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Abstract: Supervisory control schemes of (complex) plants utilize di erent fom s
of autom ata or related structures such as Petri-mnets. Empirical, knowledgebased

m apping of theplant’soperation into such a structure cannot be com plete or correct .
These automata can be computed by a model based approach, which guarantees

com pleteness and correctness within the 1imits of the given model . The result is a
non-determ inisticautomaton (Philips2001) ,which however containsno information
about the range of transition time that may be expected. This information would
be extremely usefil for the design of the derived operational procedures such as
supervisory controllerson alllevels and fault detection and fault isolation schemes.
Theproblem hasbeen formulated ssveraltimesin thepast, orexample (Kowalew sy
1999, Engel11997) . Here a solution to the problem is described, which applies to
plant s generat ing a m onotone flow field for constant inputs.

Keywords: Discrete-event dynam ic system s, timed automaton, ault detection,
supervisory control, modelling, hybrid systems

1. CURRENT STATE OF AFFAIRS 1997, Pijpers 1996) and nonlinearplants (Preisig
he i ) Lexi ol 3 th etall997,Bruinana 1997) ,which can alsohandle
The increasing @p ex:.lty oftplantsand the reg) portant exoeptions.Also the state explosion
quest for closer interaction between plants asks roblen . whidh was as one of the ma-or

for more and increasingly sophisticated autom & ' . P

e Traditi 11 . c %—re%wbad{s of these autom aton com putations, has
ton. tradl :|.olna Y prc? unt ; S were con m]been completely removed (Philips2001, Foerstner

separately, but increased interaction and requlr%iooj_)

co-ordination make it necessary that the process . _
is viewed and analysed in its fillentity, giviy%e com putation oftheautom atam odelsisbased

rige to the subjct of plant wide control . On th&" the Iepresentalttlon deplct.ed in Figure 1, the
supervisory level ,which also linksto them anaég_stboxl repre:lsa'ltlng the continuous (orfast sam -
ment levels such as planning and sequencing of pled timediscrete) plant, the ssocond the event
operations and capacity allocation, the plant dgtection m echanlsr} » which assumes knwledgcle
event driven. Currently used empiricalm odellin%f the Istate and no:.se—frlee data. W Ie t.erm Ithls
techniques cannot guarantee the com plet eness o echani am domain observer® , thereby indicating
oorrectness of the descript Ion, thus one branch of that the extended evl'ent detection mechanism re-
research focused on the computation of onestep constructs the continuous state from the output,
autom aton representations for continuous plantif 1€ 18 not directly accessible, and generates a
that are observed by an event detection mecha-
nisn . These problem s can now be seen assolved. 1 i, deviation to Lunze, who uses the term quantizer.
Algorithm s exist for linear plants Preisig 1833choosing the term domain observer, we want to place

(monotone: Preisig 1996, general : Philips et &Wphasis on the required knowledge of the state, as it is
the state that is discretised and not the output.
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signal as the continuous state changes from one co-ordinate.For the arbitrary co-ordinmathe

subdom ain into another defined through bound- boundary set is then:

ariesplaced into the state space of the cont inuous

system . The resulting non-detem inistic automa- B¢ := {85 He := 1..,n°},

ton models have been used in a first study of

DED S controlsynthesis methods (Philips 1998b, with.h practice, these setsare part of the defini -

Philips 1999) and fault detection (Philips 1998apn ofthedom ain observer. The dom ain observer

Ramkum ar 1998, Ramkum ar 1999b, Ramkumar assigns membership of the state to an interval

1999a, Lunze 2000, Lunze 1999) . dynam ically, that is, the boundary point belongs
to the mterval from where the tmmajectory enters
the boundary (Philips2001) .The hypercubesare

continuousplant domain observer conveniently defined in the form ofamatrix
ua (k) x () x (k) ¢ ac c c
—x=fEt),ak)) B¢ | c}— E =H 59 s+1]] FT [bflﬂerl} )
with thd vectors being introduced for the el -
egance of notation later (Equation (3) ) .Each
Fig.1.Discrete modelling of a discretely observed hypercube hasn! faces, each of which is a hy-
plant. The tilde quantities represent discrete- perplane. An event E° is defined as a crossing
event signals of the boundary between two hypercubes, thus

a crossing of the actual continuous trajectory
In both applicationsit isapparent thatknow ledgﬁqrough a faceS of a hypercube. At this time,
ofminimum andmaximum transition timeswoudge dom ain cbserverwillem it a signalindicating
be a very useful piece of information. Thus the thig event. This definition of an event excludes
prcoblem isformulated, ifsuch information can ke ultaneous crossing ofboundari es; thus, passing
obtained from the equations.Here we chall Daist hrough comer points of the hypercubes, defined
on linear plants, though it should be noted thagy the intervals, isnot possible. The latteris jus
linearity isnot limiting, ratherlimitationsamEne eqm ing a sequentialoutput line from the
flow field are imposed, aswe shallsee below . dom ain observer. The computation ofthediscrete

behaviour of the plant as shown in Figure 1 has

been reported elsewhere (Preisig 1993, Philipset

2. PROBLEM FORM ULAT ION al1997, Preisig 1996) . Here we wish to compute

theminimum and maximum time it takes for the

Given a linear system with a continuous statey ooy tomove from one transition to the next.
x, and an input,a that, whilst continuous, is

changingonly ateventtim esand staysconstant in
between. The derivation may start from a model

that isasgeneralasa linear-in-state, timevarying 3. WHAT 'S THE NEXT POSSIBLE

m odel of the form : TRANSIT ON
dx () _ M®)x () + h;i), 1) Having dlefjned tlhe tlask ofcomputing them inimal
dt = and maximaltime it takes for evBt to occur

withx R™ a R™, which for simplicity ofafter eventE4 , we need first to find what event
algebra we shall reduce to the standard lineads? is possible aft&* has occurred. For this

time-constant plant: purpose a number of objcts are required. Hav-
dx ) ng defined the hypercube represent ing a discrete
%lt =Axt)+ Bak). ) state in the continuous state space, and having

defined an event asa crossing ofthe surface ofthe
We chall also assume direct knowledge of thehypercube,we define a trajectory as

state. If the state is not directly accessible, an

obse?:verm}lstbe added to theplantwitll'l tlhe dy- X ;)= {x@) | t,x)=x},

nam icsbeing fast enough so astobenegligibleon

the time scale the discrete-event dynam ic systemand a bundle of trajectories being

operates.

For the automaton representation, we split the T4 :={X &) |X &) A =0},
continuous state dom ain into a set of hypercubes

by defining a set of ordered boundary va]ueﬁjc whereby A isa bounded piece ofa hyperplane.
withe identifying the state co-ordinatedand With these definitions we can define the surface
the membership of the value m the ordered set elem entsofthe hypercube connected by a bundle
of boundary valuesff < 5 < --- < f;, and of trajctories, and thus ttmnected events, by
B, B, 1 the validity range ©f, defined on the identifying the connecting bundle:
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TAP .74 15, AB Pt 4

yielding the respect ive surface pieces:

A|B‘_TAB A 4. TRANSITION TIM E
T )

BlA._qAB p. For elither of the twomodels (1, 2) and know ing

what next transitions may occur, the transition

The task isthustofind the connecting trajectonkimes can be calculated for any entry point by

bundle. For this pumpose, we split the surface ofolving the transcendentalequation Br

the hypercube into two set s, nam ely one set where

theflow entersF ™ and a set where the flow exits xﬁ =el'x*(T),

F out i

Atthispoint,themain assumption isintroduced, .

namely that the flow field is monotone within + /

the extent of the hypercube. At first, this as- 0

sum ption appearsratherrestrictive.However, one

must kesp in mind that the flow field is here T

for a process for which all the inputs are being IZ :=g£ géT %% (0) + / giétggdt 7
kept constant .M ost naturalprocesses show under 0

these conditions a monotone behaviour. W e also “

T (AT -1 (AT -
excludethetrivialcase inwhich theflow isparallel’ =Sk (27 X' 0+ A (ef B l) Qg) )

with a hypercube’ s surface. :=9;,€r (S @7§a)) ’
With these conditions, thedirection oftheflow is:
where x* ') @ gnd xP @) b and gf the
s:=signk(()),t < 3) unity vector [O,...,2k,0,...,0], 2 := 1 selecting

the co-ordinate that defines the exit face.
and the centre point of the entry surface and the

exit surface of the hypercube can be determ ined:
5. THE 3D SAM PLE SYSTEM

Kin:=[bg} 7Z':=—$j, . . .

vj The sample system, being linear and time con-
KOut L _ {bj} i ies. stant, :={A,B} beingused asan illustration
= T My T in the continuation isgiven by thematrices

These points are the intersection of a set of

h 0.8642 - 0.6340 — 0.0672
yperplanes:

é :=| 15.4736 - 5.3626 - 0.6678 | , (5)
pin :={P (xﬁ”), z} 10.2891 - 2.4301 - 1.5016
. -1
PO ={P @), i}.
{ 7 } E = O , (6)
with the individualhyperplanes: 1
P (1)) = {x |xj -=b{,i {- Sj}} with the input being kept constant at a given

value.With the eigenvalugs:= {1,-2,- 3] the
Now thedi erent connected piecesofthe surfaces System isasymptotically stable.

can be com puted: TheFigures2,3,4,5,6,7 chow thedi erentpairs
of surface elements for the sample system with a
R4 .-T4 p (r?“t), zero input . The left -lower front comer being the

centre of the entering surface and the right -upper
back comerbeing the centre ofthe exit surface of

AB g @) the cube.

and the exit surface piece

BIA . _n
where A F™ and B F°%“. If the bmward An A _ ,
intersect ionfl4 exists, thus the intersection i?;’ 1 An Alternative View

non-empty, the corresponding next event does  p, interesting insight is obtained by locking at

existland th(.e oppositfapieceofsurﬁao?on theent:qehe problem from a slightly di erent angle: One
face is the intersection of the trajctory bundle

defined by the @citpieoeA|B 2.

are obtained. One may read B|A as (face element B given
face element A)

2 We use here a more detailed notation by indicating the 3 For a reference of solving linear, time-variant ODE’s see
sequence with which the elements of the respective faces for example Walter 1960, 1993
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Fig.7.Front side (dark) toattached top (light) .

projection of the exit edges on the entry surface,
done backward in time. In the Figure 8 the entry
edge is shown in thidk lines and the projections
in medium lines. n the Figure 9, it is the exit
edges in thick linesand the backward projctions
inmedium lines.

~10. 0.125
™ [ 0.12

Fig.3.Bottom (dark) tooppositeback (light) . Wl N———

0.103

-16. : . 0.0992

Fig.8.Theview ofprojcting theentry edgesonto
Fig.4.Bottom (dark) to attached back (light). theflow-cpposite faces.

-10. 0.125
< - 1 0.12

16 - ’ 0992

Fig.9.Thebackwardsprojction of the exit edges
onto the flow -opposite faces. The arrow s in-
dicate the progress of the direction of the
begin points as related to the locus of the
projcted points. The numbers to the left
of the m arked points indicate the respective
transition times.

Fig.6.Front side (dark) to attached back (light) .

can v1ew the EECtiOl'lil’lg of the @(lt (erltIy) fAces 6. FINDING THE LONGEST AND THE

as a projction of the entry (exit) edges onto SHORTEST TRAJECTORY IN A

the opposite sidewith the dynam ic system being M ONOTONE FIELD

the mechanisn ofprojction. Figure 8 shows the

prokction of the entry edges on the exit surface,n a m onotone flow field, the com putation of the
which isdone forward in time, and Figure 9 thdongest and the chortest time isan optimisation
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problem where the start j_ng point , bej_ng el em erttither and the integral with time is monotone and so is the
of the entry hypercube surface, is changed such integral of the inverse. The monotone behaviour changes
I
. .. . the si f the int d ch .
that one finds the minimum and the maximum °° "¢ 80 OF the Hesranc cuanges
transition time: In more colloquial term s to find

the longest and the shortest t rajctory startingovr\lllth the accumulated information, it is trivial
the entry surface of the hypercube now to provide theminimaland maximaltransi-

The optimisation is rather simple if the obj%%e entry face is attached to the exit face, the
tive function, namely thetransition time d’laﬁ%.eﬁim altransition is always zero. The maximal

m onotor%lclly with the adjustable varlablesl, heE%ansition isgiven by the longest trajctory form -
the p051t1c'>n on the entry surface, becausel in aing the tube running across the hypercube, which
monotone field the two extremes are associated

O

is attached to the respective piece of the entry

with opposite corner points of the boundary Gili%loe. Thusonly fourdi erentmaximaltransition

1980. It is su cient to prove m onotonic proper-

times occur in the whole, independent of the di-

ties of the transition time as a function of r%l?e%sion of theproblem . The transition times for
starting point,which is idmticalofanalysinggﬁg@{am ple are shown in Figure 8
gradient ofthe transition time changingwith the

co-ordinate on the boundary isnot changing sign.

Let

then, since the transition tAmamnot be com -

7. CONCLUSIONS

The surface of the hypercube splits into two
gections, the entry section and the exit section.
If the flow iswot running in parallel with the co-

puted analytically, the implicit finction theowrdinates, there is only one central entry comer

istobeussd to compute the desired gradient :

drT fxa @', x%)

dx*  fp @T,x%)

-8

AT

s (Aetxt+ A"Ba)

Monotonic behaviour breaks down as the above

and only one central exit comer. Each of the
faces of the hypercube belongs to one of the two
surfaces, namely the entry or the exit section.
Each face issgplitinto sect ionswhereby each ofthe
entry sections is connected with an exit section,
thus defining the reachable pieces of the surface
asa function oftheentry location.

The computation of thedi erent surface sections
is done by finding the forward projction of the

gradient passes through a zero in one of its com wentre entry comer onto the exit surface and the
ponents. At a first glance, the change of sign backward image of the centre exit point onto
could be caused by el therof the num eratororthe the entry surface. The edges of the entry faces

denom inator.A briefanalysisthough reveal s thasroject onto the exit surfaces using the dynam ics
itisthedenom inatorthatdeterm inesthe locati®fi the process for the projction. The result is

of the change.

Proof : Consider the boundary QP to initially be close to
the starting boundary 2¢. The transition time can thus be
brought arbitrarily close to zero. As the target boundary
is moved away, the starting boundary can be moved as
well. Again, the difference can be kept arbitrarily small.
As long as the gradient does not change, direction, the
derivative remains in the same half plain. The sum, or the
integral does thus also change in the same direction, which
proves the fact that the transition time changes monotonic
with the initial location on the starting surface, until the
denominator changes sign. The latter is the locus of a
derivative in one co-ordinate being zero, which is on a flat
plane cutting the space into two monotonic sub-domains.
These local equilibrium plains intersect, if we constrain
the discussion to asymptotically stable (non-oscillatory)
systems, at the global equilibrium point.

a

the lines subdividing the exit faces. The inverse
com putation, namely the backward projection of
the centre exit point and the exit edges onto
the entry surface results the other set of face-
sectioning lines.

Theminimaland themaximaltimesfora transi-
tion are associated with the centre corner points
and theadditionaltwo trajctories cutting across
the hypercube. Because the objective finction,
namely thetransition timeisamonotone function
ofthelocation on theentry surface, them aximum
and them inimum are associated with transitions
from the corner and edge points or to the corner
and edge points. Only four trajctories must be
com puted.

Alternatively one can prove that the functioffhe principle of the computation isnot limited
T x,) ismonotone as long as the the right -hand- to linear system s. Monotonicity is the only con-
side of the dynam ic model equations does not dition beingused.Note thatmonotonicity isonly

change sign:
Proof : Given that Ax + B1u does not change sign
(asymptotic behaviour), the inverse does not change sign
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requested for the region of the continuous state
gace being covered by the discrete state space at
constant inputs.
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