke 

et al., 2004; Springer and Krishna, 2001), while 

others have validated azeotropic distillation 

equilibrium models experimentally (Müller and 

Marquardt, 1997; Kumar et al., 1984). These 

studies suggest that the equilibrium approach can 

perform very well in modeling of azeotropic 

distillation systems. In order to determine whether 

or not equilibrium models could be used to 

accurately predict the azeotropic system behavior, 

non-equilibrium and equilibrium steady state 

models were developed, and their model 

predictions were compared with a wide range of 

experimental data. Both models used the same 
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equipment configuration, operating conditions, and 

thermodynamic properties. Conditions from the 

two distillation regions were simulated, and their 

results were validated experimentally. It was 

concluded that the equilibrium model did 

accurately predict the azeotropic behavior and 

therefore a dynamic equilibrium model was 

developed. 

Table 1.  Column Configuration for 

Steady State Simulation.

Number of Theoretical Stages  
24 (Without condenser 

and reboiler) 

Feed Stage 18 
Condenser Type Total (Stage 1) 

Reboiler Type KETTLE (Stage 26) 

Valid Phases Vapor-Liquid-Liquid 

Internal Type 
Packed (Nutter Ring 

Metal Random No. 0.7) 

Stage Packing Height [in] 13.84615 

Stage Vol [ft3] 0.226557121 

Diameter [in] 6 

Void Fraction 0.977 
Specific Surface Area [sqft/cuft] 68.8848 

Robbins Factor 11.8872 

The column configuration is summarized in Table 

1.  The activity coefficient model NRTL was used 

as the main property method for the liquid phase 

while the Redlich-Kwong equation-of-state was 

used for the calculations in the gas phase. 

Analysis of the process dynamic responses 

indicated that in this particular system temperature 

was not a good choice as a controlled variable. The 

temperature response to feed disturbances and 

changes in the steam and reflux flow rates 

displayed a highly nonlinear behavior. In addition, 

in some regions the gain was very small and the 

changes in temperature due to changes in the 

manipulated variables were within the noise level.  
 

4. ONLINE MODEL RECONCILIATION 

The dynamic model was intended to be used as a 

tool to determine process parameters that could not 

be measured directly in the field, such as 

composition, a variable needed to implement the 

control strategies. For this reason, the model 

predictions had to be accurate and track the process 

behavior throughout the entire operating region.  

Traditionally, model reconciliation is performed 

using a steady-state model and the parameter 

estimates are obtained off-line using an 

optimization algorithm, such as the weighted least 

square (WLS) formulation, where the objective is 

to find estimates that minimize the squared error 

between the model predictions and the 

measurements, normalized by the measurement 

covariance. Usually before the parameters are 

estimated, the measurement data are first validated 

with some conservation equations, and then 

reconciled such that the model parameters and the 

adjusted data satisfy the process model equations 

(Seborg, et al., 2004).  

In this work we used a reconciliation module to 

calculate the model parameters that minimize the 

error between plant measurement and model 

variables. The algorithm used in the reconciliation 

module is based on the gradient approach for 

model-reference adaptive control (Åström and 

Wittenmark, 1995). The objective is to modify the 

parameters in the model so that the error between 

the outputs of process and reference model is 

driven to zero. In the gradient approach the 

parameter is obtained as the output of an integrator. 

A quicker adaptation could also be achieved by 

adding a proportional adjustment to the integral 

action. The control law then takes the form of (1), 

which can be implemented in the plant using PI 

controller software where the constants γ1 and γ2

represent the proportional and integral gains 

respectively (Åström and Wittenmark, 1995). 

+=
t

detetu
0

21 )()()( ττγγ            (1) 

Initially, the model parameters selected to be 

updated online were overall column heat transfer 

coefficient and HYSYS dynamic efficiency 

(Abouelhassan and Simard, 2003). Given that the 

packing HETP value was obtained from 

experimental data, the efficiency value should not 

change considerably from the value of one. 

However, it was expected to have some variations 

given different flooding conditions mainly due to 

the system’s non-ideal behavior. The model 

efficiency value was modified to match the process 

distillate C5 composition. Because the error in the 

measurement was about 3%, the parameter was 

modified if the model output was off by more than 

3% from the process output. After data from the 

experiments was analyzed, it was concluded that 

the efficiency value was fairly constant at a value 

of 0.7 in the distillation region rich in cyclohexane 

and pentane and 0.5 in the distillation region rich in 

methanol and normal pentane. Although the 

reconciliation module was used to determine these 

values, the efficiency parameter was not longer 

modified on-line to reconcile the model on-line.  

The column’s external surface heat transfer 

coefficient directly influences the heat loss 

experienced by the column. The model developed 

in this work used a simple heat loss equation, 

where the heat loss is calculated from the 

parameters specified by the user: overall heat 

transfer coefficient U and ambient temperature 

Tamb.  The heat transfer area A and the fluid 

temperature Tf are calculated for each stage by the 

model. The heat loss is calculated using (2). 

( )ambf TTUAQ −=                     (2) 

During the model validation phase, U was modified 

until the mass balance in the model matched the 

experimental mass balance, that is distillate and 

bottoms flow rates were the same in the model and 

the experiment when all the other conditions in the 

model where set to match the conditions in the 

experiment. Tamb was introduced given the 

conditions of the experiment, but was not 

continuously upgraded. The heat transfer 

coefficient was updated online using the 

reconciliation module during the control 

experiments described in the next section. Its value 
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increased up to 5% as the liquid flow in column 

decreased and vice versa.  The heat transfer 

coefficient is dependent upon the physical 

properties of the fluid and the physical conditions 

of the experiment, since both fluid composition and 

process conditions changed with the operation 

region the heat transfer coefficient also changed. In 

addition, the heat transfer coefficient was reflecting 

the variations in the ambient temperature given that 

this value was not measured continuously nor 

automatically upgraded during the experiments. 

Although this variation was found to be small, it 

shifted the model from the process outputs.   

5. CONTROL STRATEGIES 

Stabilizing the basic operation of the column was 

achieved by inventory (level), flow and pressure 

controls. The control loops in this level were 

configured with independent PID controllers (See 

Table 2). 

Table 2. Basic Configuration

Manipulated Variable Controlled Variable 

Feed Flow Valve Position Feed Flow Rate 

Preheater Steam Flow Valve Position Feed Temperature 

Reflux Flow Valve Position Reflux Flow Rate 

Distillate Flow Valve Position Distillate Flow Rate 

Bottom Flow Valve Position Bottom Flow Rate 

Reboiler Steam Flow Valve Position Steam /Duty Flow Rate  

Nitrogen Flow Splitter Valve Position Column Pressure 

To control the product composition in the column, 

two different configurations were considered based 

on the relative gain array analysis (RGA). RGA 

was used to get an initial understanding on how to 

pair variables in the inventory and separation 

control. The gain matrix was calculated using the 

step responses from the dynamic model developed 

in HYSYS. Different step changes were performed 

in the manipulated variables, using different 

magnitudes and directions, and then the results 

were averaged. The analysis indicated that two 

configurations were viable (see Table 3).  

Table 3. Composition Manipulated and Controlled 

Variable Configurations.

Manipulated 

Variable 

Controlled 

Variables 
Λ

(RGA) 
Reflux Flow 

Rate (R) 
DC – R 0.972 0.028 

1
Steam Flow 

Rate (Q) 
BC – Q 0.028 0.972 

Distillate Flow 

Rate (D) 
DC – Q -0.004 1.004 

2
Steam Flow 

Rate (Q) 
BC – D 1.004 -0.004 

DC = Distillate Composition; BC = Bottom Composition

The results from the RGA analysis were consistent 

with the traditional control configuration used in 

ordinary distillation (pairing 1) and the results from 

studies in azeotropic distillation where the opposite 

pairing (pairing 2) gave less loop interaction than 

the traditional variable pairing used in distillation 

(Chien, et al., 2000; Tonelli, et al., 1997).  

As mentioned previously, the process had two 

feasible distillation regions. The data presented in 

this paper includes experimental data only from 

region one (feed composition with high 

concentration of cyclohexane and normal pentane). 

The control objective was to maintain the 

pentane/methanol azeotrope in the distillate and 

maximum recovery of cyclohexane in the bottom 

stream. For this reason the key components 

selected for control were normal pentane for the 

distillate stream and cyclohexane for the bottom 

stream. The manipulated variables were selected 

between the same options as for inventory control: 

distillate, reflux, steam, and bottom flow rate. 

The level in the reflux drum was paired with the 

distillate flow rate in the first configuration (pairing 

1) and with the reflux flow rate in the second 

configuration (pairing 2). The column level was 

paired with the bottom flow in the two control 

configurations.  

The dynamic model was connected online to the 

DCS and provided estimates for variables where 

instrumentation was not available. Since the plant 

did not have an online measurement of 

composition, this configuration provided the 

controlled variable estimates. During 

experimentation, samples of distillate and bottom 

products were collected after mass balance was 

achieved in the process and compared with the 

values provided by the simulation. The difference 

between measured and estimated values was within 

± 3%. Samples of the feed were collected every 

half hour and the values introduced in the model. 

PID controllers were configured in the 

experimental plant to control the composition in the 

distillate and bottom streams using the pairings 

described in Table 3. The tuning of the PID 

controller was performed using the advanced 

control module DeltaV Tune, which implements a 

relay oscillation test based on the Aström-

Hägglund algorithm for calculating the tuning 

parameters of a process control loop (Seborg, et al.,

2004). The results are given in Table 4. 

Table 4. Composition Controller Tuning.

Pairing 1 Pairing 2 

DC – R  BC – Q DC – Q BC – D 

Ultimate κ 10.90 10.55 6.42 4.98 

Ultimate T 207.00 699.50 663.50 277.50 

Process θ 28.45 85.91 99.46 42.98 

Process κ 0.72 0.82 1.14 1.43 

Process τ 257.42 957.85 766.61 311.92 

Suggested Tuning Parameters: 

PID 

P: 2.31 

I: 191.1 

D: 30.58 

P: 1.66 

I: 654.16 

D: 104.67 

P: 0.86 

I: 369.39 

D: 59.1 

P: 1.15 

I: 227.13 

D: 36.34 

θ Dominant 
P: 2.72 

I: 52.78 

P: 2.64 

I: 178.37 

P: 0.79 

I: 165.24 

P: 1.25 

I: 70.76 

Implemented Tuning Parameters: 

P: 2 

I: 191 

D: 30 

P: 2 

I: 654 

D: 104 

P: 0.5 

I: 369 

D: 59 

P: 1 

I: 227 

D: 36 

κ = Gain. θ = Dead Time. τ = Time constant. T = Period. 

Although the steam loop exhibited a considerable 

dead time that could limit the effectiveness of the 

controllers, based on experimentation it was 
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determined that the best PID tuning parameters 

were close to values suggested in the literature. The 

response with the dead time dominant 

configuration was more aggressive and exhibited 

oscillatory behavior.  

5.1 PID Controller Performance 

Figure 2 illustrates the PID controller performance 

after a series of step changes in the distillate and 

bottoms composition set points.  

Both controllers drove the controlled variables to 

the desired set point. Pairing 2 gave fast responses 

but presented poor rejection to interaction. Figure 3 

illustrates the closed-loop responses to disturbances 

in the feed temperature. 
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5.2 Model-based control 

Linear MPC was implemented using the 

commercial advanced control module Predict Pro 

from DeltaV. The process model used by the 

controller was identified online using the process 

model identification tool included in the module. 

Although with DeltaV PredictPro it is possible to 

run an automated test on the process, a manual test 

was performed for each input variable to generate 

the data for model identification. DeltaV PredictPro 

uses step response modeling for the generation of 

the MPCPro controller. 

The step responses are generated using two types 

of models: Finite Impulse Response (FIR) and 

Auto-Regressive (ARX). The FIR model is used to 

identify the process delay used in the ARX model. 

The identified step responses are presented in Table 

5. The MPC variables were selected based on best 

result from the PID study.  

The gain (κ) is dimensionless because it is 

normalized by the transmitter range. The controller 

in the MPC algorithm is designed as an online-

horizon optimization problem that is solved subject 

to the given constraints. 

Table 5. MPC Step response models.

Distillate C5 

Composition 

Bottom C6 

Composition 

Reflux Flow rate  

κ = 3.8 

θ = 16 s 

τ = 689.23 s 

κ = -1.4 

θ = 8 s 

τ = 172.31 s 

Steam Flow rate 

κ = -3.2 

θ = 48 s 

τ = 1828.95 s 

κ = 3.5 

θ = 40 s 

τ = 1899.86 s 

Feed Temperature 

κ = -0.2 

θ = 16 s 

τ = 344.62 s 

κ = 0.2 

θ = 88 s 

τ = 190.67 s 

Feed Flow rate 

κ = 0.4 

θ = 24 s 

τ = 689.23 s 

κ = -0.2 

θ = 16 s 

τ = 221.54 s 

κ = Gain. θ = Dead Time. τ = First order time 

constant. Time to reach steady state= 960 s. 

For MPC based on linear process models, both 

linear and quadratic objective functions can be used 

(Qin and Badgwell 2003). Equation (3) represents 

the control law that minimizes a quadratic objective 

function. 

( ) )1(ˆ)( 01 ++=∆ −
kEQSRQSSkU TT

    (3) 

The vector Ê
0
(k+1) corresponds to the predicted 

deviations from the reference trajectory when no 

further control action is taken; this vector is known 

as the predicted unforced error vector. The matrices 

Q and R are weighting matrices used to weight the 

most important components of the predicted error 

and control move, vectors respectively (Seborg, et

al., 2004). In DeltaV Predict Pro the elements of Q 

are known as penalty on error while the entries of 

R are the “penalty on move”. The MPC controller 

is tuned by modifying the values of the matrices Q 

and R. R offers convenient tuning parameters 

because increasing the values of its elements 

reduces the magnitude of the input moves, 

providing a more conservative controller.  

Figure 4 illustrates the linear MPC performance in 

the experiment after a series of step changes in the 

distillate and bottoms composition set points. Both 

output errors were assigned a penalty of one. The 

penalty on move was set to 25 for the steam flow 

rate and 20 for the reflux flow rate. In the 

experiment the optimizer was also configured to 

maximize the concentration of C5 in the distillate. 

The SP was allowed to change 0.5% for both 

controlled variables. 

Given that the system is nonlinear, the tuning 

parameters in the multivariable controller were set 

up to provide robustness and eliminate oscillation 

in the response. The main difficulty occurred due to 

changing gains in the process. The gains related to 

the distillate composition were smaller when the 

azeotropic composition was reached in the distillate 

composition than in other regions with lower 

pentane recovery in the overhead product. 
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Figure 6 illustrates MPC responses inside and 

outside the azeotropic region with different tuning 

parameters.  
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Controller tuning 1 has a higher penalty on move 

(PM) for both manipulated variables than controller 

tuning 2. The parameters used in controller tuning 

2 were the values suggested by DeltaV Predict Pro. 

These values are calculated based on the 

assumption that the system is linear. A higher 

penalty on move improved system stability in the 

region with higher gains. The penalty on error was 

set to 1 for both controlled variables. From Figure 

5 it is observed that controller tuning 2 produces an 

unstable closed loop response. 
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Fig. 5. Experimental MPC behavior using different 

tuning parameters. 

6. CONCLUSIONS 

Analysis of the process steady and dynamic models 

indicated that equilibrium models accurately 

predict the distillation column behavior. In 

multicomponent azeotropic distillation, 

temperature measurements do not offer accurate 

indications of composition, hence commercial 

dynamic simulation software were used to obtain 

an inferential control solution. Linear MPC gives 

excellent performance when the composition is 

used directly as a controlled variable and the 

appropriate tuning is used. 
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