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Abstract: A new tool for selecting the right pairing between inputs and outputs in a 

multiloop system is introduced. Similar in structure to the classical RGA the new  array, 

called a Relative Omega Array, is based on the characteristic frequencies in open and 

closed loop under perfect control, as eventually detected by a classical relay test.  This 

way the dynamic properties of the system are simply taken into account. Some examples 

show that the new tool is effective, giving the correct pairing also when the RGA 

approach fails.  Copyright © 2006 IFAC
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1. SELECTION OF PAIRING INPUT AND 

OUTPUT VARIABLES IN DECENTRALIZED 

CONTROL SCHEMES 

In multi-loop industrial control systems decentralised 

multi-loop SISO controllers are widely used, despite 

the interactions between the input/output variables 

(Luyben, 1997, Ogunnaike, 1994, Mayne, 1973). A 

decentralised structure is usually preferred for large 

scale industrial processes, since its simplicity, 

especially in case of sensor or actuator failures, 

where a process engineer can easily modify the 

controller parameters in order to counteract the 

abnormal operating condition. Experience show that 

usually performance of decentralised control 

structures meets satisfactory process design 

requirements. Performance improvements obtained 

adopting more refined (and complex) controllers are 

not usually so relevant to justify additional costs for 

their implementation and maintenance. Before 

developing a control structure design for a 

multivariable process, some basic question must be 

answered (Havre, 1996): 

What outputs must be controlled? 

How to select the control variables? 

How to pair input and output variables? 

How to tune the controllers? 

The selection of controlled outputs essentially 

depends on the decision of the expert and on the 

physical insight of the process. In the selection it will 

be necessary to keep into account costs of 

production, safety in terms of protecting plant 

personnel and plant investments, physical limitations, 

availability and reliability of the sensors.  

It can be required to control simultaneously levels of 

liquids, pressures, temperatures, positions, speed, 

product quality, production rates. In real plants often 

the choice of the variable to be controlled is clear, 

but not always such variables are directly measurable 

and they must be estimated from other measures.  

The problem of loop pairing between controlled and 

manipulated variables was usually solved by the 

relative gain array (RGA) method, introduced in 

1966 by Bristol, and its several extensions. Suppose 

for simplicity to consider a multi-variable system 

with an equal number of controlled and manipulated 

variables, described by the matrix of transfer 

functions G(s). In the classic formulation due to 

Bristol, it is considered the matrix of the steady-state 

process gains of the system A = G(0) and it is 

defined the Relative Gain Array (RGA) as: 

1( )T TA A A A (1) 

where  denotes element-by-element product. 

Definition: the RGA matrix   ={ ij } is formed by 

the generic ij element which corresponds to the ratio 

of the open loop and closed loop gains between input 

j and output i, representing first the process gain in 

an isolated loop and, second, the apparent process 

gain in that same loop when all other control loops 
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are closed. Two main hypotheses are posed: matrix  

 is evaluated at steady-state and the control is 

perfect, i.e., the closed loop gains are evaluated when 

all other outputs h  i are ideally regulated to zero.  

RGA matrix (1) has several properties: the more 

relevant for following developments (Ogunnaike, 

1994, Skogestad, 1997) are: 

1) Any row or column sums to one. 

2) The relative gain is invariant under scaling, i.e., 

(M) = (PMQ), where P and Q are arbitrary  

diagonal matrices. 

3) The only effect of altering the order of rows or 

columns in K is to introduce the same alteration of 

order in .

The meaning of  the relative gains ij  is that for ideal 

decentralised control  the  pairing should have a 

value of  ij =1. 

If ij =0, it implies that the steady-state gain of a 

single loop is zero, or that the interaction is so high 

that the behaviour of the loop is totally affected by 

the other loops. Such interaction has opposite effects 

if ij is negative: in this case the open and closed loop 

gains have opposite signs, that is the closed loop 

multiloop process is unstable, or  the single loops 

with negative ij's are unstable if the remaining loops 

are turned off, or the multiloop process is unstable if 

the loops with negative ij's are turned off (e.g., in 

case of failure in the i-j loop (Grosdidier, 1986)).    

Based on the previous properties a suitable use of 

RGA matrix leads to an easy and practical rule for 

selecting the less interacting pairings: the variable 

pairings corresponding to positive relative gains ij as 

close to unity as possible are preferred. 

To illustrate the use of the RGA method and its 

limitations, consider the following examples:

Example 1.

Wood and Berry process (Ogunnaike, 1994): 

3

1 7 3

12.8 18.9

16.7 1 21 1
( )

6.6 19.4

10.9 1 14.4 1

s s

s s

e e

s s
P s

e e

s s

The steady-state RGA is: 

1

2.0094 1.0094

1.0094 2.0094
      

It suggests the use of a diagonal pairing (y1-u1, y2-u2)

in a good agreement the physical behaviour of the 

process. 

Example 2.

Process described by the following matrix transfer 

function (Meeuse, 2002): 

2 2

1

1 1
( )

1

1 1

s

s

e

s s
sP

e

s s

   

The steady-state RGA is: 

2

0.5 0.5

0.5 0.5
    

In this example the steady-state RGA does not 

suggest any preferential pairing. 

Example 3.

Process described by the following matrix transfer 

function (Seider, 1999): 

5

3
5

2.5 1

(1 15 )(1 2 ) 1 4
( )

1 4

1 3 1 20

s

s

e

s s s
P s

e

s s

   

The steady-state RGA is: 

3

0.9091 0.0909

0.0909 0.9091
   

It suggests the use of a diagonal pairing (y1-u1, y2-u2), 

but a practical implementation based on dynamical 

considerations leads to off-diagonal pairing (y1-u2,

y2-u1). In this example the static RGA fails. 

2. A CRITICAL REVIEW 

As suggested from the previous examples a simple 

application of the steady-state RGA can lead to 

wrong pairings or may not help the designer. The 

most important limitations of the static RGA can be 

summarized as: 

it doesn't include dynamics and a correct 

pairing should be frequency-dependent 

an optimal pairings may vary with the 

structure of the SISO controllers adopted  

RGA cannot discriminate diagonal 

processes from processes with triangular 

structure

it does not consider disturbances. 

Anyway, a primary advantage of RGA is that it 

requires only minimal process information; it relies 

on the knowledge of the steady-state gain matrix, 

very simple to measure.  

Therefore in literature many researchers tried to 

extend the basic RGA definition, with several 

modifications.  
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A frequency-dependent RGA matrix can be 

introduced as (Grosdidier, 1986, Witcher, 1977): 

       1
( ) ( ) ( ( ) )T Ts P s P s P P         (2)

Unfortunately, there are some arguments against the 

use of this frequency-dependent RGA: an ideal 

mathematical model of the process is usually 

unknown and it is very sensitive to modelling errors. 

Furthermore a classical frequency-based analysis 

will require to consider and analyse  n(n+1) Bode 

plots, which is very time-consuming.   

A different approach (Karlsmose, 1994) combines 

the frequency-dependent RGA method with the 

singular value decomposition of the transfer matrix 

representing the process, for a quantitative analysis 

of the results in the frequency domain.  

A different method for measuring interaction is 

based on the Niederlinski index (Bristol, 1966, 

Niederlinski, 1971, Chiu, 1991), defined as:                     

             

n

ii
i 1

P (s)

N(s)
det P(s)

                         (3)

This index is unitary, if P(s) is diagonal or triangular; 

an application of (3) to example 3 is able to select the 

correct pairing. Niederlinski index cannot 

discriminate the correct pairing in the case of 

example 2.  

In practice it is possible to use more criteria 

sequentially, for selecting correct pairings; for 

example a first analysis can be performed using the 

classic RGA method, then the Niederlinski index can 

be applied, after discarding the negative pairings. If 

necessary it can be used a singular value 

decomposition. 

In industrial applications seldom process engineers 

cope with so complex and unusual problems, with a 

high number of input/output variables. Furthermore 

the knowledge of the process at a physical-chemical 

level suggests often in a natural way the selection of 

the pairing between controlled and manipulated 

variables. Nevertheless the problem of the pairing 

maintains a remarkable interest, both from a 

theoretical point of view and in practice.   

In the following section a different solution of this 

problem is addressed, suggesting a new index of 

dominance and the method for its practical 

application. 

3. ROmA INDEX 

In the design of a decentralized control system, 

standard proportional-integral-derivative (PID) 

controllers have remained the most popular ones in 

the industry since the 1950s, due to their simplicity 

and immediate way of operation. Relay feedbacks 

and auto-tuning techniques (Semino, 1998) are 

simple, powerful, and commonly used methods of 

finding system parameters useful for designing and 

tuning  PID controllers: their parameters can be 

easily set from the knowledge of the ultimate gains 

(kij's) and frequencies ( ij's) (Loh, 1993, Dhen, 

1994).  The auto-tuning method ATLS of Loh and 

Shen ranks the loops according to their speed and the 

fastest loop is to be tuned first (Toh, 2002).  

This procedure is in a good agreement (Leonhard, 

2001) with the practice of the experts of cascade-

control, especially in the field of high-performance 

electrical drives, where the synthesis proceeds 

closing first the inner faster loop and proceeding 

toward the slowest outer loops.  

If we consider the generic loop between the i-th 

output variable and the j-th input variable, it  will be 

described by the Pij(s) transfer function; if we 

consider the insertion of a standard Cij(s) controller, 

the open loop transfer function is Gij (s) = Pij (s) Cij

(s).

The ideal closed loop transfer function, keeping all 

other loops open is: 

Wij = Gij(s)/(1+ Gij(s))   (4)  

At the critical frequency ij, we obtain: 

Gij( ij) = -mij,

and

Wij( ij) = -mij/(1-mij).

In single-input single-output systems the critical 

frequency ij remains unchanged in the passage from 

open loop to closed loop; mij represents the relative 

gain margin, strictly less than one for guaranteeing 

the loop stability. Of course this property holds also 

for multi-input multi-output systems if the systems 

are decoupled. 

Consider now the introduction of a new interaction 

measure, taking into account dynamics. It relies on 

the classic definition RGA-like, where the measure is 

expressed as the ratio of a variable correlated to a 

single loop of the process under test with all other 

outputs uncontrolled, and the same variable when all 

other outputs are perfectly controlled. In this last 

situation the transfer function between the i-th output 

variable and the j-th input variable is modified, due 

to the interaction of all other control loops. For RGA 

case the variable under test is the steady-state gain, 

but in our proposal we consider the critical 

frequencies ij.

Define ijŴ (s)  as the new transfer function in case of 

perfect control and ij  the corresponding new 

critical frequency. For non interacting systems, ij =

ij so that, by mimicking the RGA procedure, the 

ratios ij/ ij
ˆ  are considered for creating a new 

matrix  F ={ ij/ ij
ˆ }, as a different dominance index. 

Dominance is guaranteed if a ratio  ij/ ij
ˆ  tends to 

one. The pairings can be easily verified introducing 
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the matrix ROmA  (Relative Omega Array), in a way 

analogous to the RGA definition:  

T
F F    (5) 

Note that the ROmA matrix retains all the properties 

of the RGA matrix. 

Example 1: Wood and Berry process (Ogunnaike, 

1994): 

3

1 7 3

12.8 18.9

16.7 1 21 1
( )

6.6 19.4

10.9 1 14.4 1

s s

s s

e e

s s
P s

e e

s s

      
Operating conditions: a relay and a fixed delay of 4 s 

are inserted in the control loop. The delay is inserted 

for maintaining physical causality in all following 

tests. In plain words all other loops are open, only the 

loop under test is closed for detecting its critical 

frequency. 

Fig. 1. A 2x2 system with a relay test in the first 

loop.

Results of the tests are: 

A)  closing the first loop y1-u1 the critical frequency 

is 11=0.3553 rad/s. 

B) closing the second loop y2-u2 the critical 

frequency is 22=0.2688 rad/s. 

Note that to induce a stable oscillation in the second 

loop the sign of the input u2 has to be inverted.  

This means that pairing is possible only by changing 

sign to u2 ; therefore the test procedure continues 

inverting the sign of this input. 

The system under test considering the added delay 

and the correct signs becomes: 

4

3

'
1 7

12.8 18.9

16.7 1 21 1
( )

6.6 19.4

10.9 1 14.4 1

s

s s

s s

e e

s s
sP e

e e

s s

C) closing the loop y1-u2 the critical frequency is   

12=0.192 rad/s 

D) closing the loop y2-u1 the critical frequency is  

21=0.2567 rad/s 

Consider now the oscillating conditions in the 

hypothesis of a perfect control. 

A1) the loop y1-u1 is closed in the hypothesis the an 

ideal controller in the other loop may guarantee y2 = 

0. Then: 

12 21
1 11 1

22

1 11 1

CL

OL

g g
y g u

g

y g u

   

and, after simple computations: 

7

11 1

(1 14.4 )
12.8 6.43

(16.7 1) (1 10.9 )(1 21 )

s s

CL

e s e
y u

s s s

Pre-multiplying by e-4s:

5 11

11 1

(1 14.4 )
12.8 6.43

(16.7 1) (1 10.9 )(1 21 )

s s

CL

e s e
y u

s s s

The critical frequency 11 0.4012  rad/s is detected. 

B1)  In a similar way  the loop 2-2 is closed: 

12 21
2 22 2

11

2 22 2

CL

OL

g g
y g u

g

y g u

3 9

22 2

(1 16.7 )
19.4 9.7453

(14.4 1) (1 10.9 )(1 21 )

s s

CL

e s e
y u

s s s

.

Pre-multiplying by e-4s:

7 13

22 2

(1 16.7 )
19.4 9.7453

(14.4 1) (1 10.9 )(1 21 )

s s

CL

e s e
y u

s s s

The critical frequency 22 0.3185  rad/s is 

measured. 

C1) For the loop 1-2: 
3 3

12 1

(1 10.9 )
18.9 37.6242

(21 1) (1 16.7 )(1 14.4 )

s s

CL

e s e
y u

s s s

Pre-multiplying by e-4s:

7

12 1

(1 10.9 )
18.9 37.6242

(21 1) (1 16.7 )(1 14.4 )

s s

CL

e s e
y u

s s s

The critical frequency  12 1.582  rad/s is measured. 

D1) For the loop 2-1: 
7

21 2

(1 21 )
6.6 13.1386

(10.9 1) (1 16.7 )(1 14.4 )

s s

CL

e s e
y u

s s s

Pre-multiplying by e-4s:
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11 5

21 2

(1 21 )
6.6 13.1386

(10.9 1) (1 16.7 )(1 14.4 )

s s

CL

e s e
y u

s s s

The critical frequency 21 0.4095  rad/s is 

measured.  

Therefore the matrix of the relative frequencies is:

0.3553 0.192

0.4012 1.582

0.2567 0.2688 

0.4095 0.3185

OL

CL

F

The relative omega array (ROmA) index is: 

1.1133 0.1133

0.1133 1.1133
T ROmAF F

Pairing suggested by the ROmA matrix is in a 

perfect agreement with the RGA rule: 

2.0094 1.0094

1.0094 2.0094
T RGAA A .

Example 2.  Consider now the process (Meeuse, 

2002):  

2 2

1

1 1
( )

1

1 1

s

s

e

s s
sP

e

s s

Introducing the new scaled input variables v1 = u2 , 

v2 = - u1 the new matrix under test is: 

2

'
2
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1 1

1

1 1

s

s

e

s s
P

e

s s

      

Adding a common delay in all loops, e.g., e-3s for 

guaranteeing the oscillations, the new matrix under 

test is: 

3

2

"
2

1

1 1

1

1 1

s

s

s

e

s s
eP

e

s s

    

Note that all operations introduced do not vary the 

results of the RGA or ROmA analysis, because of its 

invariance property under scaling. 

The matrix of relative critical frequencies is now: 

0.67 0.8566

2.101 0.5196

0.8566 0.5522

0.5196 1.471

OL

CL

F    

The ROmA index is: 

0.0461 1.0461

1.0461 0.0461

TF F = ROmA 

By comparing this matrix with the traditional RGA 

matrix: 

0.5 0.5

0.5 0.5
RGA    

It may be observed that the suggested pairings is the 

off-diagonal one: y1-u2, y2-u1. This result is in a good 

agreement with the results of Meeuse [8], in a critical 

case where steady-state RGA does not prefer any 

pairing. 

Example 3. Consider the process studied in (Seider, 

1999): 

5

3
5

2.5 1

(1 15 )(1 2 ) 1 4
( )

1 4

1 3 1 20

s

s

e

s s s
P s

e

s s

                          

In this case the common delay chosen is 6 s. 

The matrix of relative critical frequencies is now: 

0.1573 0.3786

1.823 0.09454

0.3992 0.174 

0.4133 3.143

OL

CL

F    

Matrix ROmA is: 

0.0012 1.0012

1.0012 0.0012

TF F

An off-diagonal pairing is suggested, opposite to the 

wrong pairing given by the steady-state RGA: 

0.9091 0.0909

0.0909 0.9091
RGA .

IFAC - 437 - ADCHEM 2006



     

4. SENSITIVITY 

    In the previous examples an additional delay has 

been introduced in order to assure the oscillating 

conditions in presence of a relay. Indeed for a given 

matrix of transfer function it is possible that no 

oscillation occurs. In practice if the control is 

networked or is remote we must always take into 

account some delay. In the previous examples the 

amount of delay introduced is somewhat arbitrary. 

Of course if the oscillations are obtained on the field 

by suitable relay testing, we must consider that 

greater is the delay more expensive and time 

consuming are the tests; by reducing the delay there 

may occur a limiting value leading to a non-

oscillating condition. 

  It is interesting to evaluate the sensitivity of the 

proposed procedure to the amount of delay 

introduced.  

By computing for different delays the ROmA array 

for Wood and Berry process we get the following 

results, where  is the element 1-1 of the ROmA 

matrix: 

Table 1 .  Element 1-1 of the ROmA matrix varying 

the introduced delay .

 (s)    4          5          6    7         8       50       100 

      1.113   1.31   1.398  1.496   1.580  8.656 15.545 

  The  results displayed in the Table show that the 

information given by ROmA are quite insensitive to 

the delay; of course for very large delay the pairing 

suggested is still correct but the larger value of  

denote a possible greater difficulty in control.                                       

4. CONCLUSIONS 

In this work a new approach for the selection of the 

pairings between input and output variables in 

decentralized MIMO control schemes. The ROmA 

index is based on the ratio between the critical 

frequencies of the loops closed with a relay, keeping 

all other loops open and the critical frequencies of 

the loops closed with a relay, in case of a perfect 

control on the other loops. It maintains all properties 

of static RGA index, but it considers dynamics of the 

process under test with simple autotuning tests. All 

critical frequencies can be measured from autotuning 

tests, they may be easily performed on line and the 

knowledge of the model of the process in not 

necessary.  Examples of applications were selected to 

illustrate the effectiveness of the new indicator in 

different critical cases, also in presence of different 

delays; other examples of applications to MIMO 

processes have always shown the capability of the 

new approach in choosing the correct pairing.   
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