ADCHEM 2006

IFAC

International Symposium on Advanced Control of Chemical Processes
Gramado, Brazil - April 2-5, 2006

NONLINEAR MODEL PREDICTIVE CONTROL
FOR OPTIMAL DISCONTINUOUS DRUG
DELIVERY

Nicolas Hudon * Martin Guay *' Michel Perrier **

Denis Dochain

sokok

* Queen’s University, Kingston, ON, Canada
** Ecole Polytechnique Montréal, QC, Canada
=+ Université Catholique de Louvain,Louvain-la-Neuve,
Belgium

Abstract: This paper exploits a gradient-based model predictive control technique
to solve an optimal switching time problem over periodic orbits. Drug delivery
scheduling applications, where it is desired to maximize the averaged effect of a
drug over time, motivate the study for this type of online optimization problem.
The objective is to find the optimal time-switching policy between full treatment
and no treatment periods. It is shown, by a numerical application to a simple drug
delivery problem, that the resulting predictive algorithm drives the system to the

optimal periodic orbit in the state space.
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1. INTRODUCTION

The usual task of nonlinear model predictive con-
trol is to find and track the steady-state optimum
of a cost functional, subject to the system dynam-
ics and state constraints. In some applications,
however, a steady-state optimization may not be
feasible nor optimal with respect to a given mea-
sure. For example, as outlined in (Varigonda et
al., 2004a; Varigonda et al., 2004b), the steady-
state optimization of some drug delivery problems
yield optimum conditions that do not lead to ther-
apeutic drug treatments. From a practical point of
view, optimal drug delivery problems can be seen
as optimal time-switching problems, alternating
full treatment periods and no treatment peri-
ods. For HIV control, optimal scheduling policies
were proposed in (Zurakowski and Teel, 2003; Zu-
rakowski et al., 2004). In (Guay et al., 2005),
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differential flatness was used to parameterize the
trajectories of the system and to compute, in
real-time, optimal periodic trajectories using an
extremum-seeking method. Since the problem is
periodic by nature, we will study it as an optimal
control problem over periodic orbits.

In this paper, the problem of optimal drug de-
livery by periodic injections is solved as an op-
timal time-switching control problem. Each con-
trol cycle includes periods of treatment, or short
input impulses, and periods with no treatment.
The control is parameterized by a time-switching
parameter that should converge to the optimal
time interval length between full treatment pe-
riods. This problem was treated in the linear
case by (Yastreboff, 1969) and more recently us-
ing heuristics in (Grognard and Sepulchre, 2001).
Asymptotic stabilization for linear output feed-
back systems was studied in (Allwright et al.,
2005). Gradient-based algorithm to solve an anal-
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ogous problem was also presented in (Egerstedt et
al., 2003).

In this paper, we use a nonlinear model predic-
tive approach, recently developed in (DeHaan and
Guay, 2005) that generalize the approach given by
(Magni and Scattolini, 2004). The key idea is to
see the optimal control moves (here parameterized
by switching-time between two control values) as
unknown parameters that can be identified on-line
via the model predictive control algorithm. The
method relies on discrete transitions of the con-
trol action based on real-time evolution of those
parameters. We allow maximization calculations
throughout the entire sampling interval and up-
date the control parameters at a fixed sampling
time. The assumptions needed for this implemen-
tation relax the flatness assumption used in (Guay
et al., 2005) and (Varigonda et al., 2004b).

The paper is divided as follows. In Section 2, we
formulate the optimization problem and parame-
terize the single input to the system using time
at which control switches occur as the control
parameter. In Section 3, we present the nonlinear
model predictive algorithm based on (DeHaan and
Guay, 2005) and discuss stability of the closed
loop scheme. Numerical application of the re-
sulting law to the drug delivery problem from
(Varigonda et al., 2004b) is presented in Section 4.
Conclusions and future investigations are outlined
in Section 5

2. CONTROL PROBLEM FORMULATION

We consider a single input nonlinear dynamical
system of the form:

&= f(x,u) (1)

where x € X C R" are the states of the system,
u € U = {Umin, Umax} is the control input and
f: X xU— R" is a sufficiently smooth function.
We assume that X is a compact subset of R".
We also assume that the user-defined objective
functional is a convex differentiable function on
X. The control design objective is to optimize a
cost functional given by

1 t+T
J = T/t L(x(r))dr (2)

with respect to u(r) for 7 € [t, t + T, where T is
the fixed period of the system, approximated here
as the length of the horizon considered later for
the optimization problem. We seek to maximize J
subject to the system dynamics (1) and inequality
constraints

Tmin < 2(T) < Tmax, TEL, t+T] (3)
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We consider the problem of finding an optimal
switching time between two known values of the
control inputs, i.e. Upin and Umymax. To represent
this type of behavior, we parameterize the control
u(7) as a finite sum of Heaviside functions u(6):

u(@) = [H(r—if) — H(r —if — )]  (4)

i=1

where 6 is the switching time parameter. This
parameter will be determined on-line by the opti-
mization algorithm. The parameter ¢ is the known
duration of each full-treatment period. In prac-
tice, m would be chosen such that m -6 < T with
a meaningful prediction horizon, T'. Other param-
eterizations could have been considered, however
Heaviside functions clearly represent the phys-
ical application of discontinuous drug infusion.
Another advantage here is that the calculations
will be greatly simplified using some elementary
proprieties of Heaviside functions and Dirac delta
operator. We now state the following assumption:

Assumption 2.1. The unforced dynamics (1) with
w(t) = umin = 0 is stable.

This assumption is needed to ensure stability of
the close loop dynamics as discuss in the next
Section.

3. NONLINEAR MODEL PREDICTIVE
CONTROL

3.1 Interior-Point Method

In order to find the optimal control policy that
steers the system (1) to the periodic orbit maxi-
mizing the cost functional (2), we have to encode
the state constraints (3). We propose log-barrier
functions (Nash and Sofer, 1996). The cost func-
tional (2) becomes the following:

t+T
Je=7 / (L (2())) + Ra(a(r)) + Ra(w(7))) dr (5)
t

where
Ry(x(7)) =Y 1,;108(2;(7) = 2 max — €1,7)
j=1

Ro(x(7)) = Y 12,5 108(%jmin — 2;(7) + €2,7)
j=1

and p.; > 0, e; > 0,7 =1,...,n, are tuning
constants for the barrier functions. Given that the
functional is convex with respect to the unknown
control parameter ¢, we can rely on the first order
conditions for optimality, given by
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Vo Jo(67) =0 (6)

where VgJ.(6%) is the gradient of the functional
J. with respect to 6 evaluated at the minimizer
6*. From the definition of the cost functional (5),
this gradient is expressed as

1 [T 9z ou

where I'y is the n-row vector defined by

OL OR, ORy\"
ro= (2 2, o 8
! <8z+ax+8x> ®)
with each jtf-element, j = 1,...,n, is given by
I .
Iy, = 87 + ¥
POz xi(T) — Tjmax — €15
. M2 5
Zjmin — Z(T) + €2,

The first derivative of x with respect to u can
be evaluate along the trajectories of the following
tractable dynamics
d (Ox of oxr  Of
— = ===+ = 10
dt (8u> Ox Ou * ou (10)

By the parametrization (4) of u(f), we have :

ou N

5= —Zz(&(f—zﬁ) — 8t —if —5)) (11)
where §(+) is the Dirac delta function. By defini-
tion,

/Af(x)é(x —a)dz = f(a), ifacA (12)

Therefore, we can rewrite (7) as

i0+e
Vode(0) = % Zz {rlaﬂ (13)

i=1 U]

where [F(-)]® = F(b) — F(a). Equations (13)
shows the dependence of the cost functional .J,.
on the control parameter 6. We will use this
information in the next section to derive a stable
updating law for 6. The main advantage of the
proposed parametrization is that the cost function
gradient to evaluate is now given by a finite sum
of trackable terms.

3.2 Parameter Update Law

In this section, we apply the nonlinear model
predictive control procedure proposed in (DeHaan
and Guay, 2005). The idea is to assume that
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we can compute the model prediction instanta-
neously solving the closed-loop dynamics:

&= f(z,u(f))

0=t ) (14)
The continuous update law ¥ (¢, 2) must be chosen
such that (VgJ., ¥(¢,2)) < 0. In (DeHaan and

Guay, 2005), one way to achieve this criterion is
to use a general descent continuous update law:

W(t, z) = Proj{(t, z)} (15)

It,x) = ko YVade. (16)
In the present paper, T is set to I (gradient-based
method). The projection algorithm Proj(-) is de-
signed to ensure that the value of the parameter
remains in the convex set

Qp={0€R: |0 <wp} (17)
This algorithm is given by

9 if 0] < wm
or |0] = wm
6 = Proj{0,9} = and VP(0)9 <0 (18)
AVP(O)VP(O)T herwis
- W otherwise

where P(0) = 6% — w,, < 0, X is a positive
constant gain for the projection algorithm. Gen-
eral properties of this projection algorithm are
presented in (Krstic et al., 1995) and (Pomet and
Praly, 1992).

3.8 Conwvergence to the Optimal Cycle

Following the extremum seeking procedure pro-
posed in (Guay and Zhang, 2003), we use the
following Lyapunov function:

V= S0P 20 (19)

The derivative of V' with respect to time is

V =1Jo(0)] (Vo e(0)0 + T1(T +1) = T1(t))  (20)

It is possible to show by a simple Lyapunov
argument that the convergence of the algorithm
to the optimal cycle is ensured if J,—0ast— 0.
To achieve stability, the open-loop dynamics must
be such that:

oy

—— ,0) <0 21

L f(2,0) (21)
Since by assumption the open-loop dynamics are
stable for v = 0, the last condition is met for

% > 0. Therefore, the optimum is reached when
the cost stabilizes to a constant value, that is
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when we reach the optimal closed orbit. Since the
dynamic for 0 is stable, the algorithm ensures con-
vergence to the optimal periodic orbit whenever 6
reaches is optimal value.

3.4 Receding Horizon Implementation

To implement the algorithm derived above in
real-time, we need to evaluate on-line sensitivity
information of the state trajectories with respect
to the control. Moreover, to evaluate the gradient,
we need the sensitivity of those equations with
respect to time, as expressed in the equations (10).
Following ideas presented in (DeHaan and Guay,
2005), the proposed method uses the simulation of
the system (1) with u generated by a fix switching
time 6 over the receding horizon 7 € [t, t +
T1], corresponding to one assumed period of the
system. This enables us to generate the gradient
information and to update 6 according to equation
(14). The new value of the parameter 6 is changed
at the end of the cycle to generate another free
dynamic of the system.

To summarize the algorithm:

(1) Assume fixed switching time 6 and prediction
horizon T'.

(2) Simulate the system with discontinuous in-
puts for ¢t tot + 7.

(3) Compute the gradient VyJ.(6) as the finite
sum 13.

(4) At time t = 0, update 6 and the horizon T

Results from (DeHaan and Guay, 2005) show
a computational advantage of this method over
existing receding horizon techniques. We now turn
our attention to a simple numerical example to
show the potential of the method.

4. APPLICATION TO DRUG DELIVERY

To illustrate, we apply the algorithm developed
in Section 3 to a drug delivery problem studied in
(Guay et al., 2005; Varigonda et al., 2004b). The
objective is to maximize the time average of some
indicator function of the drug concentration, ¢ and
the drug antagonist concentration, a:

1 T
J== /O I(E(c,a))dr (22)

where the indicator function is defined as

(E/Er)Y

IE) = T @By L+ EE]

(23)

and the drug effect F is
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(I+¢e)(1+a/a*)

where a* is the relative potency of the antagonist.
The prescribed range of the effect of the drug
during the therapy is enforce by the parameters
FE; and E5 in the indicator function. To be ef-
fective, the therapy must lie within the interval
[E1, Es] during the cycle. The parameter « is
used to increase the sensitivity of the indicator to
changes in the drug effect. The non-dimensional
linear dynamics of the systems are given by

E(c,a) = (24)

¢c=—-c+u (25)
a=Ky(c—a) (26)
with K,, the rate constant of the antagonist
elimination. We constrain the states with 0 <
a < 1 and 0 < ¢ < 1. In this region, the

unforced dynamics converges to the origin. The
first derivative of x with respect to u is given by:

d (dx -1 0 dx 1

~—(Z) = — 2

dt(du) (Ka —Ka) (du)+(0> 27)
Simulations and control parameters are given in

Tables 1 and 2 respectively.
Table 1. Drug Delivery Problem Param-

eters
Kq 0.1
a* 1
Ey 0.3
Eo 0.6
¥ 10
Umin 0
Umax 1
€ 1

Table 2. Control Parameters

K 0.1
Win, 10

A 1

T 10
1,2 1
12 001

Simulation results of the state variable trajectories
are given in Figure 1. A phase plane diagram is
shown in Figure 2. From that figure, we see how
the system is driven to a stable periodic orbit and
how this periodic orbit is moved to the optimal
one.

The trajectory of the switching-time parameter
in Figure 3 shows that the control procedure with
the optimal parameter 6.

The cost function value over time is represented
in Figure 4. The effect of the drug over time and
the value of the indicator function are presented
in Figure 5. From this figure, we see that the
therapeutic range [E;, Fs] is reached at each
cycle.
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Fig. 1. States trajectories over time
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Fig. 2. States in the phase space
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Fig. 3. Evolution of the switching time 6
5. CONCLUSION

In this paper, we posed and solved a single input
optimal control problem over periodic orbits us-
ing extremum seeking and receding horizon tech-
niques. The method proposed used parametriza-
tion of the control as a sequence of time switching.
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Fig. 4. Cost function over time
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Fig. 5. Drug effect and indicator function over
time
Future investigations will focus on adaptive ex-
tensions of the method with applications to drug
delivery optimal problems with unknown parame-
ters. Other applications with impulse controls can
also be considered (see for example the bipedal
robot application (Morris and Grizzle, 2005) and
the wedge billiard (Sepulchre and Gerard, 2004)).
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