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Abstract:Peoplewith type1 diabetesrequirefrequentadjustm entoftheirinsulin
dose to m aintain as near norm alglycem ia as possible.This process is not only
burdensom e,butform any di cultto achieve.Asa result,controlalgorithm sto
facilitate the insulin dosage have been proposed,but have not been com pletely
successfulin norm alizing glycem ia.Here we present a novelrun–to–run control
algorithm to adjust the m ealrelated insulin dose using only postprandialblood
glucosem easurem ents.
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1.INTRODUCTION

The Expert Com m ittee on the Diagnosis and
Classification ofDiabetesMellitus(2003)defines
diabetesm ellitusasa group ofm etabolicdiseases
which are characterized by hyperglycem ia.This
hyperglycem ia results from defects in insulin se-
cretion,insulin action,or both.Type 1 diabetes
is caused by an absolute deficiency of insulin
secretion. It includes cases prim arily due toβ
celldestruction,and who are prone to ketoaci-
dosis. These cases are those attributable to an
autoim m une process,aswellasthose withβ cell
destruction for which no pathogenesis is known
(i.e.idiopathic).Peoplewith type1 diabetesfully
depend on exogenousinsulin.Itisestim ated that
17.1m illion peopleworld widehad type1diabetes
in 2000 (Wildet al.,2004;Eiseleinet al.,2004).
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The chronic hyperglycem ia in diabetes is associ-
ated with long-term com plications due to dam -
age, dysfunction and failure of various organs,
especially the eyes, kidneys, nerves, heart and
blood vessels.Thethreem ain com plicationsbeing
retinopathy,nephropathy and neuropathy.These
can eventually lead torenalfailure,blindness,am -
putation and other types ofm orbidity.Subjects
with diabetesare athigherrisk ofcardiovascular
disease,and faceincreased m orbidity and m ortal-
ity when critically ill.

The e cacy of intensive treatm ent in prevent-
ing diabetic com plications has been established
by the DiabetesControland Com plicationsTrial
(DCCT) (Diabetes Control and Com plications
Trials Research Group, 1993) and the United
Kingdom Prospective Diabetes Study (UKPDS)
(UK Prospective Diabetes Study Group,1998).
In both trials the treatm ent regim ens that re-
duced averageglycosylated hem oglobin (a clinical
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m easure ofglycem ic control,which reflects aver-
age blood glucose levels over the preceding 2-3
m onths)A1C toapproxim ately 7% (norm alrange
is4-6% )wereassociated with fewerlong term m i-
crovascular com plications.Recent evidence even
suggeststhatthesetargetlevelsm ightnotbelow
enough (Khaw et al.,2001).

Intensivetreatm entrequiresm ultiple(3 orm ore)
daily injections ofinsulin,or treatm ent with an
insulin infusion pum p. In any case, this tight
control(i.e. ascloseto norm alaspossible)should
be m aintained for life in order to accrue the full
benefits.M any factors influence the insulin dose
requirem entsovertim e,includingweight,physical
condition and stress levels.Due to this,frequent
blood glucose m onitoring is required.Based on
these m easurem ents the insulin dosage m ust be
m odified,dietary changes im plem ented (such as
alteration in the tim ing,frequency and content
ofthe m eals),as wellas changes in activity and
exercisepatterns.

With the advent of hom e blood glucose m oni-
toringtechnologiesbecom ingavailable,physicians
started to seek ways to use this inform ation to
fine–tune the therapeutic regim en. Am ong the
firstheuristicalgorithm sin theliterature,wecan
highlight those of Skyleret al. (1981) and Jo-
vanovic and Peterson (1982).Both set heuristic
rulesbased on practicalexperience;them ain dif-
ference between these two is that Skyleret al.
(1981)relieson pre–prandialblood glucose m ea-
surem entsexclusively,whileJovanovicand Peter-
son (1982)usesprandialm easurem entsaswellto
adjusttheinsulin dosing.

The algorithm proposed by Jovanovic and Peter-
son (1982) is taken as the basis to program a
pocketcom puter,which wastested in 5type1dia-
beticsubjects.They dem onstratethatcom puter–
assisted insulin–delivery decision m aking isfeasi-
ble (Chanochet al.,1985).This com puter pro-
gram was then com pared to the standard ap-
proach for new continuous subcutaneous insulin
infusion pum p users.Petersonet al. (1986)found
the approach to be feasible,although it did not
fully norm alize blood glucose levels. Still, com -
puterusersachieved loweraverage blood glucose
and A 1Cvaluesoverthecourseofthestudy.

Schi rinet al. (1985) program m ed a portable
com puter to adjust dosing ofshort and interm e-
diateacting insulin in a 2–injection perday strat-
egy, using pre–prandial blood glucose m easure-
m ents.Even within the lim itations of the ther-
apy regim en used,they saw m arked im provem ents
in glycem ic control when using the com puter.
Chiarelliet al. (1990) com pared this com puter
m ethod with a m anualm ethod;whilethey found
no di erencesin glycem iccontrol,they did notice
fewerinstancesofhypoglycem ia in the com puter

users.Peters et al. (1991) adapts this algorithm
and com pared its e ectiveness against m anual
adjustm ents,finding that m etabolic controland
safety werecom parablein both.

Taking the heuristic algorithm of Skyleret al.
(1981)astheirstarting point,Beyeret al. (1990)
create theirown algorithm s;asthe original,they
use pre–prandialblood glucose m easurem ents.In
a clinicaltrialof 50 subjects they clearly show
thatthecom putergroup did m uch betterthan the
regular intensive treatm ent group (Schrezenm eir
et al.,2002).

So far,none ofthese com puter algorithm s m ake
useofthenewerm onom ericinsulins.Owenset al.
(2005)proposea run–to–run controlalgorithm to
adjustthetim ing and doseofm ealrelated insulin
boluses,taking advantage ofthese fastacting in-
sulin form ulations.The basic assum ption is that
there is a sensor available from which frequent
blood glucose m easurem ents can be taken, and
thus the m axim um and m inim um blood glucose
excursions in the prandialperiod can be deter-
m ined.The feasibility ofthe algorithm wasstud-
ied in a clinicalsetting,m aking som e changesto
allow forfingerstick blood glucosedeterm inations
at60 and 90 m inutesafterthe startofthe m eal,
in lieu ofthem axim um and m inim um .Two-thirds
of the subjects m aintained acceptable glycem ic
control,but the rest diverged in their responses
dueto variousfactors(Zisseret al.,2005).

In thiswork wem odify thealgorithm toovercom e
the di culties encountered in clinical practice.
The run–to–run form ulation described here gives
m ore flexibility to the subject,as blood glucose
m easurem ents are not required to be taken at
specifictim es.In section 2 wepresentthebasisof
therun–to–run algorithm ,followed by thespecific
im plem entation for insulin dosing. W e present
sim ulation resultsusing thism ethod in section 3.

2.RUN–TO–RUN ALGORITHM

The originalform ulation forthe run–to–run con-
trolapplied to insulin bolusdosing and tim ing is
described in (Owenset al.,2005).It is based on
the application ofa constraintcontrolschem e in
the run–to–run fram ework to optim ize the oper-
ation ofbatch processesin the chem icalindustry
(Srinivasanet al.,2003a;Srinivasanet al.,2003b).

Thegeneralrun–to–run controlalgorithm is:

(1) Param eterize the input profile for runk,
uk(t),as U(t, νk).Also consider a sam pled
version,ψk,of the outputyk(t),such that
it has the sam e dim ension as the controlled
variablevectorνk.Thuswehave

ψk = F(νk) (1)
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(2) Choosean initialguessforνk (whenk = 1).
(3) Com plete the run using the inputuk(t)cor-

responding toνk. Determ ineψk from the
m easurem entsyk(t).

(4) Updatetheinputparam etersas

νk+1 = νk + K (ψr − ψk) (2)

whereK is an appropriate gain m atrix and
ψr represents the reference values to be at-
tained. Increm entk for the next run, and
repeatsteps3-4 untilconvergence.

In the context ofdiabetes m anagem ent,we use
the natural day–to–day cycle as a run; within
this run,there are three separate m eals (nam ely
breakfast,lunch and dinner),forwhich an appro-
priate insulin bolus has to be determ ined. The
objective is to m inim ize the prandial glycem ic
excursion,without overdosing insulin.Thus,our
m anipulated variable,uk(t),corresponds to the
insulin profile,and them easurem entprofile,yk(t),
correspondsto glucose m easurem ents.Tim e,t,is
within a given day,k,which isalso a run.Owens
et al. (2005) show,using an RGA analysis,that
thereise ectively nocouplingbetween them eals;
wealso usethisassum ption in thenew algorithm .

There were two drawbacksto the originalim ple-
m entation when evaluated in a clinical setting.
The first was the changing ofthe tim ing ofthe
insulin boluswith respecttothestartofthem eal.
Manytim esthisresulted in abolusbeingadm inis-
tered in them iddleofa m eal;atothertim es,the
adm inistration before the start ofthe m ealwas
inconvenientto thesubject,and wasnotadhered
to.Besides,when using m onom eric insulin,the
tim ing ofthe bolus m akes a negligible di erence
in the postprandialprofile when com pared with
the e ect of the dose.For these reasons it was
decided to fix the tim ing to alwayscoincide with
the beginning ofthe m eal.The second drawback
wasthe need forblood glucose determ inationsat
60 and 90 m inutes after the start ofthe m eal;if
thesubjectforsom ereason forgottotakeeitherof
them ,then the algorithm wasnotable to correct
forthefollowing day (Zisseret al.,2005).

The m ain change is in the selection ofthe per-
form ance m easure used.To have the flexibility of
taking blood glucose m easurem ents at di erent
tim es,we can no longeruse a fixed glucose level.
Instead, we use an approxim ation of the slope
of the glycem ic response. The only restrictions
we place on the patient is that the first glucose
m easurem ent m ust be taken at least 60 m inutes
afterthestartofthem eal,and thesecond onebe
at least 30 m inutes after the first,but not m ore
than 180 m inutesafterthe startofthe m eal.W e
denote these tim es,for each m eal,as:TB1,TB2,
TL1,TL2,TD1,TD2.Then,our sam pled output
vectoris

ψk =

⎡
⎣
G(TB1)− G(TB2)
G(TL1)− G(TL2)
G(TD1)− G(TD2)

⎤
⎦ (3)

As the tim es can change from one m ealto the
next,and from run to run,we need a reference
valuethatisnorm alized with respectto tim e.W e
define this reference in term s ofunits ofglucose
per m inute for each m eal,ψr

0,and then scale by
the actualtim e between the two m easurem ents.
W ecan writethisas

ψr = ψr
0

⎡
⎣
TB2 − TB1

TL2 − TL1

TD2 − TD1

⎤
⎦ (4)

where denotes the Hadam ard (elem ent–wise)
product.

The m anipulated variableνk is sim ply the dose
ofinsulin corresponding to each m ealofdayk,

νk =
[
QB QL QD

]T
.Thecontrollergain,K isset

dependingon theinsulin sensitivityofthepatient.

The reasoning for this perform ance m easure is
based on the blood glucose response seen for
di erentdoses.Forabolusthatiscorrectly dosed,
weexpectthepeakglucoseexcursion tobearound
60 m inutes, and to drop from that point on
until it reaches the basal level. If the bolus is
under–dosed,thism ovesthepeak into thefuture.
Thus,ifwe have under–bolused,the di erence in
blood glucose levelsbetween the firstand second
m easurem ents will be negative, or positive but
very sm all.Asthedoseapproachestheideallevel,
thisdi erence willincrease.Thisisallillustrated
in figure1(a).

3.SIM ULATION RESULTS

Thereareseveralpublished m odelsofglucoseand
insulin dynam icsin theliterature.Forthispartic-
ularstudy we have selected the one published by
Hovorka et al. (2004),replacing thesubcutaneous
insulin infusion m odelwith the one described in
(Wilinskaet al.,2005).The m odelcaptures not
only thedynam icsofglucoseand insulin,butalso
theabsorption ofinsulin from a subcutaneousde-
livery (asisthecasewith insulin infusion pum ps),
and the appearance ofglucose in plasm a from a
m ixed m eal.

For each day, the sim ulation has the m eals at
8:00,12:00 and 18:00 hours,with a carbohydrate
content of 20, 40 and 70 gram s, respectively.
For each day and m eal,the tim epoints at which
blood glucosem easurem entsaretaken areselected
random ly (using a uniform distribution);thefirst
onecan takeplacefrom 60to90m inutesafterthe
startofthem eal,thesecond onefollows30 to 60
m inuteslater.
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(a) Glucose profile for selected days
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(b) Glucose profile over a period of 25 days

Fig.1.In (a)itcan clearly beseen thatthetim ebetween sam pling tim eschangesforthedi erentm eals,
and showshow therun–to–run algorithm isableto bring thedosing within thedesired bounds.(b)
showsthefullprofileover25 consecutivedays.

Thereferencedrop in blood glucose(perm inute),
wasselected foreach m ealseparately,considering
the typicalam ountofcarbohydrate consum ed in
each m ealasthem ain guideline.W ehaveselected

ψr
0 =

[
0.058 0.104 0.30

]T
.The controller gain is

set at K = 0.0005,and is scaled by 2,3 or 4
for subjects with lower insulin sensitivities.The
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Fig. 2. M axim um and m inim um glucose excur-
sions after a m ealconverge to clinically ac-
ceptablebounds.
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Fig.3.Mealinsulin bolusconvergestotheoptim al
am ountforthegiven m eal.
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Fig. 4. The algorithm converges to the sam e
insulin to carbohydrate ratio, regardless of
thecarbohydratecontentofthem eal.

am ount of the insulin bolus is rounded to the
nearest 0.1 U ofinsulin,which is the resolution
ofm ostinfusion pum ps.

The initialguess for the insulin requirem ent for
each m eal is set at an insulin to carbohydrate
ratio of 1:33 (a m ore typical value is around

1:10).Thuswestartgiving m uch lessinsulin than
is actually required for the first run (k = 0).
Figure 1(b) shows the sim ulation for 25 days,
with figure 1(a) highlighting a couple of days
only.The dotted lines show the desired bounds
fortheblood glucoseexcursions;notethatweare
m ore aggressive in keeping blood glucose below
150 m g/dlthan preventing itfrom going below 70
m g/dl.

Even though thealgorithm doesnotdirectly con-
siderthem inim um and m axim um excursionsafter
a m eal,these are stillrelevant clinicalm arkers.
Figure2showsthem axim um andm inim um values
aftereach m eal,whereonceagain thedotted lines
represent the desirable bounds. The am ount of
theinsulin bolusand thecorresponding insulin to
carbohydrate ratiosare shown in figures3 and 4,
respectively.The insulin to carbohydrate ratio is
whatthepatientsand physiciansuseto calculate
their insulin requirem ents for a given m eal;this
showsclearly thatthealgorithm convergesto the
idealratio.Itisim portantto note thatalthough
in this case they converge to approxim ately the
sam e value,it is not necessarily the case in real
life,asinsulin sensitivity hasa circadian variation
which is not captured by the sim ulation m odel
used.

4.CONCLUSIONS

The feasibility of using run–to–run control to
determ ine the optim al insulin bolus dose and
tim ingwasshown byZisseret al. (2005),butsom e
hurdles were identified.Changing the tim ing of
theinsulin boluswasoneofthem ,which coupled
with the sm all di erence it m akes when using
m onom ericinsulin,itwasdecided to keep itfixed
to coincide with the beginning ofthe m eal.The
second was the requirem ent that blood glucose
m easurem ents be taken at 60 and 90 m inutes;
besidesim posingadditionalburden on thepatient
to keep close track oftim e after a m eal,it also
m eant that when the patient m issed these tim e
points the algorithm could no longer m ake a
correction forthedosing thefollowing day.

W e have proposed a new perform ance m easure,
which gives the patient the freedom of taking
post–prandialglucosem easurem entsattim esthat
are m ore flexible and do notrequire them to be-
com eslavestotheclock.W ehaveshown thateven
with thisvariation in thetim ing,thecontrolleris
able to converge within a couple ofdays,signifi-
cantly im proving thedegreeofglycem iccontrol.

Further sim ulation studies m ust be done to in-
corporateothersourcesofvariability thatareex-
pected,including m easurem ent noise,m ism atch
between the estim ated carbohydrate content of

IFAC - 525 - ADCHEM 2006



the m ealand the actualvalue,and variation in
thetim ingand carbohydratecontentofthem eals.
Initialresults(notshown)are quite encouraging.
W earecurrently undertaking a robustnessanaly-
sisthattakesinto accountallofthese sourcesof
uncertainty.
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