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Abstract: An algorithm for automatic selection and estimation of model parameters is 

presented. The algorithm uses a sensitivity matrix based calculation of the parameters 

effects on the measured outputs and of a linear-independence metric. A predictability 

degradation index and a parameter correlation degradation index are used as stop criteria 

and the method is extended to dynamic models and multiple operating points. The 

applicability of the developed algorithm is illustrated through a hypothetical nonlinear 

input-output model and through the analysis of data from an experimental isothermal 

batch bioreactor. The obtained results show the effectiveness of the algorithm. Copyright 

© 2006 IFAC.   
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1. INTRODUCTION 

Parameter estimation constitutes a key step in the 

identification and calibration of models. However, 

often only a subset of the parameters of the model   

can be estimated, due to limitations in the 

experimental window and the amount of data. In 

such a situation, the quality of the estimation is 

strongly dependent on the selection of the subset of 

parameters to be estimated. Consequently, a 

reasonable amount of effort has been made to 

automating the selection of parameters through the 

development of adequate criteria and procedures to 

the execution of this task (Weijers and 

Vanrolleghem, 1997; Brun et al., 2002; Calvello and 

Finno, 2004; Ioslovich et al., 2004; Li et al., 2004).  

Analysis of sensitivity has proven to be a valuable 

tool for identifying relevant and uncorrelated 

parameters. Different strategies based on the use of 

the sensitivity matrix have been proposed (Weijers 

and Vanrolleghem, 1997; Li et al., 2004). A 

particularly systematic and effective identifiability 

measure method has been proposed by Li et al.

(2004). In this method the magnitude of each 

parameter effect on the measured variables is 

quantified by applying principal-component analysis 

to a steady-state parameter-output local sensitivity 

matrix and the determination of the least uncorrelated 

parameters is accomplished recursively by 

computing the minimum distance between the 

sensitivity vector of a candidate parameter and the 

vector spaces spanned by sensitivity vectors of the 

parameters already selected for estimation. 

Although the method proposed by Li et al. (2004) 

provides an effective ranking of the parameters of a 

given model, it does not provide criteria to the 

determination of the optimum number of parameters 

to be selected for the parameter estimation. 

In this work, an algorithm for automatic selection of 

model parameters based on an extension of the 

identifiability measure of Li et al. (2004) is 

presented. In this algorithm a predictability 

degradation index and a parameter correlation 

degradation index are proposed to be used as stop 

IFAC - 789 - ADCHEM 2006



     

criteria. Additionally, the method is extended to 

dynamic models and multiple operating points.  

2. FUNDAMENTALS 

The proposed algorithm generates a ranking of the 

parameters according to their identifiability, 

measured through the magnitude of their effects on 

the output variables and a linear-independence 

metric. The magnitude of the effects of the 

parameters and the linear-independence metric are 

calculated from the sensitivity matrix, as proposed by 

Li et al. (2004).  

Additionally, a predictability degradation index and a 

parameter correlation degradation index are defined 

to be used as stop criteria for the parameter selection 

algorithm, addressing the question of the number of 

parameters that should be estimated. The use of the 

predictability degradation index accounts for the fact 

the variability of the prediction is expected to 

increase when the optimum number of selected 

parameters is overcome. The use of the parameter 

correlation degradation index is intended to avoid the 

selection of an unnecessarily high number of 

parameters, which would increase the correlation 

between the parameters. 

Another important feature in the proposed algorithm 

is the usage of global sensitivity matrix, which is 

composed by the information at each experimental 

point. In this way, the local calculations proposed by 

Li et al. (2004) for the magnitude of the effects of the 

parameters and the linear-independence metric was 

easily extended to deal with multiple operating 

points and dynamic data.  

Li et al. (2004) have proposed a different dynamic 

extension procedure, based on a sensitivity matrix to 

be obtained as the weighted average of the local 

sensitivity matrices. Although the authors have not 

implemented this procedure and, consequently, there 

are not results to be used as basis of comparison, the 

usage of the global sensitivity matrix is expected to 

be a more reliable approach. The reason for this 

statement is that an average sensitivity matrix could 

lead to loss of information, mainly in problems 

where the sign of the gains are expected to change. 

The definition of the degradation indexes for 

predictability and parameter correlation as well as 

the procedure to the calculation of the sensitivity 

matrix are presented in the next section. 

3. AUTOMATIC PARAMETER SELECTION AND 

ESTIMATION ALGORITHM 

The proposed algorithm for automatic selection of 

model parameters with simultaneous parameter 

estimation is based on an extension of the 

identifiability measure of Li et al. (2004) and on the 

proposed predictability degradation index.  

For a given set {y
ny, u nu} of N experiments 

(or available process data in N steady-state operating 

conditions or N dynamic time-points) with r
repetitions and a given nonlinear model of the 

process, the following algorithm is applied to 

estimate the best possible parameters within a set of 
np.

Algorithm SELEST: 

1) Evaluate the mean values of y and u for each 

experiment: 

r

k

ky
r

y

1

1 ny·N   and  
r

k

ku
r

u

1

1 nu·N  (1) 

and, if not given, compute the normalized 

measurement covariance matrix (Vy
ny·N  ny·N):

T
T

rr
y yy

r

yyyy
V 1,1,1

1

)1)(1(
 (2) 

where -1 denotes element-by-element division, r,11

denotes a row vector of ones, and y ny·N  r.

2) Compute the normalized parameter-output 

sensitivity matrix, S ny·N  np, using an initial 

estimate of the model parameters, o:

TT
N

TT SSSS ][ 21  (3) 

where 
ojjj SyS ˆ)ˆ( 1 ny  np, ( ) denotes the 

diagonal matrix of a vector, jŷ
ny is the model 

prediction for the j-th experimental point, using the 

input mean value ju :

);,(ˆ

)0(,0);,,,(

ojj

oojj

uxHy

xxuxxtF
 (4) 

and jŜ  is the parameter-output sensitivity matrix 

evaluated at the j-th point: 

H
W

x

H
S xj
ˆ . (5) 

The parameter-state sensitivity matrix, 
x

Wx , is 

obtained by solving the following initial-value 

problem for dynamic processes: 

o
xxx

x
W

F
W

x

F
W

x

F
)0(,0  (6) 

or the linear system: 

F

x

F
Wx

1

 (7) 

for steady-state processes. 
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3) Set m = min {np, ny N} and carry out the 

singular values decomposition of S left-weighted by 

the inverse of the normalized standard deviation of 

the measurements, 
iiyi V ,)( :

 ( )-1 S = U  VT (8) 

or, similarly, carry out the descending-ordered 

characteristic values decomposition of the Fisher 

information matrix: 

 F = ST ( Vy)
-1 S = V  VT ,    = T  (9) 

where Vy denotes the diagonal matrix composed by 

the elements of the diagonal of Vy. Then, determine 

the overall effect of each parameter on the outputs by 

using the first m principal components (first m

column vectors of matrix V, denoted by Vm
np  m)

and the magnitude measure E (Li et al., 2004): 

m

j

j

mV
E

1

np (10) 

where |Vm| denotes the matrix with absolute value of 

the elements of Vm, and  are the first largest m

characteristic values in .

4) Select the highest ranked parameter p1 = { k | Ek = 

maxj Ej} and set the number of selected parameters 

to n = 1 and the parameter index set to n = {k},

representing the index set of the best possible 

parameters to be estimated with the given data set (in 

descending order). 

5) Compute the reduced Fisher information matrix, 

Fn, regarding to the selected parameters p and the 

corresponding covariance matrices estimates of the 

parameters, Vp, and output predictions, yV ˆ :

SVSF y
T

n
1)(

ny·N  n (11) 

1
np FV  (12) 

T
py SVSV ˆ  (13) 

where S  denotes the sub-matrix of S containing only 

the n columns. Also, compute the correlation 

coefficients of these covariance matrices, p and ŷ ,

and the condition number, , of Fp:

T
pppp VVV 1    ,  |||| npp I  (14) 

T
yyyy VVV ˆˆ

1
ˆˆ    ,  |||| ˆˆ nyyy I  (15) 

 = ||Fn||·||Vp||  (16) 

where In denotes the identity matrix of size n, and 

||||  denotes the highest element of a matrix in 

absolute value.  With this norm definition, p gives 

the highest correlation among the parameters. 

6) Keeping the remaining parameters at the initial 

estimate o, obtain a new estimate vector np̂  for the 

parameters p by least square (or maximum 

likelihood) parameter estimation for the selected 

parameters. Also compute the normalized residuals ,

the predictability degradation index n, and the 

parameter correlation degradation index n

k

r

k

nkk ypyy
r

1

1

)]ˆ(ˆ[
1 ny·N  (17) 

||||ŷn  (18) 

npn ,1  (19) 

where i,j is the Kronecker delta. The addition of 1,n

in Eqn. (19) is necessary to avoid an early stop in 

step 7 when n = 2. 

7) Apply the following stop criteria, using a 

maximum allowed parameter correlation, max:

7.a) If n > 1 and ((( n-1 < 1 or (  n-1 < max and  n > 

max)) and n-1 < n) or -1 < ), then n-1 is the 

solution index set and 1ˆ np is the corresponding 

estimated parameter vector, and terminate the 

algorithm.  is the floating-point relative accuracy of 

the machine. 

7.b) If n = np, then n is the solution index set and 

np̂ is the corresponding estimated parameter vector, 

and terminate the algorithm. 

8) If n < m, then compute the linear-independence 

metric dj (Li et al., 2004) for each remaining 

parameter with respect to previously selected 

parameters: 

||||||||
cossin 1

jj

j
T
j

j
sVs

sVs
d  , j n (20) 

where TT SSSSV
1

. Otherwise, i.e. n m,

compute the linear-independence metric dq,j for each 

remaining parameter with respect to all possible 

(m 1)-tuples q of the previously selected 

parameters, for 

)!1()!1(

!
1

mnm

n
q , (21) 

where q n and | q| = m 1, using Eqn. (22). 

||||||||
cossin 1

,
jqj

jq
T
j

jq
sVs

sVs
d  , j n (22) 
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where T
qq

T
qqq SSSSV

1
. And determine the 

worst-case metric: dj = minq dq,j.

9) Calculate the identifiability index Ij (Li et al., 

2004) for each remaining parameter j:

 Ij = Ej dj  ,  j n. (23) 

Select the next highest ranked parameter pn+1 = { k | 

Ik = maxj Ij}, set the number of selected parameters to 

n = n + 1 and the index set to n = { n-1, k}, and 

return to step 5. 

It is also possible to add the following diagnostic 

information in the exit conditions of step 7, evaluated 

at the stage n-1 (7.a) or n (7.b): 

If maxŷ and maxp  then the outputs are too 

much correlated due to possibly high inputs 

correlation;

If maxŷ and maxp  then the outputs are too 

much correlated due to high parameter correlation; 

If maxp  then the parameters are too much 

correlated.

The design constant max of the algorithm is an upper 

bound for the degree of parameter correlations. This 

limit is much easier to set than a threshold for the 

identifiability index Ij, whose value depends much 

more on experiments than statistic meanings. 

4. ILLUSTRATIVE EXAMPLES 

In order to illustrate the application of the algorithm 

SELEST, consider the following hypothetical 

nonlinear input-output model: 

4233211
1412 uueuuey

/u-/u-

353212
16121 ueuuey

/u-/u-
 (24) 

)( 353218173
1612 ueuueuy

/u-/u-

with y 3, u 4, and 8+. The limited 

experimental data is composed by N = 3 operating 

points (OP) and r = 3 repetitions, shown in Table 1 

for three cases. The initial estimate of the model 

parameters and their exact solution are given in 

Table 2. The repetitions were generated considering 

no errors in the inputs, using the exact parameters 

and adding to the outputs a noise with normal 

distribution, zero mean, and variance of 5% within 

98% of significance level. 

In the case 1, the most important input variable, u1, is 

kept constant, reducing the estimation capability of 

the measurements. In the case 3, the last two OPs are 

correlated. The case 2 is the most favourable data set 

among the three cases. 

Table 1. Experimental data sets for example 1.

var. OP1 OP2 OP3

u1 0.98 0.98 0.98 

u2 0.73 0.13 0.43 

u3 0.23 0.45 0.72 

u4 0.67 0.47 0.13 

y1
0.676/0.700/0.710 0.178/0.174/1.175 0.758/0.765/0.762

y2
0.623/0.621/0.614 0.933/0.919/0.911 0.332/0.338/0.341

ca
se

 1
 

y3
7.810/7.508/7.383 6.959/6.903/6.871 9.093/8.889/9.348

u1 0.98 0.52 0.75 

u2 0.73 0.13 0.43 

u3 0.23 0.45 0.72 

u4 0.67 0.47 0.13 

y1
0.676/0.700/0.710 0.058/0.058/0.059 0.537/0.517/0.536

y2
0.623/0.621/0.614 0.954/0.969/0.975 0.527/0.545/0.539

ca
se

 2
 

y3
7.810/7.508/7.383 3.417/3.655/3.532 6.573/6.800/6.761

u1 0.98 0.52 0.52 

u2 0.73 0.13 0.13 

u3 0.23 0.45 0.45 

u4 0.67 0.47 0.57 

y1
0.676/0.700/0.710 0.058/0.058/0.059 0.059/0.059/0.058

y2
0.623/0.621/0.614 0.954/0.969/0.975 0.988/0.984/1.002

ca
se

 3
 

y3
7.810/7.508/7.383 3.417/3.655/3.532 3.489/3.507/3.494

Observing the maximum normalized residuals in 

Table 2, the reduced-space parameter estimation had 

similar performance than the full space, showing that 

the additional parameters would have insignificant 

improvement in the model predictions. In fact, the 

index  shows the degradation of the predictability 

for the case 1 when adding the next parameter given 

by the identifiability index, and a very small 

improvement in the case 3. In both cases, according 

to , the next parameter is highly correlated with the 

previous selected parameters ( max was set to 0.99). 

Moreover, the full-space estimations were more 

sensitive to the initial estimates. The high residuals 

for the exact parameters are due to the random nature 

of the noise added to the outputs. 

Table 2. Model parameters estimates for example 1.

Bold results mean the estimates of the selected 

parameters in the order shown between parentheses.

par. exact o case 1 case 2 case 3 

1
7.65 6.50 6.50 7.429(5) 7.551(5) 

2
1.15 2.40 0.988(1) 1.130(2) 1.133(3) 

3
3.89 2.70 2.70 3.161(3) 3.558(4) 

4
1.75 1.50 1.465(2) 1.603(1) 1.739(2) 

5
0.23 0.01 0.116(5) 0.136(7) 0.086(7) 

6
0.79 0.15 0.15 0.586(8) 0.15

7
6.32 4.25 6.434(3) 6.400(4) 6.461(1) 

8
3.42 5.50 3.651(4) 3.608(6) 3.084(6) 

||  ||

final estimate 

exact 

initial estimate

full estimate* 

0.0259

0.0447

1.4702

0.0261

0.0172

0.0330

0.8066

0.0170

0.0136

0.0306

0.7774

0.0130

n

n+1

1.0206

1.0225

0.6435

-------

1.0136

1.0130

n

n+1

0.7027

1.0000

0.9983

-------

0.9697

1.0000

*estimating all np parameters using the exact solution as 

initial guess. 
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Applying the diagnostic conditions at exit of step 7 

of the algorithm SELEST, the results for the cases 1 

and 3 say the outputs are too much correlated due to 

possibly high inputs correlation, and the parameters 

are too much correlated in the case 2. Indeed, case 3 

was designed with high input correlation in OP1 and 

OP2 and in case 1 all operating points are correlated 

by the input variable u1. In case 2, the correlation 

between 1 and 2 was the responsible for the high 

degradation index n.

The model parameters were estimated by the least 

square technique using the Levenberg-Marquardt 

method with the BFGS (Broyden, Fletcher, Goldfarb, 

and Shanno) updating scheme for the Hessian matrix 

(Edgar and Himmelblau, 1988) and relative error 

tolerance of 10-6 for variables and objective function. 

Consider now a real example of a multi-route, non-

structured kinetic model for microbial growth and 

substrate consumption of an experimental isothermal 

batch bioreactor to produce -galactosidase by 

Kluyveromyces marxianus growing on cheese whey 

(Longhi et al., 2004). The model is described by a set 

of five ordinary differential equations: 

);,(

)0(,0);,,();,,,(

uxHy

xxuxtfxuxxtF o  (25) 

where the states x 5 are biomass, lactose, ethanol, 

liquid-phase and gas-phase oxygen concentrations, 

u  is the reactor temperature, and y 4 are x1,

x2, x3, and oxygen saturation percentage (pO2), which 

is a function of x4 and u (Longhi et al., 2004). Only 

one operating condition was used to test the 

algorithm, at u = 38ºC. The experimental data set is 

shown in Table 3, and the initial conditions for the 

state variables are {0.16, 48.90, 0, 0.0075, 1.152}. The 

model has 12 parameters and their initial estimates 

are given in Table 4. 

Table 3. Experimental data for example 2.

time (h) y1 (g/L) y2 (g/L) y3 (g/L) y4 (%) 
0 0.16 48.90 0.000 102.5 

2 0.19 51.14 0.263 95.5 

4 0.30 47.35 0.149 81.9 

6 1.68 46.43 0.215 25.5 

8 6.59 33.00 2.126 0.8 

10 13.09 9.86 11.057 0.2 

15 20.42 0.30 6.750 0.1 

24 22.74 0.00 0.000 91.2 

27 23.11 0.00 0.000 100.6 

30 22.65 0.00 0.000 102.9 

As shown in Table 4, the tuning of the first ten 

parameters ranked by the identifiability index got the 

best predictive capacity from the limited available 

experimental data. This is also proved in Figure 1, 

when comparing the prediction of the models 

adjusted by reduced-space and full-space parameter 

estimations with the experimental data. The most 

pronounced difference between the models appears 

in the dissolved oxygen and ethanol concentrations. 

In this example max was set to 0.98 and the system 

of ordinary differential equations was integrated by 

an implicit BDF method of variable order (Brenan et

al., 1989) with relative error tolerance of 10-6 and 

absolute error tolerance of 10-8.
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Fig. 1. Experimental data (symbols) for batch culture 

at 38oC: ( ) biomass concentration (y1), ( )

substrate concentration (y2), ( ) ethanol 

concentration (y3), and (o) dissolved oxygen 

concentration (y4); and model predictions with 

reduced-space (solid line) and full-space (dotted 

line) parameter estimations. 

Table 4. Model parameters estimates for example 2. 

Bold results mean the estimates of the selected 

parameters in the order shown between parentheses.

parameters* o p̂ p̂ full

1 = 1max     0.60 0.600(2) 0.600

2 = 2max     0.06 0.06 0.054 

3 = 3max     0.16 0.190(10) 0.206

4 = k1    20.00 20.00(4) 19.953

5 = kox1     1.00 1.001(1) 1.032

6 = k2     4.26 4.419(3) 4.183

7 = oxid
SX

oxid
SX Y // /     0.63 0.63 0.676 

8 = oxid
EX

oxid
EX Y // /     6.20 6.257(7) 6.206

9 = 
ferm

SXY //1     2.44 2.411(5) 2.466

10 = oxid
SXY //1     2.63 2.480(9) 2.664

11 = 
ferm

SX
ferm

SX Y // /     0.85 0.935(6) 0.914

12 = oxid
EXY //1     6.67 6.257(8) 6.669

||  || 0.1199 0.0787 0.0880 

n

n+1

1.0787

1.0880

1.0880

-------

n

n+1

0.9209

0.9867

0.9860

-------

* See (Longhi et al., 2004) for parameters definitions. 

5. CONCLUSION 

An algorithm for automatic selection and estimation 

of model parameters, based on the identifiability

index of Li et al. (2004), has been proposed. The 

predictability and parameter correlation degradation 

indexes presented good performance as criteria for 

the determination of the number of parameters that 
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should be estimated. The usage of the global 

sensitivity matrix showed to be an adequate strategy 

to analyze the parameters effects on the outputs when 

dealing with multiple operating points or dynamic 

data. The employed examples showed that the 

algorithm was effective for estimating the best 

possible subset of parameters within a full set of 

model parameters, both for steady-state and dynamic 

models. 
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