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Abstract: Genetic Algorithms (GAs) have shown great potential and ability to solve 

complex problems of optimization in diverse industrial fields, including chemical 

engineering process. In this paper, the main objective is to develop and implement a GA 

code in an industrial reactor of Cyclic Alcohol (CA) production for the optimization of 

operational parameters. The intention is to show that this technique is suitable for the 

maximization of Cyclic Alcohol production, obtaining good results with operational 

improvements (reduction of catalyst, reduction of the temperature of the process). The 

results show that the best performance of the process was achieved with the application of 

GAs. The developed procedure works very well in all the considered conditions which 

cover the most usual operating range for the considered process. Copyright © 2006 IFAC
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1. INTRODUCTION 

Several works have been carried out having as 

objective to optimize, through Genetic Algorithms 

(GAs), the diverse parameters involved in kinetic 

models of chemical processes (Moros, et al.,1996; 

Simant and Deb, 1997; Hongqing et al., 1999). In 

this work the objective is to find the best operating 

conditions of a Cyclic Alcohol (CA) reactor, which 

involves the hydrogenation of a specific Benzylic 

Alcohol (Main Reactant – MR or BA). The 

optimization of this unit was chosen for several 

factors among which: the reactor of Cyclic Alcohol 

presents a complex behaviour and existence of a 

great energy expense associated to the pressures and 

temperatures variations in the operation of the 

process. As the reactor is a non linear multivariable 

distributed parameter system leading to a system of 

differential equations, the optimization problem is a 

hard task and conventional optimization methods 

have show severe limitations, especially in terms of 

convergence. Bearing this in mind in this work is 

proposed an optimization procedure based on 

Genetic Algorithms method. 

2. GENETIC ALGORITHMS (GAS)

These algorithms are a procedure of optimization 

developed based on the principles of natural 

selection (Holland, 1992; Goldberg, 1989). The GA 

initiates with a population of represented random 

solutions in some series of structures. After this first 

stage, a series of operators, are applied repeatedly, up 

to convergence is achieve. In fact the optimization 

procedure based in such  approach can be considered 

as an global optimization method with the advantage 

to do no be dependent upon the initial value to 

achieve the convergence. Most probably the more 

significant disadvantage is the computer time and 

burden required. These operators are: coding, 

reproduction, crossover and mutation. These two last 

operators are used to create new and better 

populations. This procedure continues until a 

termination criterion defined in accord to the need to 

achieve the goal in the optimization problem. The 

determination of the parameters is made through the 

development of an objective function that represent 

the problem in a suitable way. The application of the 

GA follows some steps as: coding, determination of 

the population size, selection (reproduction), 

crossover and mutation. 

2.1 Coding 

The coding stage is very important for the success of 

the genetic code application in the solution of the 

optimization problem (Goldberg, 1989). The target is 

to create a parameter representation which allows to 

its modification through the division in some 

position. The formed parts are separated sequences in 

conditions to be matched with others. A codified 

parameter should be seen as a chromosome in 

genetics, in other words a modifiable carrier of 

information. In some GA algorithm, the coding 

method is based on the representations of binary 

series number; other forms of coding can be used as 
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representations in real numbers and whole numbers.

In this paper the binary approach is adopted.

2.2 Population Size

Wehrens and Buyders, 1998 mentioned that for each 

case, population sizes range can vary, but for most of 

the cases is used between 20-500. In general, when

many parameters are optimized larger populations

are used. For the CA optimization problem the

population size is considered to be about 20 and 500

generations.

2.3 Selection – Reproduction

The reproduction is normally the first procedure

applied in the population, and it is a choice of good

individuals (series) in order to form one mating pool.

Some types of reproduction are found in literature

(Goldberg and Deb, 1991). The main idea is to select

individuals that possess values above of the average

of a current population. The more traditional

methods of selection are the proportional selection,

roulette wheel and based in rank. The main feature in

the stage of selection is the prevention of individuals

(series) that promote values of the undesirable

evaluation function (fitness) considering the

objective of the problem. In this work was

considered tournament selection form. This method

is the most popular forms of selection in evolutionary

algorithms (EAs). In its simplest form, a group of n

individuals is chosen randomly from the current

population, and the individual with the best fitness is 

selected (Bäck et al., 2000). This selection performs

tournaments by first sampling individuals uniformly

and randomly from the population and then selecting

the best of the sample for some genetic operation.

This sampling process needs to be repeated many

times, creating a new generation.

2.4 Crossover

Crossover is applied in the series originated from

mating pool (after the stage of reproduction). In the

same way that the reproduction operator, the idea is

to find some operators of crossover applied in GA

(Syswerda, 1989). In the majority of the operators

two series (individuals) are chosen randomly from

the mating pool. After this stage it is made a 

recombination of the construction tablets (parts of

the series of the relatives) that correspond to the

favorable sub-solution. The uniform crossover was

used with crossover probability 0.8.

2.5 Mutation

The main target of this genetic operator is to promote

new solutions (individuals) that cannot be generated

for another form. The mutation introduces an 

element of the random research (sometimes called 

exploration). The intention of such procedure is to

focus in promising regions of the search space

(exploitation). The occurrence of this operator is

determined by the researcher through a mutation

probability. This value is around 0.01 and it is inside

a recommended range by a tray and error procedure

(Goldberg, 1989). Usually, this value is smaller than

the adopted one for the crossover and the criterion

for a good value is to prevent too much random

search.

3. DESCRIPTION OF THE PROCESS

The process is a multiphase catalytic reactor, where

hydrogenation reactions take place. A typical process

of industrial interest is the hydrogenation of ortho-

cresol (Vasco de Toledo et al., 2001). A series of 

parallel and consecutive reactions may happen, so

that the reactor has to be operated in a suitable way 

to achieve high conversion as well as high

selectivity.

The reactor is constituted of a series of tubes, cooled 

by pressured water which flows in a jacked around

the tubes. The reactants flow inside the tubes, while 

the thermal fluid flows through the annular regions.

The deterministic mathematical model used to 

describe the reactor is based on the work by Santana,

1995 and Vasco de Toledo et al., 2001. The reactor

model is a set of differential equations, considering

two regions of each reactional module: tubular and 

annular.  In the sequence the mass and energy

balances for the BA and CA respectively are 

presented. For the other components of the

reactional system, the equations are similar and can 

be found in the studies of Santana, 1995.

3.1 Model Equations

The equations are customized to the situation of the

reactor-CA from the general expressions for the

modelling of described mass and energy by Froment

and Bischoff, 1990.
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Energy Balance – Reactants and Products - Tubular 

Region:
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Energy balance for the coolant:

Annular Region – I

TT
CQ

DU

dz

dT
R

pRR

i11R (7)

Annular Region – II

TT
CQ

DU

dz

dT
R

pRR

e32R (8)

In the previous equations there appear three global

coefficients of heat transference, correspondent to 

the diverse circuits of the reaction medium mixture,

U1, U2 and U3 (coefficients tube-coolant, annular-

coolant and annular-heating system respectively). 

The considered main reaction is the hydrogenation of

Benzylic Alcohol to CA. The kinetic model

considered by Coussemant and Jungers, 1950 was

applied in this work and all the data and calculations

related to the global coefficient of heat exchange,

pressures, physical properties prediction of the

components are described with details by Santana,

1995.

These equations are written to each part of the

reactor (tubular and annular region) as well as for 

each phase of the system, since the reactor is a 

multiphase one. Moreover, equations for predicting

the heat coefficients must be present as well as a way

to describe evaporation that may occur, depending

upon the operating conditions. Each of these

equations must be applied to each tube for both

regions, namely, the tubular and annular. Since the

reactor is essentially a tubular one usually operating

at high flow rates, axial dispersion is neglected. Thus

steady-state process model presents a set of ordinary

differential equations if radial dispersions is

neglected, which is, together with the hypothesis that

the solid-liquid phase is a single pseudo-

homogenized fluid, a reasonable simplification that

can be made in order to reduce the complexity of the

process model.

3.2 Kinetic equations

The work developed by Coussemant and

Jungers, 1950 does not consider some stages and is 

represented in accord to with the main equations that 

occur in the process, described below:

OHCHCAH2BA 2

Ni/Rb

2

Ni/Ra

2

The intermediate stages with CEX (cycloalkene)

formation are not considered in the model. The

formation of alcohols is explained by admitting a 

mechanism of adsorption in individual small sites of

the catalyst. 

3.3 Kinetics of the Main Reaction

The considered main reaction is the hydrogenation of

Benzylic Alcohol to CA. The kinetic model

considered by Coussemant and Jungers, 1950 is used

they studied this nickel process using a catalytic

reactor of the type autoclave. It was found evidence 

of formation in intermediate stages of 

Cyclohexanone, and that to a pressure raised enough

the reaction possesses order zero in relation to

hydrogen. The global Benzylic Alcohol conversion

(RBA) to CA is described by the following relation:
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The rate of reaction RBA is express in mol-

BA/mim.g-catalyst, and the temperature T, in the 

expressions of the kinetic constants must be in K.

3.4 Kinetic of Secondary Reaction

The considered secondary reaction is the dehydration

of the CA with water formation and Cycloalkene,

which is immediately hydrogenated, with consequent

formation of C (Cycloalkane - undesirable product).

The rate of formation of C (RCA) from dehydration of

CA is described in relation (10), as follows:

32

2

3CA
bCC

C
kR

  (10)

The parameters b, b1, b2, b3, k1, K, C1, C2 and C3 are

described in Coussemat and Jungers, 1950.

3.5 Effective Rates of Reaction

The rate of reaction of a catalytic process is directly

associated with the catalyst concentration, being

expressed by the equation (11):

icati RCr  (11)

where ri must be expressed in mol-i/min.m3, whereas

the catalyst used in the hydrogenation processes is

considered as highly active. It has a certain level of 

activity related to presence of the metal on the

catalyst.

Thus, in the formularization of the expressions for

the rates of the considered reactions, a Fi factor that

attempts to quantify the effectiveness of the catalyst

for the two reactions (hydrogenation of BA and

dehydration of the Cycloalkene), was introduced so
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that each one of the reaction effective rates is

expressed in the form of equation (12):

iiei rFR (12)

the factor Fi can be seen as a numerical constant

whose value can vary in a range of (0 and 1), where

the null value represents activity absence (absence of

the reaction) and unitary value meaning the

maximum of the catalytic activity (full activity).

Intermediate values can characterize different states 

of the activity of the catalyst wheels is function of

the reactor severity (operation temperature).

Other details of components physical properties and

other considerations are described in Santana, 1995.

4. OPTIMIZATION STRATEGIES

The optimization using the mathematical model takes

into account the real operational conditions of the

reactor. The chosen parameters to implement the 

optimization are those with more sensitivity in the

production process. The objective is to maximize the

production of CA (QCA), using as main variables the

outflows of coolant fluid (Qri’s), the feed reactants 

temperature (T0) and the outflow of catalyst (Qcat), in

a total of eight variables.  Table 1 shows the valid

parameter limits to be optimized. The genetic code

developed by Carroll, 1996 was coupled with the

reactor model. The genetic code possesses the

following characteristics: binary code; uses the

elitism; search in niches and selection by tournament.

The presented values in the tables are in the

normalized form. In the industrial reactor all the 

flows are measured in kg/h (QCA, QMR, QC, Qcat and 

Qri’s respectively) and the temperature is in Celsius

degrees.

Table 1 Limits of validity of the parameters to be

optimized (normalized values)

Parameters Lower limits of variable Upper limits of variable

Qr1 0.01 1.00

Qr2 0.01 1.00

Qr3 0.01 1.00

Qr4 0.01 1.00

Qr5 0.01 1.00

Qr6 0.01 1.00

T0 y* 0.84

Qcat 0.0000 x*

The value of * is related to the inferior limit of the

initial temperature of the reactants mixture and

products in the entrance of the reactor (normalized

values), being 0.60 for the Level 1 of production and

0.68 for the two other production Levels (2 and 3

respectively). In the Levels 2 and 3, smaller values

than 0.68 supply discontinuous values for solution of

the reactor model. This is not appropriate to be used

in the optimization.

y

The value of  refers to   the maximum catalyst flow

(  normalized) (upper limits) that also depends of 

the operational level of production that is analyzed.

For the Level 1 the maximum value is 0.6000, the

Level 2 the value is 0.8000 and last (Level 3) 

assumes the value of 1.0000. Values above the upper

limits of each level also lead to discontinuity in the 

model solution, and hence were not used.

*x

catQ

4.1 Objective Function

The optimization is performed through the

development of an objective function. In this work

the objective function is related to the productivity of

the main product (Cyclic Alcohol) and considers the

the following restrictions presented in Table 2. The

restrictions are related to the product of interest

(CA), the main reactant (MR) and secondary product

(C) without interest, as can be observed in Table 2.

Table 2 Production Levels to be optimized

considering the respective restrictions (normalized

values)

Level 1 Level 2 Level 3

0.0100  Qri  1.0000 0.0100  Qri  1.0000 0.0100  Qri  1.0000

0.60  T0  0.84 0.68  T0  0.84 0.68  T0  0.84

0.0000  Qcat  0.6000 0.0000  Qcat  0.8000 0.0000  Qcat  1.0000

QCA - 0.6554  0 QCA - 1.0000  0 QCA - 0.9621  0

0.1833 - QMR 0 1.0000 - QMR  0 0.2111 - QMR  0

0.4851 - QC 0 0.7551 - QC 0 1.0000 - QC  0

i = 1, 2, 3....6

The three levels of CA production are considered, as 

shown in the Table 3 (industrial operational values).

Table 3 Operating conditions for three industrial

production levels (Levels 1, 2 and 3) (normalized

values)

Parameters Level 1 Level 2 Level 3

Qr1 0.2520 0.0360 0.0390

Qr2 0.2590 0.0380 0.0000

Qr3 0.2760 0.2740 0.0850

Qr4 0.0360 0.0660 0.3490

Qr5 0.0520 0.1190 0.1190

Qr6 0.0290 0.1400 0.0500

T0 0.6320 0.6920 0.6920

Qcat 0.4340 0.7520 0.8280

0.9622QCA 0.6554 1.0000

4.2 Parameters of Control of the Genetic Algorithms

In accordance to Table 4 were selected the control 

parameters of the genetic algorithms in the process

optimization. The parameters to be optimized were 

codified in the binary form, as great part of published

works.
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Table 4 Control parameters of genetic algorithms

utilized in the optimization

Size Population Parameters Crossover (UC) Mutation Rate (JM) Generations

20 8 80% 1% 500

UC is Uniform Crossover JM is Jump Mutation

The parameters to be optimized were codified with

the binary form, based and adapted of many

published literature works (Carroll, 1996; Deb, 1998;

Goldberg, 1989).

The control parameters of the genetic algorithms can

be varied and tested in the same way. In this work it

was decided to use these values only to verify the

application of the optimization method. In future

works these parameters will be modified, besides the

coding form.

5. RESULTS AND CONCLUSIONS

In the sequence it is presented in the Table 5 (results

optimized) and Figures 1 to 3 (evolution of 

optimization in 500 generations) the results obtained

by optimization.

Table 5 shows the results of the parameters before

and after the optimization. It may be verified that in

the production Levels 1, 2 and 3 there were increase

of the CA production and reduction of mass flows of

catalyst with an increase of the amount of coolant

fluid used in the process. Figures 1 (Level 1), 2

(Level 2) and 3 (Level 3) indicate improvements in

the productivity. The results had been presented of 

normalized form. Taking into consideration the

operation Levels 1, 2 and 3 there were increase of the

CA production (increase of 0.0078 – Level 1, 0.0140

– Level 2 and 0.0179 – Level 3 – all values are

normalized) with an reduction in the value for the

catalyst flow (reduction of 0.1252 – Level 1, 0.1884

– Level 2 and 0.2585 – Level 3).

Table 5 Analysis of the performance of the CA

production before and after the optimization for the

production Levels 1, 2 and 3 (normalized values)

Before After Before After Before After

Qr1 0.2520 0.1158 0.0360 0.7895 0.0390 0.8430

Qr2 0.2590 0.2524 0.0380 0.4920 0.0000 0.2744

Qr3 0.2760 0.0124 0.2740 0.2434 0.0850 0.9258

Qr4 0.0360 0.7095 0.0660 0.0516 0.3490 0.1193

Qr5 0.0520 0.7036 0.1190 0.1550 0.1190 0.4813

Qr6 0.0290 0.3337 0.1400 0.0700 0.0500 0.6179

T0 0.0158 0.0176 0.0173 0.0171 0.0173 0.0184

Qcat 0.0217 0.0154 0.0376 0.0282 0.0414 0.0285

Total QCA 0.6554 0.6632 10,000 10,140 0.9622 0.9801

Total Qri's (Coolant) 0.9040 2.1273 0.6730 1.8016 0.6420 3.2617
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Level 1 Level 2 Level 3
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Fig. 1. Profile CA productivity (mass rate normalized) for 

production Level 1 with the optimization evolution.
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Fig. 2. Profile CA productivity (mass rate normalized) for 

production Level 2 with the optimization evolution.
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Fig. 3. Profile CA productivity (mass rate normalized) for 

production Level 3 with the optimization evolution.

The GA procedure revealed to be very efficient and

robust for all the considered situations. Several testes

with different population sizes, crossover and 

mutation values allow to conclude that the

optimization by GA works well without be so 

dependent of its design values as well as the initial

value. Optimization of the same problem by 
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conventional methods (as SQP) was not possible to 

be obtained in all the cases considered in this work. 

In relation to the GA used in this study an attention 

has to be verified in some parameters this code. The 

population size used was of 20 and not of 50 or 100 

as recommended (Carroll, 1996) because the 

computational time is very high. The crossover rate 

of 80% is satisfactory to supply good results. There 

are not significant changes when the number of 

generations is increased, therefore a number around 

500 generations is enough to achieve the 

optimization. The mutation rates didn't follow the 

determined rules for the code. The values used for 

jump and creep mutation were: 0.01 and 0.02 

respectively. These values allowed good efficiency, 

unlike what was usually recommended (Carroll, 

1996). The GA code coupled to the reactor model 

showed to be a very efficient technique for reactor 

optimization. Similar problems or other systems can 

be studied for verification of his efficiency. 
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