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Abstract: In this paper, a new approach for fault detection and isolation that is based on the 

possibilistic clustering algorithm is proposed. Fault detection and isolation (FDI) is shown here to 

be a pattern classification problem, which can be solved using clustering and classification 

techniques. The possibilistic clustering approach was proposed to address some of the short 

comings of the fuzzy c-means (FCM) algorithm. The probabilistic constraint imposed on the 

membership value in the FCM algorithm is relaxed in the possibilistic clustering algorithm. 

Because of this relaxation, the possibilistic approach is shown in this paper to give more consistent 

results in the context of the FDI tasks. The proposed approach addresses the issue of correctly 

isolating a fault that may occur with varying intensities. The concept of fault lines is introduced, 

which in conjunction with possibilistic clustering has been effectively used for FDI. Fault 

signatures that change as a function of the fault intensities are represented as fault lines, which are 

shown to be useful to classify faults that can manifest with different intensities. The proposed 

approach has been validated here through simulations involving a co-polymerization reactor 

simulation. Copyright © 2006 IFAC

Keywords: Possibilistic clustering, Fuzzy c-means clustering, Gustafson-Kessel algorithm, Fault 
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1. INTRODUCTION 

Online process monitoring for fault detection and 

diagnosis (FDD) is very important for ensuring plant 

safety and product quality. The area of FDD has been 

very active in recent years. Both, model based and 

process history based methods have been proposed 

with a fair amount of success. 

In a typical process plant, hundreds of variables are 

measured every few seconds. These measurements 

bring in useful signatures about the status of the 

plant. While model-based methods can be used to 

detect and isolate signals that indicate abnormal 

operation, such quantitative cause-effect models may 

be difficult to develop from the first principles. 

Methods based on historical data attempt to extract 

maximum information from the archived data and 

require minimum physical information of the plant. 

Multivariate statistical monitoring tools such as PCA 

(Kresta et al., 1991) are developed to extract 

information from historical process data so as to 

carry out the task of FDD easily and more efficiently. 

1
A fuller version of this paper has been communicated for journal 

review

For online process monitoring, it is important to not 

only be able to say whether the plant operation is 

aberrant but also to be able to isolate the fault. This is 

typically done through the use of contribution plots, 

which assesses the relative contribution of each 

variable to a suitably formulated error criterion. 

While multivariate statistical tools can compress data 

and perform monitoring in the lower dimension 

space, they are inherently representation-oriented 

rather than discrimination oriented. They seek to 

explain or represent the variance in a data set rather 

than discriminate between dissimilar subsets in the 

data (Chiang et al., 2000).  Thus, there could be 

overlaps between the clusters representing fault 

regions and normal operating regions, leading to 

higher misclassification rates. Overlaps could also 

still exist, although to a smaller extent, when tools 

such as multiple discriminant analysis are used. The 

latter are discrimination oriented and are generally 

known to yield directions that enhance 

discrimination between regions. Thus, it is necessary 

to look at methods that accommodate such overlaps 

and analyze these regions so as to provide useful 

indicators to detect and diagnose faults. 
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An alternate approach to the task of fault detection 

and diagnosis is to mine the archived data and 

examine patterns in the process variables that 

indicate the occurrence of a fault. Johannesmayer et 

al. (2002) and Singhal and Seborg (2002) proposed 

pattern matching methods based on similarity factors 

which attempted to match patterns in the archived 

plant database.  Typically, parametric faults, sensor 

and actuator biases and disturbances generate 

different patterns in the process variables.  These 

patterns or signatures can be classified into different 

clusters that represent normal or aberrant operation. 

Subsequently, when deployed online, the plant 

operation can be classified in terms of the belonging 

or membership of the new data to the known clusters, 

based on the similarity of the patterns that the data 

brings. Thus, the problem is often related towards 

being able to classify plant operation as normal or 

belonging to one or more of the faults from the 

available (measurements and manipulated inputs) 

plant signatures. This can be effectively done by 

various pattern recognition and clustering techniques. 

Clustering techniques, such as fuzzy c-means 

clustering (FCM) (Duda et al., 2003) and its variants 

(Fuzzy Gustafson-Kessel (FGK) algorithm for 

clustering (Gustafson and Kessel, 1979)) have been 

very popular in image analysis and pattern 

classification. Since, fault detection and isolation 

(FDI) is also a pattern classification problem, these 

clustering techniques can be effectively used for this 

task. Attempts have also been made to use different 

clustering algorithms for the task of FDI. The k-

means clustering, which is a hard clustering 

technique, has been used along with principal 

components analysis (PCA) and Fisher discriminant 

analysis (FDA) for the task of FDD in a three step 

procedure proposed by Peter He et al. (2005). 

Teppola and Minkkinen (1999) have used adaptive 

FCM for process monitoring of a waste water plant. 

They also used possibilistic clustering algorithm for 

fault detection. Choi et al. (2003) used credibilistic 

clustering algorithm, proposed by Chintalpudi and 

Kam (1998), based approach for process monitoring. 

One of the limitations of the proposed clustering 

based algorithms is that signatures resulting from the 

same fault but with differing intensities would 

confound them and may lead to spurious fault 

isolation. Another important aspect, relevant for the 

task of FDD, is related to the issue of identifying and 

classifying novel faults. It is important to recognize 

that archived data does not necessarily encompass all 

possible fault scenarios. Therefore, the FDD 

algorithm also needs to have learning ability, i.e. 

when deployed online it should be able to identify 

the occurrence of new faults and establish relevant 

signatures or patterns that are representative of the 

novel fault. 

In this paper, we propose to overcome the above 

difficulties, by using the possibilistic clustering 

algorithm (Krishnapuram and Keller1, 1993) in 

conjunction with ‘fault lines’. Possibilistic clustering 

algorithm is a powerful technique that is similar to 

probabilistic clustering methods but differs in the 

nature of the constraint(s) that bind the objective 

function. Possibilistic clustering algorithm has a 

number of advantages when compared with 

conventional FCM algorithm (Krishnapuram and 

Keller, 1993). In possibilistic clustering, the number 

of clusters need not be specified accurately and they 

can be derived during the classification step. In 

FCM, however, approximate number of clusters/ 

classes in the data is determined by various cluster 

validity measures proposed in the literature (Bezdek, 

1981). The formulation of the possibilistic clustering 

algorithm relaxes some constraints on the nature of 

the membership functions; here we also show that 

this relaxation gives (i) more consistency in the 

classification task and (ii) enables the detection of 

novel (or not-seen) classes. It is also shown here that 

that the possibilistic clustering algorithm is relatively 

insensitive to noise and outliers. These features make 

the possibilistic clustering algorithm more suited for 

the FDD task. Here, we also introduce the concept of 

fault lines for handling faults with varying intensities 

and detecting novel faults. Fault lines are 

characterized by cluster centre of the normal 

operation and cluster centre one of the fault clusters. 

We demonstrate the suitability of the proposed 

approach for the FDD task, through simulation case 

study involving CSTR simulation for solution co-

polymerization of methyl-methacrylate (MMA) and 

vinyl acetate (VA) (Congalidis et al., 1986).  

The paper is organized as follows. In the next section 

we present a brief review of clustering algorithms, 

namely the FCM/ FGK and PGK algorithm. In the 

next section the proposed FDI scheme is described in 

detail. Finally we present a case study to validate the 

proposed approach.  

2. REVIEW OF CLUSTERING 

ALGORITHMS 

The aim of any clustering analysis is to derive a 

partition of a set of N data points or objects based on 

some similarity metric, so that the data points/ 

objects that get clustered into the same group are 

similar to one another. Clustering algorithms can be 

broadly classified into hierarchical and non-

hierarchical clustering techniques. Here, due to 

brevity, we briefly review fuzzy c-means clustering 

and possibilistic clustering algorithms. In fuzzy c-

Means (FCM) algorithms, each data point can be a 

member of more than one cluster, i.e. the 

membership of a point can take any value between 0 

and 1. The following section briefly describes the 

FCM clustering algorithm. 

2.1. Fuzzy c-means algorithm 
In FCM clustering techniques, a data/ feature point 

can be a member of more than one cluster with 

different degrees of membership. If the membership 

value of j
th data point to ith cluster is ij , we have the 

condition that 0,1ij . For the data set 

1 2| , , , NX x x x X , consisting of c clusters, the 

constraints imposed on the membership value ij  are 

given below. 
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where, c is the number of clusters and N is total 

number of data points in the data set. This is also 

known as the probabilistic constraint. This constraint 

requires that total membership of a data/ feature 

point to all the clusters must be unity. Another 

important constraint on the clusters is that none of 

the clusters can be empty, and this constraint can be 

mathematically represented as shown in Equation (2) 

1

0
N

ij

j

N  (2) 

The FCM algorithm then minimizes the following 

objective function subjected to constraints in 

Equation (1) & (2). 

2

1 1

c N
m

ij ij

i j

J d  (3) 

where, m is the fuzziness exponent, ijd  is the 

distance between a data point 
jx and cluster centre 

iv .

The algorithm for FCM starts with some initial guess 

for either the fuzzy partitioning matrix or the cluster 

centers and iterates till convergence. The 

convergence of the FCM algorithm is guaranteed 

(Bezdek, 1981), but it may converge to a local 

minima. 

The FCM membership of a data point to a cluster 

depends not only on the distance of that point to the 

cluster centroid, but also on the distance of that point 

to other cluster centroids. As will be discussed in 

detail later, this can cause the algorithm to assign 

very different memberships to points which are 

similar as measured by their distances from a cluster 

center, because their distances from other cluster 

centers can be different. This problem primarily 

arises due to the probabilistic constraint described by 

Equation (1). 

The FCM algorithm can be modified in several ways 

depending on the distance measure chosen. The most 

commonly used distance measures are Euclidean and 

Mahalanobis distance. Using these distance measures 

is equivalent to assuming that the data is oriented in 

each cluster identically. This may not necessarily be 

true, for example, the orientation of the data could be 

spherical in the first cluster and elliptical in the 

second. From an FDD viewpoint, this could mean 

higher miss-classification rates and hence poorer 

diagnosis. To overcome this difficulty, FGK 

algorithm uses an adaptive distance norm which 

adapts the similarity measure (norm) according to the 

shape of the cluster. The algorithm is also quite 

sensitive to the user specified choice of c, the number 

of clusters in the data set. The results obtained from 

FCM/ FGK algorithm largely depends on this 

number of clusters. If c is not specified correctly, the 

FCM/ FGK algorithm can arbitrarily split or merge 

the classes in the data to give exactly c clusters. 

Different cluster validity measures have therefore 

been proposed to overcome this difficulty. However, 

Bezdek (1981) pointed out that the concept of cluster 

validity is open to interpretation and can be 

formulated in different ways. 

2.2. Possibilistic clustering algorithm 
As described earlier, the probabilistic constraint 

(Equation (1)) imposed on the membership assigned 

by the FCM/ FGK algorithm brings in problems of 

classification. These can be broadly enumerated as 

(i) the points equidistant from the centroid may get 

very different memberships depending upon the 

placement of the other clusters, although they are 

similar as measured by the distance metric, and (ii) 

the points which are equidistant from all the 

centroids get the same membership irrespective of 

their relative positions. To overcome these 

drawbacks, Krishnapuram and Keller (1993) 

proposed a new clustering technique called 

possibilistic clustering, in which the probabilistic 

constraint on the membership is relaxed.  We discuss 

the possibilistic clustering algorithm in the next 

section. 

In possibilistic clustering, the probabilistic constraint 

on the objective function in equation (3) is relaxed in 

possibilistic clustering so as to get membership 

values, which represent the ‘degree of typicality’ to a 

cluster. Simply relaxing the probabilistic constraint 

produces a trivial solution, i.e. the objective function 

is minimized by assigning all membership values to 

0. Therefore the objective function of Equation (3)(3) 

is modified as 

2

1 1 1 1

1
c N c N

m m

ij ij i ij

i j i j

J d  (4) 

The first term in the equation minimizes the 

distances of data points from the cluster centers, 

where as the second term forces the membership 

values to be as large as possible. In this equation as 

well, the value of m determines the fuzziness of the 

final possibilistic partition.  

The value of parameter i  determines the distance at 

which the membership value of a point in a cluster 

becomes 0.5. Thus, it needs to be chosen depending 

on the desired bandwidth of the possibility 

distribution for each cluster. In practice however, the 

following definition works well (Krishnapuram and 

Keller, 1993): 

2

1

1

N
m

ij ij

j

i N
m

ij

j

d

 (5) 

Updating of the membership values depends on the 

distance measure chosen. Different distance 

measures lead to different algorithms. If the distance 

measure chosen is either Euclidean or Mahalanobis 

distance, the algorithm gives possibilistic c-means 

(PCM) membership values. However, if the distance 

measure is chosen based on scaled Mahalanobis 

distance and fuzzy covariance matrix, the algorithm 

gives possibilistic Gustafsson-Kessel (PGK) 

membership values. 

The solution to the objective function in equation (4) 

leads to the values of memberships as, 
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The iterative part of the algorithm for possibilistic 

clustering is very much similar to that of the FCM 

algorithm, except for the additional parameter i

which should be estimated from the initial 

partitioning matrix. However, i  need not be 

calculated at every iteration. 

Since the parameter i  is independent of the relative 

location of the clusters, the membership value ij

depends only on the distance of a point from the 

cluster centre (centroid). Hence, unlike in the 

probabilistic case, the membership of a point in a 

cluster is determined solely by how far a point is 

from the centroid and is not coupled with its location 

with respect to other clusters. 

The advantages of PCM/ PGK lie in finding 

meaningful clusters as defined by dense regions. This 

happens because each cluster is independent of the 

other cluster in PCM/ PGK algorithm. Hence, the 

objective function corresponding to cluster i can be 

formulated as in Equation (7) and the overall 

objective function is collection of c such objective 

functions. 

2

1 1

1
N N

m m

i ij ij i ij

j j

J d  (7) 

It has been shown (Krishnapuram and Keller, 1993) 

that for a given value of i , each of the c sub-

objective functions is minimized by choosing the 

centroid location such that the sum of the 

memberships is maximized. This makes each cluster 

centroid to converge to a dense region. Thus, even if 

the true value of the number of clusters is unknown, 

the outcome of the algorithm will give c ‘good’ 

clusters, i.e. dense regions. Thus, PCM/ PGK have 

self validating capability which can be very useful 

when c is not known apriori. When the number of 

clusters is more than the actual number of clusters in 

the data set, PCM/ PGK give approximately 

coinciding clusters, indicating that the actual number 

of clusters is lesser than specified. This could be 

interpreted accordingly and the clusters could be 

collapsed into a single cluster for further analysis. 

3. PROPOSED SCHEME FOR FDI 

Clustering based approaches are aimed at 

partitioning the historical data into a number of 

clusters, e.g. normal operation and different fault 

operations. Depending on the membership value of 

the data point to different clusters, the plant operation 

is declared either normal or otherwise. The shift from 

normal operating cluster to any fault mode cluster is 

not instantaneous and the transient response depends 

on the dynamics of the system. The FCM algorithm 

would assign different membership values as 

governed by the probabilistic nature (Equation (1)) to 

the points even during these transients. This may be 

useful for example, when the dynamics are to be 

represented (as shown in Venkat and Gudi, 2002) in 

a composite modeling methodology, where the 

memberships essentially weigh the model predictions 

in each cluster. However, for the FDD task, this may 

yield erroneous results and misleading 

interpretations. Possibilistic clustering algorithms 

(PCM/ PGK) appear to be more suited because these 

points corresponding to the transition region are not 

governed by the probabilistic constraint and are 

assigned low memberships to all the clusters. In the 

following section, we describe the proposed 

approach for fault detection and isolation. 

3.1. Data collection and clustering 

The ability of a statistical approach to detect and 

isolate a fault depends on the availability of rich 

historical data, containing data corresponding to 

normal and fault modes of operation. Ideally, the 

data set used for training the clustering based 

technique should contain data that represents all 

possible fault scenarios. In practice however, it may 

not be possible to have such a data set and the 

algorithm should have some self-learning abilities. 

In general, the historical data consists of 

measurements of various controlled and manipulated 

variables at each sampling instant. The clustering 

approach could either first construct a feature vector 

from this data or directly work with the 

measurements. In the former case, the classification 

is carried out in the space defined by these feature 

vectors. For example, for incipient fault detection, it 

may be mandatory to look at the dynamic patterns 

represented by the feature vector that is constructed 

from the measurements from the current and past 

instants. Meel et al. (2004) used such an approach to 

rapidly reject unmeasured disturbances using these 

pattern recognition techniques, by classifying an 

appropriately constructed feature vector that was 

based on apriori knowledge of the dynamics. This 

approach necessarily requires apriori information of 

the classification space which is usually difficult to 

obtain. Alternately, one could directly classify in the 

space spanned by the measurements (i.e. without 

constructing feature vectors). This latter approach is 

taken in this paper.  

The clustering algorithm can then be applied on the 

data. Specifying the exact number of clusters present 

in the data set is not mandatory for possibilistic 

clustering approach, as the possibilistic clustering 

algorithm attempts to search for c good clusters, i.e. 

dense regions. In the case when the number of 

clusters specified is more than the actual number of 

clusters present in the data set, the algorithm will 

give overlapping clusters indicating that the value of 

c is over specified. This greatly simplifies the task of 

clustering of historical data in which the number of 

clusters present is not known apriori. The outcome of 

the clustering algorithms would thus yield cluster 

centroids and fuzzy covariance matrices for each 

cluster (in case when the GK algorithm is used). 

3.2. Generating Fault lines 

We next discuss the effect of different fault 

magnitudes and intensities.  As mentioned earlier, 

different fault intensities of the same fault (for 

example, sensor bias) can manifest in different data 

vector signatures / paths and would end up into new 

cluster. In such cases, a methodology, which is still 

able to classify the fault as a sensor bias (rather than 

IFAC - 908 - ADCHEM 2006



as a novel fault), independent of its magnitude is 

desirable.  Towards this end, we propose the concept 

of fault lines that characterize the movement of the 

cluster as a function of the intensity of the fault. 

When the fault intensity increases, the dynamics and 

the controller effects result in parallel paths that shift 

to the fault cluster and eventually end up into new 

clusters. A fault line could therefore be constructed 

through the centers of the clusters, beginning from 

the normal cluster to the fault clusters, and would 

characterize the behavior of the clusters as a function 

of increasing intensities of that fault. Assuming that 

during the training step, data corresponding to a 

particular fault is available; fault lines can then be 

constructed to characterize the particular fault.  

3.3. Online monitoring and fault detection 

For online process monitoring and fault detection, 

the membership value of the data vector, constructed 

from the measurements at each instant, to each 

cluster is calculated from Equation (6) in case of 

possibilistic clustering approach. High membership 

values to the normal operating cluster imply that the 

plant is operating normally. When an abnormal event 

occurs, these reflect in the signatures of the measured 

variables, which result in changing memberships of 

the data vector to the known clusters. An analysis of 

these memberships would help in the interpretation 

and classification of the fault scenario. The PCM/ 

PGK membership value for the normal cluster will 

assume smaller values close to zero, indicating that a 

fault may have occurred.  

3.4. Fault confirmation and isolation 
It is important to recognize that the changing 

memberships due to the occurrence of a fault are 

influenced by the inherent system dynamics. The 

membership profiles can also change due to the 

occurrence of short-term transients (introduced for 

example by a control loop), measurement noise or 

outliers. Thus, it is important to confirm the 

occurrence of a fault after it is detected. For fault 

confirmation and isolation, we therefore propose to 

use a window of M sampling instants over which the 

membership profiles are analyzed. If the 

memberships to the normal cluster consistently stay 

below the user specified threshold for a period 

exceeding M sampling instants, the occurrence of a 

fault is confirmed. Similarly, if the memberships to a 

particular fault cluster assume significant values 

(above a specified threshold) the fault may be 

isolated as well.  

It should be noted that this will happen only if the 

fault that has occurred is of the same intensity as in 

the historical data. In case, if the fault has occurred 

with a different intensity, the membership value to all 

known fault clusters will remain close to zero, 

indicating that a new cluster is formed. As pointed 

out earlier, the objective function for possibilistic 

clustering can be seen as a set of c objective 

functions and the membership value in possibilistic 

clustering is not influenced by how other clusters are 

placed. Therefore, it is sufficient to find only the new 

cluster centre from this newly collected data. Once 

the new cluster centre is computed, its proximity 

with the fault lines can be examined. If the new 

cluster centre is close to one of the fault lines, which 

are generated from the historical data, the fault may 

be isolated as the fault associated with that fault line. 

The specification of the parameter M has to be 

carefully done to achieve a compromise between 

false alarms and sensitivity to the fault occurrence. In 

general, the choice of M can be made from the closed 

loop process dynamics or plant operator’s 

experience. 

3.5. Novel fault detection 

This proposed approach also therefore provides a 

method to flag novel faults. Low membership value 

to normal operation cluster for M sampling instants 

confirms the occurrence of a fault. However, if 

membership to all known fault clusters and proximity 

to all known fault lines suggest that the fault that has 

occurred is indeed novel. Thus, proposed approach 

enables the classification of the plant operation either 

as (i) normal operation, (ii) belonging to the known 

fault scenarios, or (iii) novel faults. The approaches 

based on other clustering approaches can not provide 

such crisp division of the plant operation. The new 

cluster information can be merged with the existing 

knowledge base and used for future fault diagnosis. 

Thus an added advantage of the proposed scheme is 

that it reduces the emphasis on exhaustive historical 

data. In principle, one can start with just the normal 

operating data and continue building the monitoring 

scheme as the new fault events occur. 

The role of the fuzziness exponent m in the FDD task 

also merits some important comments. As mentioned 

earlier, a higher value of m blurs the distinction 

between the clusters and makes the cluster 

boundaries to fade. While monitoring a transition 

from a normal operating region to a fault mode, with 

higher values of m, the algorithm would confirm the 

fault early. However, this high value of m would also 

increase the incidence of false alarms, which would 

be indicated when the memberships to the normal 

cluster decrease. Thus, as in the case of window 

length M, the value of the fuzziness exponent m 

should also be chosen as a careful compromise 

between the requirements of early fault detection and 

confirmation. 

Remark: The above monitoring strategy is restricted 
to steady state behavior wherein the points belonging 

to different operating regions cluster together. For 
the time varying case, for example in a batch 
process, the method needs further modifications 

using manifolds that characterize time varying 
operation. This aspect is currently under 

investigation. 

4. CASE STUDY 

To validate the proposed approach a simulation case 

study that is based on co-polymerization reactor is 

presented here. A 4×5 transfer function matrix model 

(Congalidis et al., 1986) for a CSTR solution co-

polymerization of methyl-methacrylate (MMA) and 

vinyl acetate (VA) was simulated under closed loop 

conditions. Based on the RGA analysis, the pairings 

of controllers were chosen and U1 was kept constant, 

effectively resulting in a 4×4 system. 
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To begin with, the historical data set containing data 

for (i) normal operation and (ii) for the fault case 

when sensor Y1 has developed a bias, was collected. 

This resulted in two clusters F0 and F1 and a fault line 

corresponding to fault F1 in the knowledge base. 

When implemented online, the proposed possibilistic 

clustering algorithm could easily detect and isolate 

fault F1.

In the next step, a positive sensor bias in sensor Y4

was introduced. As this fault is not part of the 

archived data that was used for training, it was 

detected as a novel fault after M (20) samples. The 

new cluster centre for the newly obtained data was 

computed and it was found that the new cluster 

centre (say F2) was not on the fault line 

corresponding to fault F1. Distance of F2 from F1

fault line was found to be 2.74 units. Hence, the fault 

was isolated as novel fault and knowledge base was 

updated with the new cluster centre. The monitoring 

scheme now had three fault clusters F0, F1 and F2

along with fault lines for F1 and F2. The monitoring 

scheme could now easily detect and isolate fault F2

(Figure 1). 

As discussed earlier, the same fault can occur with 

varying intensities during the plant operation. It is 

therefore important to ascertain that they are not 

isolated as different faults. To demonstrate the same, 

a negative bias in sensor Y4 was introduced. With the 

proposed approach, it was promptly detected. 

However, since the intensity of the fault was 

different than the training set, all the clusters’ 

membership value remained close to zero (Figure 2). 

Here, fault isolation was performed using the fault 

lines. The distance of fault lines for F1 and F2 were 

found to be 2.70 and 0.05, indicating that the fault 

detected is indeed the same fault as F2 with different 

intensity. 

5. CONCLUSION 

A fuzzy clustering and classification based fault 

detection and diagnosis algorithm was proposed and 

validated through a simulation case study. The 

proposed approach is based on the possibilistic 

clustering methodology of Krishnapuram and Keller 

(1993) and was found to be vastly superior to other 

classification methodologies such as the fuzzy c-

means and fuzzy credibilistic algorithm. The concept 

of fault lines was shown to address the difficulty of 

isolating the same fault with varying intensities. The 

fault lines were shown to distinguish between 

scenarios of a novel fault and known fault with 

different intensities. Thus, the proposed scheme 

reduced the emphasis on exhaustive historical data 

and can update the monitoring scheme as the new 

fault events occur.  
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Figure 1: Fault detection and isolation for bias in 

sensor Y4
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Figure 2: Fault with different intensity than the training 

set is not be classified as one of the known faults via 

membership values 
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