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Abstract: Computationally efficient approaches are presented that quantify the influence 

of parameter uncertainties upon the states and outputs of finite-time control trajectories 

for nonlinear systems. In the first approach, the worst-case values of the states and 

outputs due to model parameter uncertainties are computed as a function of time along the 

control trajectories. The approach uses an efficient contour mapping technique to provide 

an estimate of the distribution of the states and outputs as a function of time. To increase 

the estimation accuracy of the shape of the distribution, an approach that uses second 

order power series expansion in combination with Monte Carlo simulations is proposed. 

Another approach presented here is based on the approximate representation of the model 

via polynomial chaos expansion. A quantitative and qualitative assessment of the 

approaches is performed in comparison to the Monte Carlo simulation technique that uses 

the nonlinear model. It is shown that the power series and polynomial chaos  expansion 

based approaches require a significantly lower computational burden compared to Monte 

Carlo approaches, while give good approximation of the shape of the distribution.  The 

techniques are applied to the crystallization of an inorganic chemical with uncertainties in 

the nucleation and growth parameters. Copyright © 2003 IFAC

Keywords: probabilistic analysis, distributional robustness analysis, worst-case analysis, 

crystallization, optimal control. 

1. INTRODUCTION 

Comprehensive uncertainty analysis of mechanistic 

models is crucial especially when these models are 

used in the optimal control of processes, which 

normally occurs close to safety and performance 

constraints. The model-based computation of optimal 

control policies for batch and semibatch processes is 

of increasing interest due to industrial interest in 

improving productivity (Barrera and Evans, 1989; 

Rippin 1983). However, uncertainty almost always 

exist in chemical systems in the observed data, in the 

model parameters, and implemented inputs, and its 

disregard may easily lead the loss of the benefits of 

using optimal control (Ma et al., 1999). This 

motivates the development of techniques to quantify 

the influence of parameter uncertainties on the 

process states and outputs. Quantitative estimates 

obtained from robustness analysis can be used to 

decide whether more laboratory experiments are 

needed to provide better parameter estimates (Ma 

and Braatz, 1999; Miller and Rawlings, 1994). The 

traditional uncertainty analysis consists of the 

characterization of uncertainty in model parameters 

or inputs based on their probability density functions 

(pdf) and then propagating these pdfs through the 

model equations to obtain the pdfs of selected model 

outputs. The propagation of uncertainties via 

IFAC - 655 - ADCHEM 2006



     

traditional Monte Carlo methods, based on standard 

or Latin Hypercube sampling may require 

performing a large number of simulations, which can 

be prohibitive in most cases, especially if the 

propagation has to be performed in real-time. 

Therefore there is a need to study computationally 

efficient alternative techniques for uncertainty 

propagation. 

The paper focuses on computationally efficient 

methods for propagating uncertainty in parameters to 

the states and outputs of generic batch processes. 

Two categories of approaches are corroborated. The 

first is based on first and second order power series 

approaches (Nagy and Braatz, 2003). The first order 

approach is based on the analytical computation of 

the worst-case values of the states and outputs due to 

the effects of model parameter uncertainties, and 

then using a contour mapping approach to compute 

the distribution. The second approach uses 

polynomial chaos expansion as a functional 

approximation of the mathematical model 

(Isukapalli, 1999; Isukapalli et al., 1998; Pan et al.,

1997, 1998). Both approaches are suitable for 

studying the uncertainty propagation in open-loop or 

closed-loop systems. The techniques are compared 

with Monte Carlo simulations and applied to 

compute the distributions for the states and outputs 

for the batch crystallization of an inorganic chemical 

subject to uncertainties in the nucleation and growth 

kinetics. 

2. DISTRIBUTIONAL UNCERTAINITY 

ANALYSIS 

2.1 Uncertainty description 

In the following we consider the class of finite time 

(batch) processes. Assume the model is described by 

the generic ODE vector equation: 

( ) ( ( ), ( ); )x t f x t u t=   (1) 

with xnx the state vector, xnx , unu

vector of control inputs, and n uncertain 

parameter vector, and f a vector function  that is 

continuous wit respect to its elements. Characterizing 

the uncertainties enhances the value of the model by 

allowing the quantification of the accuracy of its 

predictions. This information can be used to assess 

whether the model is adequate for its intended 

purpose (e.g., for optimal control design) or whether 

more experimental data are needed to further refine 

the model.  

Define ˆ  as the nominal model parameter vector of 

dimension (n  1), and as the perturbation about 
ˆ . Then, the model parameter vector for the real 

system is: 

      
ˆ

.   (2) 

We assume that the uncertainty in the parameter is

characterized by the generalized ball 

ˆ{ || || 1}
n

  (3) 

defined by using appropriate norm || ||  in 
n

. One 

generic approach is to use a scaled Hölder p-norm 

(1 p ), given by 1|| || || ||p= W , with  the 

invertible weighting matrix n n×
W . This 

generalized description of the uncertainty set 

includes the case of a confidence hyper-ellipsoid 
1 2ˆ ˆ{ : ( ) ( ) ( )}T rV , (Beck and Arnold, 

1985), for Gaussian random variable vector  with 

expected value ˆ( ) , the ( )n n×  positive 

definite variance-covariance matrix V , and the 

scalar r which is the chi-square distribution function 

with n degrees of freedom ( 2 ( )n ), for a chosen 

confidence level :

1/ 2

ellipsoid 2
ˆ( ) { || (1/ ( )) ) || 1}(

n
r V   (4) 

The generalized ball described by (2) also includes 

the case of known lower and upper bounds l , u  of 

the uncertain parameters, leading to a general 

uncertainty hyper-box: 

box { | }

{ ||diag( )( )|| 1}
2 2

n

l u

n u l u l+=
       (5) 

2.2. Series expansion approaches for Worst-case and 

Distributional Robustness Analysis 

Define ˆ as the performance (describing an end 

point property) for the nominal model parameters ˆ ,

 as its value for the perturbed model parameter 

vector p, and the difference ˆ . The worst-

case robustness approach (Ma et al., 1999; Nagy and 

Braatz, 2003) writes  as a power series in :

1

2

TL M ,  (6) 

where the jacobian 
n

L , and hessian 
n n

M  are: 

ˆ

( )
( )

t
L t ,  (7) 

2

2
ˆ

( )
( )

t
tM .  (8) 

The elements of the time-varying sensitivity vector 

L(t) and matrix M(t) can be computed using finite 

differences or by integrating the model’s differential-

algebraic equations augmented with an additional set 

of differential equations known as sensitivity 

equations (Caracotsios and Stewart, 1985): 

xL L= +J J    (9) 

with the matrixes / x xn n
x df dx

×=J  and 

/ xn ndf d ×=J .

When a first-order series expansion is used, 

analytical expressions of the worst-case deviation in 
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the performance index ( w.c) can be computed and 

the analysis can be performed with low 

computational cost (Matthews, 1997). In the case of 

an ellipsoidal uncertainty description the worst-case 

deviation is defined by 

2

. .
1

( ) max ( )w c t L t
W

.  (10) 

The analytical solution of this optimization problem 

is given by: 

1/ 2
. . ( ) ( ( ) ( ) ( ))T

w c t r L t L tV , (11)

1/ 2

. . 1/ 2

( ( ))
( ) ( )

( ( ) ( ))

T
w c T

r
t L t

L t L t
V

V
. (12) 

A probability density function (PDF) for the model 

parameters is needed to compute the PDF of the 

performance index. More than 90% of the available 

algorithms to estimate parameters from experimental 

data (Beck and Arnold, 1977) produce a multivariate 

normal distribution: 

1

. . /2 1/2

1 1 ˆ ˆ( ) exp [( ) ( )]
22 det( )

T

p d n
f V

V

.   (13) 

When a first-order series expansion is used to relate 

 and , then the estimated PDF of is

2

. . 1/ 2

1
ˆ( ) exp 2

2
p df V

V
    (14) 

where the variance of is

TV L LV .     (15) 

The distribution is a function of time since the 

nominal value for  and the vector of sensitivities L

is a function of time. 

2.3 Propagation of probability distribution 

When the first order power series expansion is used 

the probability density function (p.d.f.) can be 

estimated very efficiently using a contour mapping 

approach, which instead of mapping the whole 

parameter space to the output space by performing 

exhaustive Monte Carlo simulations, maps only the 

contours of the uncertainty hyperellipsoid obtained 

for different  levels as shown on Figure 1. The 

mapping is performed via the worst-case analysis 

techniques by obtaining the worst-case w.c for 

different -levels. Note that with this approach the 

mapping of the  levels is performed from the n

dimensional space characterized by a chi-square 

distribution of n  degrees of freedom ( 2 ( )n ) to an 

n  dimensional space in which the same -levels are 

characterized by a chi-square distribution but with n

degrees of freedom ( 2
( )n ), with usually 1n = .

Hence the probability mapping between the two 

spaces characterized by different degrees of freedom 

can be captured by multiplying the obtained worst-

case deviations ( w.c.) with the ratio 
2 2 1/ 2( ( ) / ( ))
n n

.

Fig.1. Distributional robustness approach based on a 

contour mapping technique. 

Remark: Since in this approach the sampling is 

always performed over one parameter (the 

confidence level ) a significantly smaller number of 

Monte Carlo simulations are required than using 

classical sampling of the usually larger dimensional 

parameter space. Additionally, while the classical 

sampling procedure requires large number of samples 

to capture accurately the distribution for values with 

low probability, in the contour mapping approach 

samples span over all confidence levels and generate 

enough data to give insight into the tails of the pdf in 

a similar way as in the Latin Hypercube sampling 

method.  

For increased accuracy of the estimated shape of the 

pdf, the second order series expansion can be used in 

a classical or Latin Hypercub type Monte Carlo 

simulation. This Monte Carlo approach is 

computationally much more efficient than applying 

the Monte Carlo method to the original nonlinear 

model. The computational burden of the second order 

approximate Monte Carlo approach is higher than in 

the case of the contour mapping approach but 

provides better estimate of the shape of the output 

distribution. 

2.4 Uncertainty Analysis Using Polynomial Chaos 

Expansions 

An alternative to power series is to use polynomial 

chaos expansions (PCEs). The PCE (Wiener, 1938) 

describes the model output  as an expansion of 

multidimensional Hermite polynomial functions of 

the uncertain parameters  in the form: 

1

1 1 1 2 1 2

1 1 2

1 2

1 2 3 1 2 3

1 2 3

0 0 1 2

1 1 1
constant

first order terms second order terms

3

1 1 1

third order terms

( ) ( , )

( , , )

n n i

i i i i i i

i i i

i in

i i i i i i

i i i

a a a

a

     (16) 

where the 
1 2

( , , , )
i i i

 are polynomials, n  is 

the number of parameters, and the 

0 1 2 11 12
, , , , , ,a a a a a  are constants in .

Polynomial chaos terms of different order are 

orthogonal to each other as are polynomial chaos 

terms of the same order but with a different argument 

list. The orthogonal polynomials are derived from the 
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probability distribution of the parameters. In PCE 

any form of polynomial could be used but the 

properties of orthogonal polynomials make the 

uncertainty analysis more efficient. The number of 

coefficients in the PCE depends on the number of 

uncertain parameters and the order of expansion. In 

principle there are two main methods for computing 

the coefficients of the PCE, (i) the probabilistic 

collocation method (PCM) (Pan et al., 1997, 1998), 

and (ii) the regression method with improved 

sampling (RMIS) (Isukapalli et al., 1998). In both 

methods the coefficients are calculated from the 

model at a set of sample points using regression 

based technique.  

3. APLICATION TO A BATCH

CRYSTALLIZATION PROCESS 

Crystallization from solution is an industrially 

important unit operation due to its ability to provide 

high purity separation. The control of the crystal size 

distribution (CSD) can be critically important for 

efficient downstream operations (such as filtration or 

drying) and product quality (e.g., bioavailability, 

tablet stability, dissolution rate). Most studies on the 

optimal control of batch crystallizers focus on 

computing the temperature profile that optimizes 

some property of the CSD. The problem of 

computing the optimal temperature profile can be 

formulated as a nonlinear optimization problem, 

which is then solved using general-purpose 

optimization algorithms. A convenient way to 

describe the temperature trajectory is to discretize the 

batch time and consider the temperatures at every 

discrete time k as the optimization variables. In this 

case the optimal control problem can be written in 

the following form: 

( )

optimize
T k

J  (17) 

subject to: 

0
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       (18) 

( ) ( ) ( )

( )
( )

( )

min max

min max

,max

,

,

,final final

T k T k T k

dT k
R k R k

dt

C C

       (19) 

where the objective function J is a function of the 
states, and usually it is a representative property of 
the final CSD. The equality constraints (18) represent 
the model equations, with initial conditions given in 
(Chung et al., 1999), where iµ  is the ith moment 
(i = 0, …, 4) of the total crystal phase (resulted from 

growth from seed and nucleation) and ,seed jµ is the jth
moment (j = 0, …, 3) corresponding to the crystals 
grown from seed, C is the solute concentration, T is 
the temperature, r0 is the crystal size at nucleation, kv

is the volumetric shape factor, and c is the density of 
the crystal. The rate of crystal growth (G) and the 
nucleation rate (B), respectively, are given by (Nyvlt, 
et al., 1985): 

g

gG k S= ,  (20) 

3
b

bB k S µ= ,  (21) 

where S = (C-Csat)/Csat is the relative supersaturation, 

and Csat = Csat(T) is the saturation concentration. The 

model parameter vector consists of the kinetic 

parameters of growth and nucleation: 

[ , , , ]T
g bg k b k ,   (22) 

with nominal values (Rawlings et al., 1993): 

ˆ [1.31, 8.79,1.84,17.38]T ,  (23) 

with the uncertainty description of the form (4) 

characterized by the covariance matrix (Miller and 

Rawlings, 1994): 

1

102873  -21960 -7509  1445

-21960 4714 1809  -354

-7509 1809 24225  -5198

1445 -354 -5198 1116

V . (24) 

In the inequality constraints (19) Tmin, Tmax, Rmin, and 

Rmax are the minimum and maximum temperatures 

and temperature ramp rates, respectively, during the 

batch. The first two inequality constraints ensure that 

the temperature profile stays within the operating 

range of the crystallizer. The last inequality 

constraint ensures that the solute concentration at the 

end of the batch Cfinal is smaller than a certain 

maximum value Cfinal,max set by the minimum yield 

required by economic considerations. 

The crystal size distribution (CSD) parameters of 

interest are: nucleation to seed mass ratio (Jn.s.r.), 

coefficient of variations (Jc.v.), and weight mean size 

of the crystals (Jw.m.s.), given by the following 

expressions: 

. . . 3 ,3 ,3( ) /n s r seed seedJ
    

(23) 
2 1/ 2

. . 2 0 1( /( ) 1)c vJ   (24) 

. . . 4 3/w m sJ       (25) 

The optimal temperature trajectory that minimizes 
the nucleation mass to seed mass ratio at the end of 
the batch was computed setting . . .n s rJ J , and solving 
the optimal control problem (17)-(19) for the 
nominal parameter ˆ .

The aforementioned uncertainty analysis approaches 

are used to assess the effect of parameter uncertainty 

on the nominal control performance. The 

distributional uncertainty analysis approaches based 

on power series approximation and polynomial chaos 

expansion, respectively, were evaluated in 

comparison to Monte Carlo (MC) simulations. A 
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number of 80,000 random parameter sets with mean 
ˆ
i  and covariance V  were generated from the 

multivariate distribution using the Cholesky 

decomposition of the covariance matrix. With the 

random parameter vectors, Monte Carlo simulation 

was performed using the dynamic model of the 

process. Then, the frequency that the simulation 

output from the Monte Carlo simulation falls in the 

confidence interval obtained for a certain  level

with the power series approach was computed for all 

states and outputs. The results obtained with the first 

order analysis approach for the output variables are 

presented in Figure 2. The accuracy of the first-order 

approach is very good with a slightly decreasing 

tendency for large values. This can be explained 

by the cumulative effect of the truncation error due 

to the first-order approach (which increases when 

increases) and the tail effect of the Monte Carlo 

simulation. Although there is a slight decrease in the 

accuracy of the first order approach for large  in the 

case of certain process outputs the first-order 

technique gives good result for practical purposes. 

The first-order power series approach approximates 

the output distributions with a normal distribution. 

To obtain a more accurate representation of the 

output PDF, the uncertainties can be propagated 

through the nonlinear dynamic model via Monte 

Carlo simulations. To avoid the prohibitively high 

computational time required in this case, an 

alternative approach that performs Monte Carlo 

simulation using a higher order power series 

expansion or polynomial chaos expansion in place of 

the dynamic simulation model can be used. Using a 

second-order power series expansion in the Monte 

Carlo simulations gives an accurate approximation of 

the nonlinear distribution with a low computational 

cost (Table 1). PCE can be used instead of the power 

series expansion, resulting in similarly good 

computational efficiency. The advantages of the  

aforementioned uncertainty analysis approaches 

compared to classical sensitivity analysis consist in  

that they provide the variation of the whole 

distribution for all states and outputs along the entire 

batch.. Figure 3 shows the results obtained with the 

two computationally efficient approaches in 

comparison with the Monte Carlo simulation. In the 

simulation results presented here a second order PCE 

was used. Since there are four uncertain parameters 

the second order PCE requires the determination of 

15 coefficients. The probabilistic collocation method 

was used as described in (Tatang et al. 1997, 

Webster et al., 1996). The obtained PCE provide 

accurate estimation of the effects of parameter 

uncertainties at a computational burden similar to the 

first order power series approach. The power series 

and PCE based robustness analysis approaches can 

be used for the assessment and efficient synthesis of 

robust control approaches. Since the robustness 

analysis is a convex problem, it is significantly easier 

to solve it than the direct robust controller synthesis, 

which usually leads to nonconvex problem 

formulations. The robust controller synthesis is 

formulated as a classical minmax optimization or as a 

multiobjective optimization problem where one of 

the objective accounts for the nominal term and the 

other (usually a measure of the variance of the 

distribution) accounts for robustness. Both 

uncertainty analysis approaches can be used as an 

efficient tool of calculating the robustness term. 

4. CONCLUSIONS 

An overview of several computationally efficient 

distributional robustness analysis approaches are 

presented. The approaches are based on the 

approximate representation of the process model 

using first or second order power series or 

polynomial chaos expansions, and provide a 

qualitative and quantitative estimation of the effect of 

parameter uncertainties on the states and output 

variable along the batch time. The computational 

burden of the robustness analysis approaches is 

significantly reduced compared to the classical 

Monte Carlo approach based on the nonlinear model. 

The algorithms are assessed via a simulated batch 

cooling crystallization process. 
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