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Abstract: In large-scale model predictive control (MPC) applications, such as
plant-wide control, the coordination of unit-based MPC controllers has been
identified as both an opportunity and a challenge in enhancing the plant-wide
control performance. This work discusses an efficient strategy for the coordination
of decentralized MPC systems and illustrates the approach with an application
to the pulp mill benchmark problem proposed by Castro and Doyle IIT (2004 a).
The decentralized unit-based MPC controllers are coordinated at the MPC steady-
state target calculation stage by employing decentralized optimization techniques.
The off-diagonal element abstraction technique and the price-driven coordination
algorithm are used in the development of a coordination mechanism. The pulp
mill case study shows that this coordinated, decentralized MPC framework is
an effective approach to plant-wide MPC applications, which has high reliability,
accuracy and efficiency. Copyright®© 2006 ADCHEM
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1. INTRODUCTION

In many plant-wide control and optimization ap-
plications, a large-scale process model is decom-
posed into several smaller subsystems and a con-
troller is developed for each subsystem. This may
lead to a decentralized unit-based MPC frame-
work. The coordination of the unit-based con-
trollers has been identified as having significant
potential benefit (Havlena and Lu, 2005).

The decomposition and coordination approaches
to solving complex large-scale control problems
attracted attention in 1970’s and 1980’s (Wismer,
1971; Titli, 1978; Jamshidi, 1983); but the inter-
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est diminished thereafter for a number of rea-
sons (Havlena and Lu, 2005) including: limited
implementation opportunities; inherent complex-
ity and difficulty of the problem; and computa-
tional issues. The industrial success in applying
control schemes with a decentralized architecture
has stimulated increasing interest in coordination
of decentralized MPC (Lu, 2003); however, the
need for more research in this area has been well
recognized (Havlena and Lu, 2005; Isaksson et
al., 2005).

Most commercial MPC products employ two-
stages: a steady-state target calculation and a
dynamic control calculation (Qin and Badgewell,
2003; Ying and Joseph, 1999; Rao and Rawl-
ings, 1999). In the case of decentralized unit-
based MPC, without plant-wide coordination,
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the optimum operations achieved by each unit-
based MPC may provide significantly worse per-
formance than the plant-wide optimum solution
(Havlena and Lu, 2005).

The potential benefit of coordinating decentral-
ized control schemes has garnered increasing in-
terest by both researchers and practitioners. Cam-
ponogara et al. (2002) have proposed a distributed
MPC scheme, where local control agents broad-
cast their states and optimization results to ev-
ery other agent under pre-specified rules to help
reach a plant-wide optimum. Decentralized opti-
mization via Nash bargaining has been applied
for solving multi-player coordination problem by
Waslander et al. (2004). Venkat et al. (2004) have
used augmented states to model interactions and
their scheme involves iterative negotiations among
decentralized MPC systems. One common feature
of the above schemes is that the decentralized
MPC controllers exchange information directly
and thus stand at an equal status within their
negotiation hierarchy.

In process industries, however, a wide-spread be-
lief among practitioners is that the trend to-
ward decentralization will continue until the con-
trol system consists of seamlessly collabrating
autonomous and intelligent nodes with a super-
visory coordinator overseeing the whole process
(Scheiber, 2004). One approach to coordinating
decentralized MPC is to employ a centralized op-
timization layer to perform a plant-wide target
calculation (e.g., Honeywell’s ad hoc technology);
while an alternative approach is to take advantage
of decentralized optimization with an additional
coordination system (Havlena and Lu, 2005). Our
previous work (Cheng et al., 2004; Cheng et al.,
2005b) adopts this approach, where the Dantzig-
Wolfe decomposition and price-driven coordina-
tion strategies are tailored to yield a coordination
system for decentralized MPC.

This work discusses the development of a co-
ordination system for decentralized MPC that
employs the price-driven coordination algorithm
and off-diagonal element abstraction technique
(Cheng et al., 2005b). The case study based on
the pulp mill benchmark problem shows that the
proposed coordinated, decentralized MPC frame-
work can be a viable approach to solving plant-
wide MPC problems.

2. PLANT-WIDE MPC

In the process industry, centralized or monolithic
MPC schemes are considered to be not viable for
complex process control and optimization prob-
lems (Lu, 2003; Havlena and Lu, 2005). Conse-
quently, industrial practice has tended toward a
decentralized MPC architecture.
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Usually, any limited cooperation between decen-
tralized MPC controllers is through an upper
level optimization, such as real-time optimization
(RTO), at a sampling time of hours; however,
disturbances or setpoint changes in the interval
between two RTO executions may drive the opti-
mum operations away from the targets given by
the RTO system; thus, it is necessary to perform
re-optimization at a higher frequency to maintain
optimum operations. This section focuses on the
coordination strategies for decentralized MPC at
the target calculation level, and as a result, at a
sampling time comparable with that of the MPC
control calculation.

2.1 Unit-based MPC
In this work, unit-based MPC refers to the de-

centralized MPC subsystems developed for in-
dividual operating units as shown in Figure 1.

Real Time Optimization (RTO) (Infrequent optimization)
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Fig. 1. Two-stage unit-based MPC system

Consider the following constrained quadratic pro-
gramming (QP) formulation of MPC target calcu-
lation for an individual operating unit (Ying and
Joseph, 1999):

min 2z = (YSet (k) - y*)TQy(YSet(k) - y*)

YsetsUset
+(uset (k)_u*)TQu(uset(k)_U*)+cy (Yset(k)—y")
+ cy(User (k) —u*) +€'clcle (1)
s. t.
Vset (k) = Kuger (k) + d(k)
d(k)=d(k—-1)+ (k)
Ymin — € < Yset (k) < VYmaz T € (2)
Umin S uset(k) S Umaz
€e>0
where y* and u* are the optimal nominal “tar-
gets” computed by upper level optimizers, yse: (k)
and uge (k) are the achievable targets to be op-
timized, while d(k) is the estimated disturbance
updated by:

(k) = ym (k) = ¥set (k[k — 1), 3)
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where y,,, (k) are the measured outputs at time k
and yset(k|k — 1) is the prediction of outputs in
the previous control execution. € may be defined
as a violation tolerance of the output constraints
that ensures a feasible solution to the QP. The
steady-state gain matrix K can be calculated via
linearization of the nonlinear model used in an
upper optimizing layer or abstracted from the
linear model used by lower level MPC dynamic
control. Note that the above formulation considers
only the local unit.

2.2 Coordination of Decentralized MPC

Centralized Optimization A centralized optimiza-
tion approach for coordinating decentralized MPC
systems has been discussed in Havlena and Lu
(2005). In that framework, as is shown in Figure 2,
a monolithic optimization problem is formulated

‘ Real Time Optimization (RTO) ‘
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Fig. 2. Centralized MPC target calculation

at the target calculation stage for the entire plant.
A plant-wide gain matrix is used, which relates
the manipulated variables (MVs) and controlled
variables (CVs) of all decentralized MPC subsys-
tems. Although a centralized steady-state opti-
mization approach may accurately track optimal
plant operations, it can lack the reliability of the
decentralized control structure.

Decentralized Optimization Depicted in Figure
3, a coordinator is designed to deal with the in-
teractions among decentralized MPC controllers
and makes use of the price-driven coordination
method (Cheng et al., 2005a). The task of the
coordinator is to ensure that the coordinated sys-
tem finds the optimal plant operations. Note that
in the figure “S. I.” denotes the term sensitivity
information, which is the Lagrangian-like infor-
mation flow used in the coordination mechanism.

A key step in coordinator design is to identify
appropriate interactions for linking constraint for-
mulation. The linking constraints contain process
variables from multiple operating units (or unit-
based MPC controllers). These linking constraints
are used in the coordinator’s optimizing scheme.
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Fig. 3. coordinated, decentralized MPC target
calculation

Several methods can be used to model the in-
teractions, such as the interstream consistency
(Cheng et al., 2005a), off-diagonal elements ab-
straction, and ratio control constraint augmenta-
tion (Havlena and Lu, 2005).

Off-diagonal Elements Abstraction Here we briefly
discuss the off-diagonal elements abstraction method
for constructing linking constraints. Quite often,
advanced control strategies are designed and im-
plemented at different times for different operat-
ing units. In this situation, the CVs and MVs have
been specified and grouped in a unit-based sense.
Assume that we have a full gain matrix for a plant
with N operating units:

Kii Ki2 ... Kin

K21 K22 PR K2N

A= (4)

KNI KN2 PR KNN

A unit-based implementation of MPC in (2) uses
the block-diagonal information K;; of the plant
model in their calculations, while the off-diagonal
blocks may be treated as disturbances in their
models. This way of dealing with the off-diagonal
information can introduce undesirable uncertainty
when the interactions are significant. Note that
the plant-wide model:

Y (k) = AU(k) + D(k) (5)

where Y (k) and U(k) are vectors containing the
CVs and MVs of N local operating units, respec-
tively, and is equivalent to:

yi(k) = Ky (k) + e;(k) + di(k) (6)
N
ei(k) = Y Kius(k) =0 j#i  (7)

The auxiliary variable e;, which is an abstrac-
tion of the off-diagonal elements, represents the
influence of the inputs of other operating units on
the local system. Without the equations in (7),
the auxiliary vector e; can be regarded as local
variables only involved with the i** operating unit,
and they can play a role as decision variables in
the optimization.
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The abstracted equality constraints in (7) are the
linking constraints to be incorporated into the
coordinator’s optimization problem. Different de-
centralized optimization strategies have different
usage of the linking constraints, but all of them
aim to find a set of [y;, u;, e;] so that the optimum
plant operations are achieved.

Price-driven Coordination Method In our previ-
ous work (Cheng et al., 2005a), the price-driven
coordination method was developed to efficiently
solve large-scale QP problems with equality link-
ing constraints in a decentralized optimization
manner. The work was based on ideas presented
in Jose and Ungar (19984a) and (1998b).

Using the price-driven coordination method, the
MPC target calcultion for a local operating unit
can be modified as:

min 2 = (yset (k) — y*)TQy(YSet(k) -y")

Vet Uset
+ (et (k) —u*) T Qu(tset (B) —u*) +cy (yset (k) —y™)
+ cyu(uger(k) —u*) + e7clcTe —pTe(k) (8)
s. t.

Vset (k) — Kugei (k) = e(k) + d(k)

d(k) =d(k—1) + (k)
Ymin — € < Yset(k) < Yimaz + € 9)

Umin < User(k) < Wmar

e>0

where we omitted the subscript ¢ for simplicity.
Note that there is a minor modification to the
objective function and unit model.

Note that a price vector p is introduced in (8).
It has been proved that there exists an equilib-
rium price vector p* that optimally coordinates
the independently solved subproblems (unit-based
optimization problems). To find the equilibrium
price vector, the generalized Newton’s method
with stepsize determination is used to solve the
following system of equations:

P A(p) =0 (10)
N

A(p) =e;— > Kiu; i=1.N j#i (11)
j=1

for updating the price vector p, and the equilib-
rium price vector p* satisfies the above two equa-
tions. One may also notice that A in (11) is an
implicit function of the price vector p. When the
price vector is appropriately updated, the compo-
sition of unit-based MPC solutions will converge
to the plant-wide optimum.

3. PLANT-WIDE CONTROL OF A PULP
MILL PROCESS

The pulp mill model given in Castro and Doyle IIT
(20040) is a newly published industrial benchmark
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problem, which may be suitable for the study of
process modeling and estimation, process control
and optimization, and fault detection and diag-
nosis. This pulp mill model includes the fiber-line
and the chemical recovery loop. The primary goal
of the pulp mill is to produce wood pulp of a
given Kappa number or brightness while minimiz-
ing energy costs, utilities and chemical make-up
streams. The control objectives, modes of oper-
ation, process constraints and measurements are
all defined in Castro and Doyle III (20044).

3.1 Existing Unit-based MPC Schemes

In Castro and Doyle IIT (2004b), a decentralized
control system has been proposed. At the unit
level, it involves two control layers: unit-based
MPC and decentralized regulatory control loops.
This work focuses on the MPC layer.

The existing MPC consists of four separate con-
trollers, one each for the digester and oxygen
reactor, the bleach plant, the evaporators, and
the lime kiln/recaust areas, respectively. In their
configuration, the MPC layer only contains the
dynamic control calculation stage and involves
totally 21 CVs and 20 MVs. The MPC is designed
to track the set-point trajectories given by an
upper level optimization.

3.2 Modeling for Target Calculation

Since we focus on MPC target calculation, the
plant-wide linear steady-state model matrix A
in (4), from the MVs to CVs, is obtained via
step response tests to ensure that the steady-state
gains are consistent with the dynamic simulation.

In this work, the effect of disturbances are com-
pensated via the bias update strategy in Ying and
Joseph (1999).

3.8 Unit-based MPC Target Calculation

This study uses the decentralized, two-stage MPC
system discussed in Ying and Joseph (1999) and
takes the formulation given by (1) and (2) for
target calculation. The control calculations in this
paper use the configuration of Castro and Doyle
IIT (2004b).

In the unit-based MPC target calculation, the
interactions between units were ignored. Thus, the
gain matrix K in (2) is actually K;;, the block-
diagonal elements of the overall-plant gain matrix
A. The effect of off-diagonal elements was treated
as disturbances, through d(k). The bounds for
variables are the same as in the dynamic control
calculation, and the weightings Q, and c, are
given in Table 1.
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3.4 Closed-loop Performance

This section compares three control schemes: the
centralized, the decentralized, and the coordi-
nated, decentralized MPC target calculation. The
centralized optimization scheme uses the entire
plant-wide gain matrix and is used to define the
performance benchmark for our study.

It is desired to closely track the setpoints given
by an upper level optimization at the same time
maximize production rate and minimize oxygen
reactor coolant flow and kiln fuel flow. In this
case study, the plant-wide objective function is
defined as a combination of those objectives with
weightings given in Table 1. The optimization
problems in all of the schemes are formulated as
minimization problems. The weightings for the
MVs used in all MPC control schemes are adopted
from the work by Castro and Doyle IIT (2004b).

Table 1. Important CV Weightings

Controlled variables Q, /100 cy
production rate 1.5 -80
digester kappa No. 1.5 0
oxygen reactor kappa No. 1.0 0
oxygen reactor caustic flow 1.0 0
oxygen reactor steam flow 0.5 0
oxygen reactor coolant flow 0.75 30
E kappa No. 1.0 0
D2 brightness 1.0 0
slaker temperature 1.0 0
kiln O4 excess % 1.0 0
kiln fuel flow 0.5 30

Using the coordination strategy given in Section
2.2, the plant operation can be driven to the
optimum operation. This usually takes a few com-
munication cycles between the coordinator and
subsystems.

Results based on a 8000-minute (about 140 hours)
closed-loop simulation are reported. The distur-
bance set imposed on the process was adopted
from Castro and Doyle III (2004b). Because
the coordinated scheme provides identical perfor-
mance to that of the centralized scheme, the fol-
lowing figures only show the closed-loop responses
for the coordinated scheme and the original decen-
tralized scheme.

The responses of some key process variables are
reported in Figure 4. Note that, if the exist-
ing decentralized MP C behaves satisfactorily (i.e.,
is stabilizing and robust) under certain distur-
bances, the proposed coordination mechanism will
not impact these characteristics. Moreover, the
proposed control scheme can provide the opti-
mum plant operations as given by the centralized
scheme. In this study, the decentralized scheme
exhibits significant offset from the optimum pro-
duction rate and use of raw materials and energy.
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Fig. 4. Pulp mill closed-loop responses: solid line
(coordinated); dash line (decentralized)

Table 2 reports the profit/cost function values and
computational times for all three control schemes.
Note that the accumulated value function is a

Table 2. Performance comparisons

control value optimization time*
schemes function (per MPC execution)
centralized 1.22 x 10° 0.06 s
unit-based 1.32 x 10° 0.04 s
coordinated 1.22 x 10° 0.14 s

* Simulations performed in Matlab 6.1, AMD Athlon 1.4G
Hz, 1024M RAM machine.

time-integration of the objective function evalu-
ated using the measured process variables. The
optimization time is an average value based on the
observed computational times. As we have defined
the value function of the centralized scheme as
a benchmark, we can see that the coordinated
decentralized MPC provides the same plant-wide
operations, which produces an 8.2% improvement
on that of the decentralized scheme. In the case
study, the optimization problems involve dozens
of decision variables and hundreds of constraints.
The coordinated MPC scheme provides solutions
at a reasonable computational speed and as a
result, exhibits a good trade-off between accuracy,
reliability and computational load.

3.5 Remarks: Some Implementation Issues

In the case study, the sampling time for target
calculation is chosen as 10 minutes, which is the
least common multiple of the sampling times of
MPC subsystems. Based on our observations from
simulations, the selection of sampling time for co-
ordination should also depend on the frequencies
of the disturbances that the control system must
deal with.

In general, good initial points can substantially
enhance the efficiency of optimization. A practical
target calculation formulation should not provide

50 100 150
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too aggressive changes in the reference trajecto-
ries, so the optimal solutions from two consecu-
tive target calculation executions should not differ
too much. Therefore, the equilibrium price vector
from the previous execution works very well as an
initial guess for the current target calculation.

4. CONCLUSIONS AND FUTURE WORK

In the MPC applications for plant-wide control,
the coordination of unit-based MPC controllers
can substantially improve plant operations. With
the price-driven coordination algorithm and the
off-diagonal element abstraction technique, a co-
ordination mechanism was developed for a coor-
dinated, decentralized MPC framework. The pro-
posed control approach is applied to a pulp mill
benchmark problem, and shows a significant im-
provement in performance in comparison to the
existing decentralized MPC systems. Thus, the
case study shows that this coordinated, decentral-
ized MPC framework may be a viable technology
for plant-wide MPC applications.

A number of issues still need to be further in-
vestigated. One of these is an understanding of
the complexity and scaling behavior of the price-
driven coordination algorithm. In addition, it is
vital to understand the relationship between the
structure of the decentralized MPC system and
the performance of the coordinated system.
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