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Abstract: Drug synthesis and discovery represents today one of the most rapidly
evolving scientific areas. This is primarily due to the interdisciplinary collaboration
between chemists, pharmacologists, molecular biologists, and biochemists. A direct
implication of the developments in drug discovery is the need for novel drug
delivery systems and devices. Considering the advances in engineering disciplines
and micro/nano technology the potential for producing new drug delivery devices
is substantial. Notably, so is the necessity of these devices in creating solid
commercial value propositions for the medical markets. In this work we present
research results related to embedding optimization-based control on-a-chip for drug
delivery applications.
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1. INTRODUCTION

Today, drugs can be delivered in many differ-
ent ways including: orally (pills or suspensions),
through the vein (intravenously), through the
artery (arterially), topically through the skin
(transdermally), through the rectum (supposi-
tory), through the eye (ocular), through the lungs
(inhaled), by injection into the skin (subcuta-
neously), by injection into the muscle (intramus-
cularly), and under the tongue (sublingually). By
means of improving the drug delivery devices,
companies and researchers aim to meet particular
goals (Brunner, 2004), most of them related to

1 Partial financial support for this research from the US
National Science Foundation grant CTS-0134102 and the
Pittsburgh Digital Greenhouse is gratefully acknowledged.

the state of the patients. These goals include:
improved efficacy, reduced side effects, continu-
ous dosing, reduced pain from administration,
increased ease of use, increased use compliance,
improved mobility, and decreased involvement of
healthcare workers.

Controlled drug delivery (Langer, 2004) currently
involves control of the time course or the location
of drug delivery. In this work we examine alterna-
tive pathways for the implementation of optimal
drug delivery control (of the time course) on an
embedded target, for glucose regulation by means
of insulin delivery. We provide research results of
this implementation on an Application Specific
Integrated Circuit (ASIC), on a general purpose
processor, and finally on a Field Programmable
Gate Array (FPGA).
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Optimization-based control schemes can be used
in order to effectively control nonlinear and mul-
tivariable models, and to impose constraints on
both the control action and the states. The con-
straints are usually set on the bounds and the rate
of change, and can be incorporated in the form of
equalities or inequalities. These control algorithms
typically involve the solution of an optimization
problem that explicitly incorporates knowledge of
a dynamic model of a process, with the addition
of design and process objectives. This concept has
seen widespread use, particularly through appli-
cations of predictive control. The advantages of
Model Predictive Control (MPC), such as the abil-
ity to handle constraints, the applicability to non-
linear processes and to multivariable problems,
constitute this control method an ideal choice for
satisfying most of the design objectives of a drug
delivery device.

Currently, companies that want to sell insulin
delivery devices must illustrate to the Food and
Drug Administration (FDA) that their devices are
“substantially equivalent” to drug delivery devices
already for sale. MPC controllers (device) and the
drug (insulin) are approved and are on the market
individually. The use of insulin is the standard
method for regulating glucose. Thus the toxicol-
ogy of the pharmaceutical is known. Nevertheless,
implementations of MPC have been on the market
mainly for chemical plants, and on workstation
implementations. In 2004, the FDA announced
that the worlds first implantable Radio Frequency
Identification (RFID) microchip for human has
been cleared for medical uses in the United States.
About the size of a grain of rice, “VeriChip” is a
subdermal radio frequency microchip. The device
has no power supply, and it is activated when a
scanning device runs across the skin above it. A
tiny transmitter on the chip then releases patient-
specific information. Although not capable of car-
rying out arithmetic operations such technology
is available, and one of the biggest regulatory
thresholds was surpassed. Thus, it is a matter of
time before new generations of similar devices seek
FDA approval. There are however other issues
to be examined: the performance robustness of
the chip, the biocompatibility of the device, and
that the stability and bioavailability of the drug
have not been compromised by the drug-device
combination.

Although the solution to glucose regulation prob-
lems may appear in the form of an implantable
capsule (Leoni and Desai, 2001) that continuously
produces insulin and releases it to the blood-
stream, there are numerous potential applications
for medical controllers on-a-chip including: control
of physiological processes, muscle control, respira-
tion control, drug infusion control (for instance
during anesthesia), cardiac pacemakers and de-

fibrillators, heart rate control, blood flow and
pressure control, HIV control, and neurological
implants. For example, in the Human Immun-
odeficiency Virus (HIV) control case, where the
drug cocktail provided is currently expensive, the
regulation (with the solution of an optimization
problem) of the dosage to the absolute minimum is
highly desirable. Another example is a device that
detects irregular heart pulses and uses a control
algorithm to regulate doses of a blood thinning
drug (for example aspirin). This device maintains
the risks of thrombosis at low levels while mini-
mizing the chances of internal bleeding.

2. BLOOD GLUCOSE CONTROL IN
DIABETIC PATIENTS

Diabetes mellitus is a chronic health condition
where the human body is unable to produce in-
sulin and properly breakdown sugar (glucose) in
the blood. The insufficient insulin production or
lack of responsiveness to insulin, results to hyper-
glycemia (blood glucose levels over 120mg/dL).
There are two primary types of diabetes melli-
tus, type I (insulin-dependent or juvenile-onset),
which may be caused by an autoimmune re-
sponse, and type II (non-insulin-dependent or
adult-onset). Symptoms include hunger, thirst,
excessive urination, dehydration and weight loss.
Complications can include heart disease, stroke,
neuropathy, poor circulation leading to loss of
limbs, hearing impairment, vision problems and
death.

The treatment of diabetes requires regular insulin
injections, proper nutrition and exercise in or-
der to maintain normoglycemia, defined as blood
glucose 70−100mg/dL. Insulin and glucagon are
the hormones responsible for glucose regulation.
Both insulin and glucagon are secreted from the
pancreas, and thus are referred to as pancreatic
endocrine hormones. Most of the long-term com-
plications associated with diabetes result from
sustained hyperglycemia, but hypoglycemia can
result in very acute symptoms such as coma and
death.

A significant effort has been devoted to the devel-
opment of closed-loop controllers for blood glucose
control. For approaches to applying control to
diabetic subjects the reader is referred to (Parker
et al., 1999; Doyle-III et al., 2000; Rubb and
Parker, 2003; Parker and Doyle-III, 2001).

2.1 Minimal Glucose Model

Minimal models of glucose and insulin plasma
levels have been developed (Bergman et al., 1979;
Pacini and Bergman, 1986) for humans using

IFAC - 516 - ADCHEM 2006



Frequently-Sampled Intravenous Glucose Toler-
ance (FSIGT) tests. During a FSIGT test, a sin-
gle intravenous injection of glucose is given to a
fasting subject and blood samples are collected
at regular timed intervals. The blood samples are
then analyzed for glucose and insulin concentra-
tion. Figure 1 shows a typical response from a
normal subject.

0 20 40 60 80 100 120 140 160 180
50

100

150

200

250

300

G
lu

co
se

 le
v

e
l (

m
g

/d
L

)

0 20 40 60 80 100 120 140 160 180
0

100

200

300

400

500

In
su

li
n

 le
v

e
l (
m

U
/m

L
)

Time (min)

Fig. 1. Typical glucose and insulin response from
a normal subject.

As illustrated in Figure 1, the glucose level in
plasma is at a peak at the time of the injection,
drops to a minimum which is below the basal
glucose level, and then gradually returns to the
basal level (dashed line). The insulin level in
plasma rapidly rises to a peak immediately after
the injection, drops to a lower level which is still
above the basal insulin level, rises again to a lesser
peak, and then gradually drops to its basal level.
Depending on the state of the subject, there can
be wide variations from this response that can
determine the condition of the patient (G. M. Steil
and Bergman, 1993).

The glucose minimal model involves two physi-
ologic compartments: an interstitial tissue com-
partment and a plasma compartment. The differ-
ential equations corresponding to the two com-
partments are:

dG(t)
dt

= k1(Gb − G(t)) − X(t)G(t) (1)

dX(t)
dt

= k2(I(t) − Ib) − k3X(t) (2)

where t is time, G(t) is the plasma glucose con-
centration at time t, I(t) is the plasma insulin
concentration at time t, and X(t) is the interstitial
insulin at time t, with G(t0)=G0 and X(t0)=0.
Gb is the basal plasma glucose concentration
and Ib is the basal plasma insulin concentration.
The insulin sensitivity is defined as SI = k2/k3

and the glucose effectiveness is defined as SG =
k1. Basal plasma concentrations of glucose and
insulin are typically measured either before or
180 minutes after the administration of glucose.

There are four unknown parameters in this model:
k1, k2, k3, and G0 that depend on the particu-
lar subject and can be estimated experimentally.
We use the parameters adopted from (Pacini and
Bergman, 1986; Riel, 2004).

3. MODEL PREDICTIVE CONTROL

Model Predictive Control originated in the chem-
ical process industries. The main advantages of
MPC are the ability to handle constraints and
its applicability to multivariable nonlinear pro-
cesses. Because of the computational requirements
of the optimizations associated with MPC, it has
primarily been applied to plants in the process
industry, with slow dynamics. Furthermore, ex-
isting implementations of MPC typically perform
numerical calculations using workstations in 64-
bit Floating Point (FP) arithmetic, which is too
expensive, power demanding and large in size.
Therefore the implementation of real-time embed-
ded model predictive control, for systems with fast
dynamics, where the size and the application pre-
cludes the use of a dedicated workstation, presents
new technological challenges.

Controllers belonging to the MPC family are
generally characterized by the following steps:
initially the future outputs are calculated at each
sample interval over a predetermined horizon N ,
the prediction horizon, using a process model.
These outputs y(t + k|t) for k = 1...N depend up
to the time t on the past inputs and on the future
signals u(t+k|t), k = 0...N −1 which are those to
be sent to the system. The next step is to calculate
the set of future control moves by optimizing a
determined criterion, in order to keep the process
as close as possible to a predefined reference
trajectory. This criterion is usually a quadratic
function of the difference between the predicted
output signal and the reference trajectory. In
some cases, in order to minimize the control effort
the control moves u(t + k|t) are included in the
objective function:

JP (k) =
P∑

k=0

{[y(t+k|t)−yref ]2+Ru(t+k|t)2} (3)

|u(t + k|t)| ≤ b , k ≥ 0 (4)
where y(t + k|t) are the predicted outputs, yref

is the desired set reference output, u(t + k|t) the
control sequence and R is a the weighting on the
control moves, a design parameter. This system is
subject to input constraints given by the vector
b. Finally, the first control move u(t|t) is sent to
the system while the rest are rejected. At the next
sampling instant the output y(t+1) of the system
is used in the optimization using feedback and the
procedure is repeated so that we get an updated
control sequence.
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4. EMBEDDED MODEL PREDICTIVE
CONTROL

Some initial results have been reported to the
direction of embedding Model Predictive Con-
trol. Further analysis and references can be found
at (Bleris et al., 2006a). With the following sub-
sections we report our recent research results, and
we focus on the FPGA implementation.

4.1 General purpose processor

We have examined a general purpose processor
implementation (Bleris and Kothare, 2005b; Bleris
and Kothare, 2005a). We used a single board com-
puter phyCORE-MPC555 that packs the power of
Motorola’s embedded 32-bit MPC555 microcon-
troller within a miniature footprint. The MPC555
is a high-speed 32-bit Central Processing Unit
(CPU) that contains a 64-bit floating point unit
designed to accelerate advanced algorithms, run-
ning at 40MHz. To implement the optimization
algorithm of MPC, we used a combination of
software tools: CodeWarrior Integrated Develop-
ment Environment (IDE), MATLAB, Real-Time
Workshop, and SIMULINK.

In order to test the performance of a multi-model
MPC formulation in real time we used Processor
in the Loop (PIL) co-simulations; the MPC chip
in closed loop with the monitored patient (the
minimal model on the host workstation). To ex-
amine the influence of the control horizon on the
computational costs of MPC running on the Mo-
torola processor, we set the number of optimiza-
tions at a fixed number. In Figure 2 we provide
profiling results for different cases of prediction
horizon and optimization steps. Additionally, in
Figure 3 we provide the performance of MPC for
different number of optimizations, keeping fixed
the prediction and control horizons. As expected
the computational time for this case grows lin-
early with the optimizations. Both these profiling
results illustrate that we remain in all examined
cases at under one second for the computation
of the optimal insulin dosage using MPC. From
interpolation of the results of Figure 3 we obtain
the required time for one optimization loop, (a)
53msec for prediction horizon of 21 and control
horizon of 7, (b) 95msec for prediction horizon of
31 and control horizon of 7.

4.2 Application-Specific Instruction Processor

For the Application Specific Integrated Circuit
(ASIC) implementation (Bleris et al., 2006a;
Bleris et al., 2005) we proposed the following de-
sign framework. By emulating the microcontroller
arithmetic operations, we reduce the precision of
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the microprocessor to the minimum, while main-
taining stable control performance for a particu-
lar control application. This reduction is accom-
plished by series of parametric tests using differ-
ent word sizes and utilizing computational tools
to simulate the controlled model. Taking advan-
tage of the low precision, a Logarithmic Number
System (LNS) based micro-processor architecture
was proposed (Garcia et al., 2004) (Figure 4) that
provides energy, computational cost, and price
savings (Figure 5). This reduced-precision ASIC
can achieve sampling speeds as low as 32msec for
relatively large problems. Additionally, to quan-
tify the advantage of reducing the precision, es-
timations for both 64-bit FP and 16-bit LNS cir-
cuits showed that for an arithmetic unit that com-
putes addition, subtraction, multiplication and di-
vision, the size required is about 17 times larger
for 64-bit FP.
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4.3 Mixed software-hardware embedded controller

For the mixed software-hardware embedded con-
troller we examine a codesign (Vouzis et al., 2005;
Bleris et al., 2006b) step before the actual im-
plementation that decomposes the algorithm into
two parts. One that fits into the host processor
and one that fits into the custom made unit that
performs all the (repetitive and computationally
demanding) arithmetic operations. The selected
microprocessor acting as a host for our design is
the 16-bit Extensible Instruction Set Computer
(EISC) from ADCUS, Inc. For prototyping we
use the Field Programmable Gate Array (FPGA)
Virtex-4 XC4VLS25 device of Xilinx interfacing
with Mablab, running on a PC workstation, in
order to implement Processor-In-the-Loop (PIL)
techniques that help to test and debug the embed-
ded system. Both the ADCUS microprocessor and
the matrix co-processor are described in Verilog
and the whole design is synthesized with the ISE
7.1 design environment of Xilinx.

A field-programmable gate array is a large-scale
integrated circuit that can be programmed after
it is manufactured rather than being limited to a
predetermined, unchangeable hardware function.
FPGAs come in a wide variety of sizes and with
many different combinations of internal and ex-
ternal features. What they have in common is
that they are composed of small blocks of pro-
grammable logic. These basic blocks may be repli-
cated many thousands of times to create a large
programmable hardware fabric. In more complex
FPGAs these general-purpose logic blocks are
combined with higher level arithmetic and control

structures, such as multipliers and counters, in
support of common types of applications such as
signal processing.

Defining the behavior of an FPGA (the hardware
that it contains) has traditionally been done either
using a Hardware Description Language (HDL)
such as VHDL or Verilog or by arranging blocks of
pre-existing functions, whether gate-level logic el-
ements or higher-level macros, using a schematic–
or block diagram–oriented design tool. Hardware
applications implemented in FPGAs are gener-
ally slower and consume more power than the
same applications implemented in custom ASICs.
Nonetheless, the dramatically lowered risk and
cost of development for FPGAs have made them
excellent alternatives to custom Integrated Cir-
cuits (ICs). The reduced development times asso-
ciated with FPGAs often makes them compelling
platforms for ASIC prototyping as well.

0

10

20

30

40

50

60

ch:3 ph:10 ch:4 ph:10 ch:5 ph:10 ch:6 ph:10 ch:7 ph:10 ch:8 ph:10 ch:9 ph:10

Gradient

Initialization

Newton
GJ

Hessian

%

Fig. 6. Profiling results for prediction horizon 10
and variable control horizon.

We use Newtons algorithm to solve the optimiza-
tion problem by combining the constraints into
the cost function using barrier functions. This
optimization algorithm consists of five functions
which can be considered as the five basic oper-
ational blocks. These functions are: the initial-
izations prior to each iteration loop of the opti-
mization, the calculation of the Gradient vector
and the Hessian matrix, the Gauss-Jordan matrix
inversion, and finally the optimal move calculation
using Newtons iteration.

In order to partition the algorithm to hardware
and software we examine the behavior of these
operational blocks using a profiler. In Figure 6
we present the profiling results of the five opera-
tional blocks, for a prediction horizon of 10 and
variable control horizons. A direct observation is
that the computation of the Gradient and the
Hessian requires approximately 70 − 80% of the
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total optimization time. The next most expensive
function is the matrix inversion which can take
up to 30% of the total time, for large control
horizons. Furthermore, we observe that for small
control horizons the Gradient function uses almost
half of the total optimization time and double the
time of the Hessian function. Finally, we observe
that by increasing the control horizon size, the
matrix inversion becomes more expensive, and the
computational time required by the Gradient and
Hessian functions converge. This higher level anal-
ysis of the MPC optimization code reveals that
the repetitive matrix operations of the Gradient
and Hessian, comprise the major part of the pro-
cessing. Therefore these specific matrix operations
are the main part that has to be implemented
efficiently, while the rest of the operations can be
performed by a general purpose microprocessor.

5. CONCLUDING REMARKS

A selection of research results on embedding MPC
were presented in this paper. These include profil-
ing results of a general purpose processor, synthe-
sis estimates of an ASIC chip, and codesign con-
siderations for a co-processor FPGA implemen-
tation. During the presentation of the paper we
intend to provide the results of the MPC running
on the FPGA.

REFERENCES

Bergman, R. N., Y. Z. Ider, C. R. Bowden and
C. Cobelli (1979). Quantitative estimation
of insulin sensitivity. American Journal of
Physiology 236, E667–E677.

Bleris, L. G. and M. V. Kothare (2005a). Im-
plementation of Model Predictive Control for
Glucose Regulation using a General Purpose
Microprocessor. In: 44th IEEE Conference on
Decision and Control and European Control
Conference. Seville, Spain.

Bleris, L. G. and M. V. Kothare (2005b). Real-
time implementation of model predictive con-
trol. In: 2005 American Control Conference.
Portland, OR. pp. 4166–4171.

Bleris, L. G., J. G. Garcia and M. V. Kothare
(2005). Model predictive hydrodynamic regu-
lation of microflows. In: 2005 American Con-
trol Conference. Portland, OR. pp. 1752–
1757.

Bleris, L. G., M. V. Kothare, J. G. Garcia
and M. G. Arnold (2006a). Towards embed-
ded model predictive control for system-on-a-
chip applications. Journal of Process Control
16, 255–264.

Bleris, L. G., P. Vouzis, M. G. Arnold and
M. V. Kothare (2006b). Submitted: A Co-
Processor FPGA Platform for the Implemen-

tation of Real-Time Model Predictive Con-
trol. In: 2006 American Control Conference.
Minneapolis, MI.

Brunner, C. S. (2004). Challenges and opportu-
nities in emerging drug delivery technologies.
Product Genesis Inc.

Doyle-III, F. J., R. S. Parker and E. P. Gatzke
(2000). Advanced model predictive control for
type I diabetic glucose control. In: Proceed-
ings of the 2000 American Control Confer-
ence. Chicago, IL.

G. M. Steil, A. Volund, S. E. Kahn and R. N.
Bergman (1993). Reduced sample number for
calculation of insulin sensitivity and glucose
effectiveness from the minimal model. Dia-
betes 42, 250–256.

Garcia, J. G., M. G. Arnold, L. G. Bleris and
M. V. Kothare (2004). LNS architectures for
embedded model predictive control proces-
sors. In: 2004 International Conference on
Compilers, Architectures and Synthesis for
Embedded Systems. Washington, D.C.. pp. 79
– 84.

Langer, R. (2004). Transdermal drug delivery:
past progress, current status, and future
prospects. Advanced Drug Delivery Reviews
56, 557–558.

Leoni, L. and T. A. Desai (2001). Nanoporous bio-
capsules for the encapsulation of insulinoma
cells: Biotransport and biocompatibility con-
siderations. IEEE Transactions on Biomedi-
cal Engineering 48, 1335–1341.

Pacini, G. and R. N. Bergman (1986). A com-
puter program to calculate insulin sensitiv-
ity and pancreatic responsivity from the fre-
quently sampled intravenous glucose toler-
ance test. Computer Methods and Programs
in Biomedicine 23, 113–122.

Parker, R. S. and F.J. Doyle-III (2001). Control-
relevant modeling in drug delivery. Advances
in Drug Delivery Reviews 48(2), 211–248.

Parker, R. S., F. J. Doyle and N. A. Peppas
(1999). A model-based algorithm for blood
glucose control in type I diabetic patients.
IEEE Transactions on Biomedical Engineer-
ing 46(2), 148157.

Riel, N. V. (2004). Minimal models for glucose
and insulin kinetics. In: Technique Report.
Eindhoven University of Technology.

Rubb, J. D. and R. S. Parker (2003). Glucose
control in type I diabetic patients: A volterra
model-based approach. In: Proceedings of the
2003 ADCHEM. Hong Kong, China.

Vouzis, P., L. G. Bleris, M. V. Kothare and M. G.
Arnold (2005). Towards a Co-design Imple-
mentation of a System for Model Predictive
Control. In: 2005 AIChE Annual Meeting.
Cincinnati, OH.

IFAC - 520 - ADCHEM 2006


