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Abstract: This paper describes the application of a widely-used commercial multivariable
predictive controller to a rigorously simulated crude distillation process. After describing
the main process and controller features, it is shown how the two simulation and control
environments can be interfaced together. A number of simulation results of typical product
quality changes and crude switches are presented. The final goal of this paper is to
demonstrate how rigorous dynamic simulators can be effectively used to reduce the
costs of Advanced Process Control projects by shortening model identification, controller
design and commissioning phases. Copyright 2006 IFAC c©
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1. INTRODUCTION

Process industries, such as the petroleum and chemical
industries, face very dynamic and unpredictable mar-
ket conditions, due to world-wide competition, limi-
tation in natural resources, strict national and interna-
tional regulations. In order to improve the production
safety, quality and flexibility, plant automation has
become increasingly important and is now recognized
as a very effective way to achieve the production goals
with satisfaction of safety and quality constraints.

Modern automation control systems for processing
plants usually consist of a multi-level hierarchy of
control layers. The first layer (starting from the bot-
tom) is usually a distributed control system (DCS)
which gathers process measurements, performs simple
monitoring and PID-based control of some process
variables (such as flow rates, levels, temperatures) to
guarantee automatic operation of the plant. The sec-

1 Corresponding author. Email: g.pannocchia@ing.unipi.it, Fax:
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ond layer, usually referred to as Advanced Process
Control (APC), performs multivariable model-based
constrained control to achieve stable unit operation
and push the process towards its operational limits
for maximum economic benefits. APC regulators typi-
cally fall within the class of Model Predictive Control
(MPC) algorithms (Morari and Lee, 1999; Mayne et
al., 2000; Qin and Badgwell, 2003). On top of APC
other layers can be present, such as a Real-Time Opti-
mization (RTO) layer and a Planning and Scheduling
layer.

Reduction of costs for application of the second layer
is a relevant issue since it would enlarge considerably
the range of applicability of APC systems, which at
present are mostly limited to capital intensive sectors,
such as refinery and petrochemical industries. Qin and
Badgwell (2003) reported nearly five thousand MPC
applications all over the world, as a snap-shot of the
situation in 1999, with a rough increase of about 80%
in the subsequent three years. An MPC/APC project
typically consists of a number of phases, such as:
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Table 1. TBP of the Zarzaitine crude oil.

Volume % 3.4 12.4 27.5 44.1 56.6 67.5
BP (oC) 20 80 145 225 290 350

(1) A preliminary study comprising selection of ma-
nipulated (MV), controlled (CV) and disturbance
(DV) variables, check of all instrumentation, and
possible re-tuning of regulatory PID controllers.

(2) Plant testing and model identification in which
MVs are varied and data of CVs (and DVs) are
collected to build a process model, by means of
identification techniques.

(3) Controller tuning, simulation and commission-
ing including selection of MVs and CVs limits
and weights, open and closed-loop simulation on
the identified plant model and final closed-loop
implementation on the plant.

Phase 2 is particularly time-consuming and during
plant testing (which may last several weeks) the prod-
ucts may violate some quality specifications. Phase 3
is also time-consuming although most of controller
tuning and simulation needs not to be done “on-site”.

Rigorous (steady-state and dynamic) simulators, i.e.
those based on first-principles/fundamental equations,
have become widely-used tools in process analysis,
design and control (Yiu et al., 1994; Berber and
Coskun, 1996; Luyben and Tyreus, 1998; Huang and
Riggs, 2002). In particular dynamic simulators can be
useful to simplify Phase 2 and Phase 3 since they “sur-
rogate” the true plant, thus allowing data collection for
model identification, controller tuning and simulation.
Moreover, it is important to remark that nowadays it is
possible to carry out closed-loop model identification
using an MPC regulator based on some preliminary
model (e.g. one obtained from the data collected using
the simulator). This approach can reduce dramatically
the required plant testing duration and finally improve
the controller performance by means of a more accu-
rate model and more effective tuning.

In the present work, an industrially relevant example
of a Crude Distillation Unit is simulated by means
of HYSYSTM and controlled by using the commercial
MPC algorithm DMCplusTM. More details on this
study can by found in (Gallinelli, 2005).

2. PROCESS AND CONTROLLER DESCRIPTION

2.1 Crude distillation unit

Crude oil is a mixture of a large number of com-
ponents (whose exact determination is impossible),
ranging from alkanes and iso-alkanes to cycloalkanes
and aromatic compounds. Different oils are usually
characterized in terms of density, often expressed in
API degrees, and in terms of distillation curves, such
as True Boiling Point (TBP), Equilibrium Flash Va-
porization (EFV) or ASTM curves. In this study a
Zarzaitine (Algerian) crude oil is considered, whose
TBP data are reported in Table 1.

Crude distillation units (CDU) represent the core plant
of any refinery site since most of its products are the

Fig. 1. CDU layout

starting point for a number of subsequent operations
and final products. A typical CDU consists, mainly, of
four operations:

(1) Desalting and pre-heating: before and after de-
salting, crude oil is pre-heated at expense of other
hot streams available in the plant.

(2) Pre-flash: light components are vaporized in a
flash drum to reduce the load at the furnace.

(3) Heating: crude oil is heated at high temperature
(350÷390oC) in a furnace.

(4) atmospheric distillation: crude oil is separated
into a number of products (such as naphtha,
kerosene, light diesel, heavy diesel and a residue)
in a complex rectification column featuring side
strippers and external coolers (pumparounds).

The CDU layout is depicted in Figure 1, in which only
the furnace and the complex distillation column (with
strippers and pumparounds) are shown for simplicity
of representation. The main column top and bottom
pressures are 1.9 atm and 2.8 atm, respectively; the
reflux ratio is 1.5. All specifications can be found in
(Gallinelli, 2005). Products are themselves mixtures
of components and are characterized by given boiling
temperature ranges. The boiling temperature ranges of
products considered in the present study are reported
in Table 2 along with the corresponding expected yield
for the chosen crude.

2.2 DMCplusTM algorithm

In order to provide a brief description of the controller
algorithm used in this work, it is assumed that a
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Table 2. Boiling ranges for CDU products
and expected yield.

Product Boil. Range (oC) Yield %
Naphtha 35÷150 24.5
Kerosene 150÷240 18.1

Light Diesel 240÷350 21.2
Heavy Diesel 350÷390 7.5

Residue 390÷548 28.7

(stable and proper) convolution model of the process
is known. According to this model, the predicted value
of the outputs (CVs) at time k given past values of the
inputs (MVs) is:

ŷk =
k∑

i=1

Si∆uk−i (1)

in which ŷk ∈ R
p is the predicted output vector at

time k, ∆uk−i ∈ R
m is the input variation vector

at time k − i and Si ∈ R
p×m is the i−th matrix of

step response coefficients from each input/output pair.
Given the output measurement yk, a correction term is
then computed as:

dk = yk − ŷk (2)

This term, which is meant to lump different sources of
plant/model mismatch (such as disturbances, nonlin-
earities, noise), is used to guarantee offset-free con-
trol (Pannocchia and Rawlings, 2003). Other more
general and effective correction terms can be con-
sidered (Muske and Badgwell, 2002; Pannocchia and
Rawlings, 2003; Pannocchia and Brambilla, 2005).

The DMCplusTM controller, as well as most MPC
algorithms, is based on two optimization modules
(executed at each sampling time):

• A steady-state target optimizer, which computes
optimal targets for inputs and outputs.

• A dynamic optimizer, which computes optimal
trajectories for inputs and outputs from their
current value towards the computed targets in a
fixed-length time window (horizon).

The steady-state optimizer solves a linear program
(LP) in the form:

min
∆ūk

cT ∆ūk (3a)

subject to

umin ≤ ūk−1 + ∆ūk ≤ umax (3b)
−∆ūmax ≤ ∆ūk ≤ ∆ūmax (3c)

ymin ≤ G(ūk−1 + ∆ūk) + dk ≤ ymax (3d)

in which umin (umax) and ymin (ymax) are vectors
which contain the minimum (maximum) value for
inputs and outputs, ūk−1 is the previous input target
vector, ∆ūk is the input target variation vector, ∆ūmax

is maximum target variation vector, G ∈ R
p×m is the

model gain matrix and c is a vector of steady-state
“costs”. Solution of (3) yields the following input and
output optimal targets:

ūk = ūk−1+∆ūk, ȳk = G(ūk−1+∆ūk)+dk (4)

It is clear that when it is desirable to maximize
(minimize) an input, the corresponding cost should
be chosen negative (positive). Possible infeasibility
outcomes of (3), due to the output constraints (3d),
are handled by iteratively softening output constraints
(starting from low priority variables) and penalizing
the corresponding variation in the objective function.

Given the optimal targets, the dynamic optimizer com-
putes an optimal sequence of future input variations by
solving the following quadratic program (QP):

min
∆uk,...,∆uk+N−1

k+N−1∑
j=k

∆uT
j R∆uj+

k+P∑
j=k+1

{
eT
j Qej + ηu

j
T Quηu

j + ηl
j

T
Qlηl

j

}
(5a)

subject to

ej = ȳk − ŷj|k = ȳk −
(

j∑
i=1

Si∆uj−i + dk

)
(5b)

umin ≤ uk−1 +
j∑

i=k

∆ui ≤ umax (5c)

−∆ūmax ≤ ∆uj ≤ ∆ūmax (5d)

ymin − ηi
j ≤ ŷj|k ≤ ymax + ηs

j (5e)

ηi
j ≥ 0, ηs

j ≥ 0 (5f)

where: N and P are positive integers referred to as
control and prediction horizon, respectively; R, Q, Qu

and Ql are diagonal matrices with positive entries;
uk−1 is the previous input vector; ej is the vector of
errors between target and future predicted outputs at
time j; ∆umax is the maximum input variation vector;
ηu

j and ηl
j are non-negative vectors which represent

(possible) violations of upper and lower output con-
straints, respectively. It is important to remark that due
to the output soft-constraint approach adopted, prob-
lem (5) is always feasible. Moreover, due to patent
restrictions, DMCplusTM solves (5) in a suboptimal
fashion. Given the “optimal” input sequence only the
first “move” is implemented, i.e.

uk = uk−1 + ∆uk (6)

and both modules are re-executed at the next sampling
time.

3. SIMULATION AND CONTROL
ENVIRONMENT

In this section a description of the process simulation
model built using HYSYSTM (version 3.2) and of the
commercial controller DMCplusTM (version 6.0) used
in this work is given.

3.1 Process simulation model

As remarked, crude oil exact composition is unknown;
however this piece of information is necessary to sim-
ulate a crude distillation process. It is, therefore, com-
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mon practice to represent the crude oil as a mixture of
true components (light ends) and a number of pseudo-
components. In the present work, seven light compo-
nents (ranging from methane to n-pentane) and fifty
pseudo-components are used.

After defined the crude composition and flow rate,
the next step is to build a steady-state flow-sheet.
Since the main interest of this work is to focus on the
column dynamics and control, a number of “sensible”
simplifications are made. First of all, the pre-heat train
is simulated as a single heat exchanger; then, each
pumparound is considered as a simple heat exchanger
in which the hot fluid (column draw) flow rate and
the exchanger duty are specified; finally, the cooling
system is simulated as a single air cooler with a plant
equivalent holdup.

Once a steady-state flow-sheet is defined, a number
of steps are necessary to obtain a dynamic simulation
model in HYSYSTM.

(1) Design and sizing (holdup definition) of each
equipment. In particular sieve trays are used
throughout the column except for the draw stages
where partial chimney trays are chosen.

(2) Specification of pressure and/or flow rate for a
number of streams.

(3) Specification of the pressure profiles in each
equipment.

(4) Addition of regulatory control loops (flow-rate,
level, pressure and temperature controllers) to
guarantee automatic operation of the column.

In the present work a further degree of simulation
rigor is achieved by considering the static height of
each equipment. With regards of the regulatory control
loops, shown in Figure 1, PI controllers are used
and tuned using IMC-like rules (Skogestad, 2003).
It should be remarked that, although not shown, all
level, temperature and pressure controllers are actually
implemented in cascade on the corresponding flow-
rate controllers.

3.2 DMCplusTM controller

In order to implement a predictive controller using
the DMCplusTM software a list of manipulated and
controlled variables is defined. In particular:

• 17 manipulated variables are considered: these
variables are the setpoints of temperature, pres-
sure and (non-cascaded) flow-rate controllers.

• 23 controlled variables are selected: these vari-
ables are the ASTM-D86 95% of the four
main products (Naphtha, Kerosene, Light Diesel,
Heavy Diesel) and the opening percent of all
control valves.

Once the controller structure is defined, it is necessary
to generate simulation data that can be used for the
identification of the dynamic model matrix. This is
done by imposing a series of setpoint changes to all
the manipulated variables and observing their effect
on the controlled variables. The size, direction and
duration of the setpoint changes must be chosen so
that significant changes are induced in the controlled

variables and that all the typical operating conditions
of the unit are explored. The sequence of moves can
be pre-programmed and then the simulation can run
unattended and the results are continuously collected
and archived inside the HYSYSTM environment.

The data can then be exported from HYSYSTM and
imported in DMCplusTM Model, the identification tool
for DMCplusTM controllers. The next step is of course
the analysis of the simulation data and the identifica-
tion of the dynamic model: this can be done exactly as
if the data were coming from a non-simulated step-test
on a real process unit.

The identified model is then loaded in DMCplusTM

Build to prepare the controller configuration file which
will then be used by the on-line control engine. The
tuning of a DMCplusTM controller is usually per-
formed with the aid of its associated closed-loop sim-
ulation tool, Simulate. These simulations are based
on the linear model that has been obtained during
the model identification, and even if it is possible to
introduce some extent of plant/model mismatch, it will
always be difficult to closely reproduce the behavior of
the controller once it will be applied to a real plant or,
as in this case, to a rigorous dynamic simulation.

3.3 Simulator and controller interfacing

The interfacing of the dynamic simulation with the
controller is performed with the use of the DMCplusTM

block which is available in the HYSYSTM control li-
braries, together with PID or ratio controllers. This
block is connected to the PID controllers which are
manipulated variables in a simple master/slave cas-
cade arrangement and is capable of reading the values
of the controlled variables even if they are calculated
values such as the ASTM qualities of selected streams.

When the HYSYSTM simulation is started with this
block in place, the integrator runs until the time spec-
ified as the controller execution cycle (1 minute for
the current application) has elapsed and pauses the
simulation; it then passes the current values of ma-
nipulated, controlled and feed-forward variables (if
present) to the DMCplusTM online control engine and
waits for it to execute and return the new values for
the manipulated variables. These values are applied
in the HYSYSTM environment and the simulation is
then started again for the time corresponding to one
controller execution cycle.

4. SIMULATION RESULTS

A number of different closed-loop simulation stud-
ies were conducted to test the controller effectiveness
in different situations, and to verify the flexibility
of the proposed simulation and controller environ-
ment (Gallinelli, 2005). In this section some signifi-
cant examples are presented.

Figure 2 shows the closed-loop results obtained for
variations of the products’ ASTM-D86 95% limits. In
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Fig. 2. Closed-loop results for variations of the prod-
ucts’ ASTM-D86 95% limits: time behavior of
products’ ASTM-D86 95%.

each plot the time behavior of the “measured” con-
trolled variables (ASTM-D86 95%) and of the corre-
sponding steady-state targets calculated by the con-
troller are reported. In Figure 3, instead, the corre-
sponding time behavior of the flow rate of each prod-
uct is reported.

A typical disturbance that occurs in refinery plants is
associated to the crude switching. Starting from the
original Zarzaitine crude oil, a new crude obtained
by mixing the Zarzaitine oil with an Arabian Heavy
one is fed to the CDU. For this case, closed-loop
results of the products’ ASTM-D86 95% are reported
in Figure 4, while the corresponding product flow rates
are reported in Figure 5.

5. CONCLUSIONS

In this paper, the design and study of a rigorous sim-
ulation model of crude distillation unit controlled by
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Fig. 3. Closed-loop results for variations of the prod-
ucts’ ASTM-D86 95% limits: time behavior of
products’ flow rates.

a commercial multivariable predictive controller has
been presented. A crude distillation unit has been
simulated using HYSYSTM with a very high degree
of accuracy (equipment design and sizing, pressure
profiles, static heads, etc.). This rigorous dynamic
model has been interfaced with a commercial con-
troller, DMCplusTM, whose (linear) process model was
derived from data collected on the simulated plant.
Closed-loop results of common setpoint changes and
disturbance rejections showed the effectiveness of the
implemented control algorithm.

The main contribution of this work is to emphasize
the potential advantages of using rigorous simula-
tors on complex processes of industrial relevance. In
particular rigorous simulators can be effectively used
to generate data for preliminary model identification
and controller tuning. This “initial” controller can be
implemented on the actual plant to carry out closed-
loop identification tests from which the final process
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Fig. 4. Closed-loop results for crude switch: time
behavior of products’ ASTM-D86 95%.

model can be identified and the predictive controller
implemented. Simulators can also be used to carry
out closed-loop simulations, useful to refine the con-
troller tuning (selection of costs, equal concern errors,
limits, etc.) and effectively compare different predic-
tive control algorithms. Therefore, the methodology
illustrated in the present paper can potentially lead to
reduction of costs for MPC applications, with con-
sequent enlargement of the range of applicability of
APC systems.
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