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Abstract: This paper presents an approach to estimate the outputs and the
uncertainty associated to the forecast for discrete dynamic systems represented
by state-space models. The complete strategy includes three steps: 1. process
identification based on a data sample; 2. estimation of the current process state
based on the information available during a moving past horizon, which may
contain lack of observations; 3. forecast of process states, process outputs and
uncertainty along the future horizon. This procedure can be incorporated in control
strategies that explicitly consider model uncertainty.
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1. INTRODUCTION

Traditional discrete process control applications
assume that the sampling period used for inter-
action with the process, either through measure-
ments or actuations, is fixed. This parameter is
often chosen during the initial design phase of the
control system, and before the specification of the
control law to be used. However, the recent devel-
opment of sophisticated control strategies, such
as model-based approaches, and the integration
of process information acquired from a number
of distinct sources, has placed more emphasis on
the choice and on-line adjustment of sampling
policies, mostly for economical reasons.
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The tasks of process and quality control com-
monly require the use of off-line analytical equip-
ment to measure key product characteristics, such
as concentrations and properties of particle sys-
tems; this can involve scarce and expensive human
and equipment resources. In certain situations,
the effective allocation of analytical resources can
benefit from an economic performance analysis
that simultaneously considers the relative value
and costs associated with new information that
can be introduced in an optimization problem.

Previous work on the selection of appropriate
sampling intervals for process control with ba-
sis on economic criteria has been considered by
MacGregor (1976), Abraham (1979), and Kramer
(1989). The approach followed by these authors
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assumed the availability of a linear dynamic model
of the process, incorporating a stochastic com-
ponent, used to predict the average performance
of the controlled system when a larger sampling
interval, equal to integer multiples of the basic
sampling interval, is selected. This requires the
use of a cost function that considers the cost of
being off-specification, in terms of the variance of
the observed errors, and the costs of taking new
samples and making further process adjustments.

In this paper we propose a strategy for the forecast
of the quality variables and their uncertainty,
which are used to predict the probabilities of these
variables being outside their quality specifications.
Before the forecasts are made, it is necessary
to estimate the current process state. For this
a procedure is developed which is capable of
effectively dealing with incomplete data sets. All
these tasks are accomplished using a state-space
model with a stochastic component. Finally, the
proposed strategy is tested using a simulated
continuous fermenter for ethanol production.

2. PROCESS MODEL

The approach described in this paper is applied
to state-space models of the family M,

My (A, B,C,D,K,Cov(e)) =

_Ja(tesr) = A x(ty) + B u(te) + K e(ty)
y(tr) = C z(tr) + D u(ty) + e(tx)

(1)
where z(t;) € R™ 1is the vector of states at
discrete time ¢y, u(tx) € R™ is the vector of
inputs, y(tx) € R™ is the vector of outputs and
e(tr) € R™ is the vector of stochastic components
included in the state variables. The matrices A, B,
C, D, K and Cov(e) are time invariant parame-
ters.

Process identification is performed based on a
complete data sample (including all process dy-
namic features) by employing a subspace pro-
jection algorithm (N4SID), an approach devoted
to discrete systems identification (Van Overschee,
1994). The data represents the open—loop process
behavior along the time horizon N x At, where N
is the number of records used for identification and
At is the sampling interval. The N4SID algorithm
only requires the knowledge of the system order,
thus avoiding the need of a priori parametriza-
tion, and is non—iterative, avoiding the need of op-
timization schemes with corresponding problems,
such as the convergence rate and the existence of
local minima (Ljung, 1999).

The order of the system, ng, is determined apply-
ing an information—based criterion, the Akaike In-
formation Criterion (AIC), to measure the model
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fitness to process data (Akaike, 1972). The AIC
metric of the models of the family M1 with order
n e {l,-- ,ngm**}, M7, is represented as:

AIC(O") =
N . An
g {% Z[eu,é"ﬂ?} + ) )

where 6" is the vector of parameter estimates
included in the model M7, 6" = {A, B,C, D, K,
Cov(e)}™, and €(i,0™) is the error of estimates of
outputs ¢ € {1,---, N}. The order of the system
is determined as:

ne= argmin AIC(0") (3)

ne{l,nsm"‘x}

where ng™* is the maximum order iterated. Pro-
cess identification is performed off line and the
model is to be updated whenever process modifi-

cations are detected.

3. STATE ESTIMATION

The estimate of the current state process, Z(¢o),
can be obtained from the information available
in the form of the inputs and the measurements
obtained from sampling the process in the current,
to, and past sampling times. We consider the re-
ceding horizon H, comprising the last r discrete
sampling times, H, = {t_,41,t—ry2, -+ ,t_1,%0}.
A possible approach to this problem (Brookner,
1998) consists on obtaining a set of equations
in order to Z(tp). This is achieved by recursive
substitution of all the state variables in the model
equations at every sampling time in H,. This
approach involves the use of negative powers of
the transition matrix, A, and may lead to ill-
conditioned problems, especially for stable sys-
tems and large horizons. The approach used in
this paper consists on the simultaneous solution
of all the model equations in the horizon H,.. Al-
though this leads to larger problems, it is a numer-
ically stable procedure, avoiding ill-conditioning.

In the proposed approach, the problem of esti-
mating the current state process is dealt with
by solving the state equations at every sampling
time in the horizon H,, together with the output
equations referring to the available measurements

f;‘(tk) =A f?(tk_l) + B u(tk—1), tx € H,
y(tx) = Cr @(tr) + D u(ty), tx € H,,

(4)
where y(tx) € R™*, 0 < ner < ne is the
vector containing the variables measured at sam-
pling time tx. When no output is measured we
have n,; = 0, and when all outputs are mea-
sured no = no. Matrices C, € R™#*" and
Dy € R"™:x*"™ contain the rows of C' and D
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corresponding to the measured variables at t;. We
assume that all inputs in the horizon are perfectly
known.

Defining the enlarged vectors of states and inputs
5 N N . T
XT = [l‘(to)T l‘(tfl)T .Z‘(t,rJrl)T] ;
U, = |u(t

[u(to)™ u(t—1)" - u(t—r1)"]"

b

respectively, the system of equations (4) can be
formulated as .
jr Xr = C’r‘a (5)
where £, = Z, + N,U,. Vector Z, contains the
output information in the considered horizon:
T, = [y(t)™ OF, y(t-)" OF, -+ ylt—rs1)] ",

where 0,,_ is a vector containing ng zeroes. Matrix
N, is formed by the model matrices B and Dy,
and 7, is a sparse and structured matrix formed
by matrices Ck, A and I,,_ (ns—dimension identity
matrix). For instance, using a generic receding
horizon with dimension r = 4, we have:

Co
I,, —A
C1
jr: Ins —A )
C_2
I, A
C_3
—Dy
B
_D_1
N, = B
~D_,
B
“D_s

The process state estimate along H,., /'?T, which
includes the current process state, designated as
Z(to), is determined by solving the least-squares
problem R

H)lein I £ =T & |2 (6)

The optimality of X, is achieved whenever prob-
lem (6) is determined or over-determined. Taking
into account that J,. € R™*", with

r—1
m=rng +Zno$,i, n=(r+1) ns,
i=0
the necessary condition that leads to the deter-

mination or over-determination of problem (6) is
m > n, thus requiring

r—1
§ No,—i Z Ns.
=0

Therefore, the problem is determined if at least
n, observations are available in H,..
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Problem (6) is solved by performing a QR decom-
position of matrix 7.,

7= e @] ] @

and subsequently applying a back-substitution
procedure to determine X,.. In closed form, the
problem solution is represented as

X, =R{'QTL,. (8)

The outputs in the horizon H, are affected by
errors, mainly measurement ones. Since the state
estimates are obtained from the available mea-
surements, they also include an error component,

.)2,« =X, +ex.

Assuming that E{e(t;)} = 0,Vt, € H,, then X,
is an unbiased estimator of X, (Ikonen, 2002),
leading to E{ex} = 0. Using (8), the covariance
of this error can be computed as

Cov(ex) = Ry QT Cov(e,)Q1 (R )T,

where e, is a vector containing all the errors in the
horizon H,. (Brookner, 1998), which are due both
to modelling and to measurement components.

The structure and sparsity of matrices 7 and R,
is exploited by the use of a tailored algorithm for
the QR decomposition. This algorithm avoids the
decomposition of the full matrix, and performs
successive factorizations of smaller blocks, reduc-
ing the number of necessary operations. From
this point of view, an important feature of this
problem is that the the structure of R; is not
dependent of the number of variables measured
in the horizon H,..

The receding horizon H, is updated every time
the procedure is used, in order to incorporate the
new information, as it becomes available. If the
information in H, is not sufficient to ensure the
optimality of &(t(), then its size can be increased.

4. PREDICTION

The current process estimate, together with the
process model, can be used to forecast the qual-
ity variables in a future horizon Hy, comprising
f discrete sampling times ahead of ¢y, Hy =
{t1,--- ,ts}. This forecast can be split in two
components, the expected values of the quality
variables, ¢y and the uncertainty associated with
the forecast, e:

y(te) = 9(tk) +e(tr), tx € Hy. (9)

Both these components are used to forecast the
probability of a given quality variable being out
of a set of predetermined specifications.

The expected values of the quality variables are
predicted using the deterministic part of the
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model (1). Using the the previously obtained state
estimate as the initial condition:

My(A,B,C,D,K,Cov(e)) =

x(tk) =Az(ty_1)+ B u(tk_l), ty € Hy
§(tx) = C x(ty) + D u(ty), ty € Hy
(to) = &(to)

(10)

Again, we assume that the future profile of the
input variables has been determined (using, for
example, a MPC-type strategy) and is known.

The uncertainty in the obtained forecast of the
quality variables can also be predicted, using the
stochastic part of the process model (1). This
uncertainty is not only due to the error terms,
but also to the uncertainty in the value of Z(¢o).
Propagating (1) in the prediction horizon, and
including a term due to the error in the initial
condition, we obtain:

e(te) = y(te) — 9(tk)
k
=CY AKe(t;) +e(tr) + CA¥esy, ti € Hy.

j=0

(11)
From the above equation we can conclude that
E{e(ty)} = 0, since E{e(ty)} = 0,tx € Hy, and
E{es} =0.
The result obtained in (11) is useful, not to predict
the actual value of the error, but because it allows
us to obtain a measure of the uncertainty in the
predictions §(tx). Based on the work of Seppala

(1998), the variance of the ith element of e(t) is
computed as

Gi(ty) = var(g;(ty)) = (U1 W;, Cov(e))+
()T, Cov(es,)), tr € Hy, (12)

where (e, @) is the internal product operator, and
W, and ; are the ith rows of matrices ¥ and :

k
> A
7=0
Q= CA* (14)

Note that, since E{e(t;)} = 0, the variance of
9i(tr) is the same as that of ;(tx).

v=C K+1 (13)

As the prediction instant moves further away from
the current sampling time, the second term in (12)
continuously increases, due to the accumulation of
the model uncertainty. The behavior of the second
term, depends on the process stability. If the
process is unstable, this term will also increase.
If the process is stable, the contribution of the
initial error for the forecast variance continuously
decreases as t; mover further away from the
current sampling time, since A¥e,, goes to zero
as k increases.
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With the obtained information it is possible to
predict the probability of a given quality variable
being outside it specifications, LS; and US;, lower
and upper specification limits, respectively. If the
random noise, e(t), is well described by a station-
ary Gaussian distribution, then this probability
can be predicted by:

pfi(t) =
LS 1 exp | — (Z - yz(tk))Q
oo V2T Gi(ty) p{ 2 (Uz(tk))z ] @

Lo voma = [ Swor] o
+ —F— 0 &Xp |—
US; 2w 6;(ty) Uz tk
tr € Hf 15

A large value of this probability can be due either
to a shift in the process or to the increase of
the uncertainty in the forecasts. The first can be
solved by taking appropriate control measures,
in order to drive the process back to the central
value of the specifications. If the uncertainty in the
forecasts is too large, then a a new measurement
of the variable for which pf is too large should be
made, before or at the sampling time where this
occurs. With this new information, the estimation
procedure described earlier is repeated, in order
to get a new estimate of the process state, with
reduced uncertainty.

5. APPLICATION EXAMPLE

The proposed strategy was tested using a non-
linear dynamical model of a continuous fermenter
for ethanol production using glucose (Chmurny,
2000). The measured variables considered in this
model are:

(1) biomass concentration, x;

(2) substrate concentration, s;

(3) product concentration, P;

(4) biomass concentration in the output solution,
L3

(5) carbon dioxide production rate, rco,;

(6) rate of base consumption, 7.

The carbon dioxide production and the base con-
sumption rates can be easily measured by online
sensors. The concentrations require more complex
analytic methods, and thus, are more expensive
to obtain. The input variables are D, the ratio
between the fermenter feed rate and its volume,
and sg, the substrate concentration in the feed.
In this particular model, the temperature and the
volume are assumed to be constant.

5.1 Model identification

The fermenter dynamical model was used to gen-
erate a complete data set, with random errors
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added to the output variables. The N/SID algo-
rithm was applied to this data in order to obtain
a state-space model, in the form M;(e). The
substrate concentration variable was not used for
identification purposes since its behavior gave rise
to much worse models, from the point of view of
stability and data fitting. The dimensions of the
obtained linear model are ng = 5, n; = 2 and
n, = 5 (all of the mentioned above, except the
substrate concentration). The sampling interval
used is At = 0.05h.

5.2 State estimation

For the current state estimation we have con-
sidered an horizon H, with dimension r = 50.
The data for this horizon was generated using
the original dynamical model with random error
added to the measured variables. This data is
different from the one used for identification pur-
poses, but the error has the same characteristics.
Not all of the measurements available in H,. were
used. The decision regarding the availability of the
measurements was modelled by an independent
random binary signal. For the presented results,
the number of measurements considered is of 121
out of 250 possible.

The estimated value of §(to) obtained is:

j(to) = [1.03 1.03 1.01 1.01 1.03] ",

normalised, and the deviation from the value
obtained by simulation, in percentage, is

[~1.39 —1.51 —1.44 —3.23 —0.91] .

The profiles of the estimated and measured values
of outputs variables x and P, in the horizon
‘H,, are presented in Figure 1. The difference
between all the estimated outputs and all the
measurements (both the used and the deleted in
the estimation procedure) is presented in Figure 2.

In the estimation step, to obtain Cov(ex), we
assume that the outputs errors are not correlated
with each other and that these errors are mainly
due to errors in the measurement methods. Under
these assumption, the covariance matrix of the
error in H,, Cov(e,), is diagonal with all its
elements equal to

02 =8.33x 1074,

the variance of the added random error.

5.8 Prediction

For the prediction phase, we have arbitrarily set
the specification limits at LS = 0.85 and US =
1.15, for all output variables. We have considered
a prediction horizon, H ¢, with dimension f = 50.
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[} measured|

-1.5 -1
Time (h)

25 -2 15 1
Time (h)

Fig. 1. Real and estimated values of variables x
and P in estimation horizon.

0.1

15 1
Time (h)

Fig. 2. Estimation errors in the horizon H,. for all
the measured variables.

All the input variables in this horizon are kept at
their reference values. The forecasts, for 1, of all
the outputs, their variances and the probability
of being out of specifications are presented in
Figure 3.

We can see, in Figure 3, than, initially, the vari-
ance of the forecasts decreases, due to the the
expected decrease of the second term in (12), since
the system is stable. As t; increases, the contri-
bution from the second term becomes dominant,
and the variance increases.

In Figure 3 we can see than, without further
measurements being made, the probability of all
the variables being within their specifications is
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Fig. 3. Forecast of the measured variables, their
variance and their probability of being out of
specifications for the prediction horizon Hy.

about 98%. From this value it would be reasonable
to suppose that no further measurements would
be needed up to this time. However, the decision
to sample or not would require a greater insight
into the system, such as sampling and quality
costs.

6. CONCLUSIONS

In this paper we have presented a procedure
for the forecast of process measurements and
the quantification of their uncertainty. This can
be used to predict the probability of a given
quality variable being out of its specifications in
a future horizon, such as used in model predictive
control. The probability can be used to decide
if it is possible to take control measures (within
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the available degrees of freedom) to correct the
predicted trajectories, or if instead it is preferable
to obtain new information from the process, by
performing new types of measurements, in order
to decrease the expected operating costs.

This procedure relies on the use of a state-space
model which is obtained using process identifica-
tion techniques. It also includes the estimation
of the current process state from the information
available in a receding horizon, again using the
process model. The problem of missing measure-
ments in the receding horizon is dealt with by
considering an outputs vector with variable di-
mension. Some of the advantages of this procedure
are its numerical stability and the capability of
dealing with growing or shrinking receding hori-
7ons.

The overall procedure can be easily integrated in a
Model Predictive Control type strategy, using an
objective function that explicitly includes quality
and sampling costs.
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