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A study of grade transitions as encountered in polymerization reactors is presented. The 

results underscore the need for global optimization algorithms to fully realize the benefits 

of grade transition that are necessarily non-convex.  For comparison purposes we use a 

non-gradient, parallel search, stochastic method, namely differential evolution (DE).  Our 

simulations indicate that while the DE solution is highly dependent on the algorithm 

parameters and mutation strategy, the SQP solution depends on the initial guess value and 

consistently provides faster convergence.  Finally, we also explore the issue of evaluating 

the optimal grade changeover time.  All of the above issues have been demonstrated for 

the grade transition of polymethyl methacrylate (PMMA) in a non-isothermal CSTR.  
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1. INTRODUCTION 

In the contemporary synthetic polymer-

manufacturing environment, flexible operation holds 

the key towards processing of diverse product orders 

and maintaining profitable operation in the face of 

fluctuating market conditions.  This has led to a shift 

from single polymer grade production in large 

continuous reactors to high quality, low volume, 

multiple grade manufacturing.  Scheduling of various 

grades in continuous reactors necessitates grade 

transition, typically characterized by significant 

perturbations in the process operating conditions.  

Despite this, the polymer industry routinely performs 

grade transitions.  In fact, as many as 30 to 40 

different grades may be produced in a polyolefin 

plant (Chatzidoukas, et al., 2003). The ultimate 

incentive for such process upsets lies in transition 

from one grade to another in a safe and optimal 

fashion. 

Complex kinetics as well as energy effects usually 

give rise to complex dynamic behavior. Such 

complex dynamics typically make grade transition a 

non-convex optimization problem having multiple 

optima.  

Recipes of manipulated variables to achieve optimal 

grade transition are typically calculated using a 

dynamic model in conjunction with optimization.  

The optimization reflects minimization of off-

specification material production, which is an 

essential ingredient of any profitability analysis.  In 

literature, the dynamic optimization problem is 

converted to a standard NonLinear Program (NLP) 

using Control Vector Parameterisation (CVP) and 

then solved using various gradient-based methods, 

for which efficient solvers exist. (McAuley and 

MacGregor, 1992; Takeda and Ray, 1999; Seki, et
al., 2001).  In each of these works, the resulting 

nonlinear program was solved using CVP followed 

by a nonlinear, gradient-based optimization method 

such as Sequential Quadratic Programming (SQP). 

Moreover, the gradients of objective function were 

computed using finite difference. Wang et al (2000) 

used sensitivity of the ODEs to determine gradient 

information.  

It is likely that the nonlinear behavior, which is 

further accentuated during grade transition often 

leads to a non-convex optimization problems 

characterized by multiple optima. Conventional 

gradient-based nonlinear optimization methods such 

as SQP may at best lead to only a local optimum. In 
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such a case, the benefits of grade transition may not 

be fully realized. It is therefore important to analyze 

the structure of the nonlinear program encountered in 

grade transition control and quantify the impact of 

the optimization technique on the quality of the 

solution.  To study this aspect, we compare the SQP 

optimization technique with a stochastic, direct 

parallel search method, namely Differential 

Evolution (DE), which is widely recognized for its 

ability to provide global solutions to optimization 

problems.   

In this work, we use a model representing the non-

isothermal polymerisation system for production of 

polymethyl methacrylate (PMMA).  The model has 

been presented in Section 2.  Our results in Section 3 

present two case studies.  Case Study I investigates 

presence of multiple optima in the PMMA grade 

transition problem.  Using a fixed grade changeover 

time, we find that the gradient-based methods such 

as SQP are likely to yield only a locally optimal 

solution, whereas the DE method typically provides a 

superior optimal solution in terms of the objective 

function value.  In Case Study II, we explore the 

benefits of optimal grade changeover time relative to 

fixed transition times used in Case Study I.  Finally, 

the work is concluded in Section 4.  

GRADE TRANSITION IN PMMA 

PRODUCTION 

As a case study, we choose grade transitions 

encountered in a nonisothermal free-radical 

polymerization of methyl methacrylate (MMA) using 

azobisisobutyronitrile (AIBN) as initiator and 

toluene as solvent (Daoutidis et al., 1990).  The same 

non-isothermal version of this model has been 

adapted as a test bed in our study. The model 

equations consist of molar balances for the monomer 

and initiator, reactor temperature, jacket temperature, 

and the zeroth and first moment of dead chains and 

have been reproduced below,  
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where Cm and CI represent the molar concentrations 

of monomer and initiator, respectively.  D0, and D1

represent the zeroth and first moments of the 

molecular weight distribution of the dead chains, 

respectively, and T, and Tj represent reactor and 

jacket temperatures, respectively. The process 

parameters values have been taken from Daoutidis et
al. (1990). We consider a single grade change in the 

number average molecular weight MWn of PMMA 

from 25,000 to 35,000 by manipulating initiator (FI)

and coolant (Fcw) flow rates.  The steady-state 

operating conditions for the two grades were 

evaluated using the model in Equation 1 and are 

listed in Table 1.  The SQP algorithm was 

implemented using the fmincon function in 

MATLAB’s optimization toolbox, whereas the DE 

algorithm was coded in MATLAB.  

Table 1. Steady state operating conditions for  the 

initial and final grades

Grade indices Initial Grade  Final Grade  

Molecular 

weight 

25000 35000 

Fcw, m
3
/hr 3.2636 9.2944 x 10-1

FI, m
3/hr 1.6883 x 10-2 6.596 x 10-3

3. RESULTS AND DISCUSSIONS 

3.1. CASE I.  Grade transition in PMMA shows 

multiple optima 

We consider a grade transition in PMMA product 

from a grade characterized by molecular weight of 

25,000 to a new grade with molecular weight of 

35,000.  The quantity of off-specification material 

produced and the grade changeover time may be 

represented by the following objective function,     
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where 
P

   denotes the deviations form the target, 
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MWsp, suitably weightedby P. Minimizing the 

objective function (Equation 2a) along with the 

process model (Equation 1) and following constraints 

(Equations 2b-2f) represent the optimization problem 
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where  represents the jijt th switching interval of 

the ith manipulated variable and na represents the 

number of times that the coolant flow rate (i=1) and 

the initiator flow rate  (i=2) are switched during the 

transition horizon. The objective function penalizes 

squared deviations from the molecular weight of the 

new grade over the transition horizon, tf to.

Equation 2b represents output constraints, i.e. the 

transients on the molecular weight, whereas 

Equations 2c,d represent constraints on the inputs. 

Equation 2e ensures that the switching interval is of 

an adequate size.  Since in this case study, the grade 

changeover time is known a priori, we used the 

equality constraint Equation 2f to reduce one degree 

of freedom.  

Equation 2 may be solved with a standard NLP 

solver through use of CVP, where manipulated 

variables are parameterised and approximated by a 

series of trial functions .  Thus, for the ith

manipulated variable,  
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u
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where tij is the jth switching time of the ith

manipulated variable, na as explained above is the 

number of switching intervals, and aij represents the 

amplitude of the ith manipulated variable at the 

switching time tij.  We make use of a ramp trial 

function as shown in Fig. 1 since a ramp can 

approximate the optimal profile more closely relative 

to a zero order trial function. Gradient-based SQP 

further requires the gradient of the objective function 

and constraints. In this work we used sensitivity of 

the ODEs to evaluate the gradient of the objective 

function as follows (Leis and Kramer, 1988), 

f f
S S

x p
          (4a) 

where the (i,j) component of the sensitivity matrix is 

defined as follow, 
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 Where n and m represent the number of states, x,

and the decision variables, p, respectively.   

In the current section, the transition horizon is fixed 

at 4 hours. The constraint in Equation 2f ensures that 

the sum of the switching intervals equals the 

transition horizon. The constraint values are 

summarized in Table 2. All simulations presented in 

the current Case study use three optimized switching 

intervals.  Thus the decision variables include two 

amplitude and two switching times for each 

manipulated variable, the coolant flowrate and 

initiator, thereby making a total of eight variables.  

Table 2. Bound constraints for variables associated 

with the NLP of Equation 7.

Minimum Maximum 

MW 24,800 35,200 

Fcw, m3/h 0.3 6

FI,  m
3/h 0.0007 0.1 

t, h 0.016667 3.96 

tf, h 0.0501 4

Fig. 1. Ramp trial function for parameterization of 

the manipulated variables 

It is well known that gradient-based optimization 

methods such as SQP fail to provide the global 

optimum if the optimization problem has multiple 

optima.  Dependence of the optimal solution on the 

choice of the initial guess value in a gradient-based 

algorithm such as SQP constitutes an empirical 

verification of the presence of multiple optima.  

Table 3 documents the values of the objective 

function J1 for 10 different optimization runs using 

SQP each with a distinct initial guess of the decision 

variables.  Simulation No. 5, 6, 7, and 8 yielded 

solutions that represent identical points in the 

decision space. The remaining simulations resulted in 

distinct solutions. Thus, the results indicate the 

presence of several optima.  The tolerances used by 

the integrator and the optimizer in obtaining these 

solutions have been reported in Table 4. We have 

verified by varying the tolerance values that the 

difference between any two different optima is not 

due to a particular tolerance value used by the SQP 

solver. We also observed that use of perturbation 

methods to evaluate the gradient adversely affected 

the quality of the optimal solution in each of the 10 

cases. For example, in simulation No. 10 in Table 3, 

use of finite difference to calculate gradients resulted 

in a minimum objective function value of 2.2533 x 

107 as opposed to 1.1457 x 107 obtained when using 

sensitivity information (see Equation 4).  

Furthermore, solutions based on finite differences for 
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calculation of gradients were strongly dependent on 

the particular set of tolerance values used by the 

optimizer.  The number of function evaluations 

required during optimization for each of the 10 

simulations is also reported in Table 3.  It has been 

widely claimed that the DE algorithm is a promising 

candidate for obtaining the global optimum in such 

cases.  However, the quality of the solution and the 

computational expense is determined by the choice 

of its parameters such as the population size, the 

maximum number of generations as well as the 

mutation and crossover factors.  To compare the 

relative performances of DE and SQP for grade 

transition from a steady molecular weight of 25,000 

to 35,000, 10 optimization runs were performed 

using DE and the results documented in Table 3.  In 

case of all DE based solutions, we utilized a 

population size of 40 members and the maximum 

number of generations was set to 200.  Eight out of 

the 10 runs using DE were distinct from each other 

based on the choice of the members of the initial 

population.  The mutation and crossover factors were 

decided by trial and error and were selected as 0.5 

and 0.75, respectively.  However, a subsequent study 

of the sensitivity of the optimal solutions using DE to 

the algorithm parameters shows that the value of 

0.75 for both the factors is optimal.  As noted from 

Table 3 we arrived at several DE solutions at the end 

of 200 generations. As can be seen from Table 3, the 

best solution using either DE or SQP corresponds to 

an objective function value of 1.0698 x 107.  The 

subsequent six best solutions (simulation No. 2-7) 

obtained using the DE algorithm were very close to 

this best solution.  The top seven SQP solutions 

showed a larger spread from this best solution.  

However, the last three simulation results using DE 

were worse than the worst SQP solution. This is due 

to the following mutation strategy used in this work  
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Since the mutated members represented 

perturbations around the best member of a given 

generation (based on elitism), it is likely that the 

members of the new generation were trapped in the 

vicinity of a local minimum. To verify this notion, 

we used a different mutation strategy for simulation 

No 10 as follows, 
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Since vectors  represent randomly selected and 

distinct members of generation g, the mutated 

members using this strategy enhance the diversity of 

the new generation relative to the mutation strategy 

used in Equation 5 where the mutated members 

represented perturbations around the best member of 

generation g.  This mutation strategy was found to 

give substantial improvement to the solution when 

used alone; however when further accompanied with 

an increase in the number of generations from 200 to 

300, the results for simulation No. 10 yielded a 

minimum objective function value of 1.10253 x 10

i

g

r
w

7.

We have used the number of objective function 

evaluations needed by the two methods as a measure 

of the computational expense.  Although the best 

individual solutions yielded by SQP and DE have 

identical objective function values of =1.0698 x 

10

*

1J
7 and represent an identical point in the decision 

space, the SQP algorithm is more computationally 

efficient by an average factor of 4.9.  The number of 

function evaluations needed to obtain the best 

individual solution of SQP and DE were 1669 and 

6331, respectively.  All the 10 distinct solutions 

resulting from the different initial conditions used in 

SQP satisfy the KKT conditions for optimality and 

therefore confirm that grade transition in PMMA 

production exhibit multiple local optimal solutions.  

Figs. 2 and 3 show the transition profile of the 

molecular weight and the manipulated variables, 

respectively, using the best DE (solid line) and the 

best SQP (dash-dotted line) solutions.  Since the two 

strategies yielded identical solutions, the lines are 

indistinguishable.  We note that although we used a 

fixed changeover time of four hours, the integration 

necessary in computation of the objective function in 

Equation 9a is performed over six hours.  The extra 

two hours enables penalizing deviation of the steady 

state output from the new grade properties.  This 

feature of integration has been maintained in all 

subsequent results.  The molecular weight profiles 

obtained using the best DE and best SQP solutions 

show identical rise times of 0.28 hr, and settle to 

within 100  Kg/Kmol limit of the steady state 

value in 1.37 hr.  Fig. 2 also shows that the transition 

profile achieved by changing the two flow rates to 

their respective new grade steady state values in a 

step-like manner does not provide the optimal 

transition trajectory (see dotted line).  Fig. 3 shows 

that the input recipes generated by the two methods 

make aggressive moves at the start of transition.  

However the lower bound on the size of switching 

intervals ensures that at least one minute elapses 

between two successive moves (see Table 2 for 

constraints values). 

3.2. Grade changeover time as a decision variable 

All simulations presented until now optimized 

switching time intervals but used a fixed time 

horizon of 4 hr. However, it is interesting to note that 

the defacto changeover times were less than the time 

horizon of 4 hr.  For example, the best DE solution in 

Case Study I shows that the grade transition was 

accomplished in only 1.37 hr. (see Fig 2).  One could 

also explicitly optimize the transition horizon by 

relaxing the equality constraint equation 2f and 

Table 3. Summary of the objective function values and 

CPU times needed to perform 10 simulation runs for each 

of the two algorithms, namely SQP and DE

IFAC - 268 - ADCHEM 2006



Fig. 2. CASE I: Optimal transition trajectory of molecular 

weight of PMMA, using DE (solid line) and SQP 

(dash dotted line) algorithms for solution of Equation 

2. The dotted line represents the transition if the 

manipulated inputs corresponding to the new grade 

were implemented in a single step (non-optimal).A 

fixed time horizon of 4 hr is assumed. P = 1. 

Fig. 3. CASE I. Optimal transition trajectory of 

manipulated inputs, namely initiator and coolant flow 

rate, using DE (solid line) and SQP (dash dotted line) 

algorithms.   

adding tf as an extra degree of freedom.  The current 

case is similar to Case Study I in all respects except 

that in Equation 2f tf is considered as a decision 

variable.  Thus, we treat the na-1 switching intervals 

and tf as the time related decision variables.  As with 

the Case Study I, ten optimization runs starting with 

different initial guesses for SQP and 10 different 

initial populations for DE were performed.  Figs. 4 

and 5 show the molecular weight transition and the 

manipulated variable profiles, respectively, and 

represent the best of the ten runs for DE (solid line) 

and SQP (dashed line). The optimum transition 

horizons, tf are 0.37 hr and 0.28 hr for DE and SQP, 

respectively.  Although the grade changeover time is 

marginally higher when using DE, the rise time is 

same (0.23 hr).  The settling times using the two 

methods are almost same (0.71 hr).  The DE and SQP 

methods converge to the respective objective 

function values as =
*

1J 1.0189 x 107 and 

=1.0419x 10
*

1J 7.  The lower values of objective 

functions obtained here relative to Case Study I 

( =1.0698 x 10
*

1J 7 for DE and SQP), indicate 

improved performance with both DE and SQP when 

the transition horizon is also optimized.  Another 

unobvious advantage of optimization of transition 

horizon is observed upon comparing the manipulated 

variable profiles of Case Study I (Fig. 3) and the 

current case (Fig. 5).  Optimizing the transition 

horizon results in achieving the new steady state for 

the manipulated variables faster (tf =0.37 hr for DE 

and 0.28 hr for SQP) than for the case when the 

transition horizon is assumed fixed at 4 hr.  This 

behavior would translate into benefits for grade 

transition and reduced transient operation and 

therefore tighter control on the product quality.  

Convergence of the SQP solution to a higher 

objective function value relative to DE demonstrates 

susceptibility of SQP to local minima, as also 

observed in Case Study I.  In the current case study, 

both the standard deviation and average value of 

objective function for DE (Jstd=2.44 x 105, Javg

=1.0446 x 107) were found to be lower than those for 

SQP (Jstd = 8.8073 x 105, Javg =1.13399 x 107).  It is 

interesting to note that relaxation of the constraint of 

Equation 2f resulted in fewer number of function 

evaluations needed by SQP in the current Case Study 

relative to Case Study I. The average number of 

function evaluations was 569 as opposed to 1382 in

Case Study I. 

.

Fig. 4. CASE II.  Optimal transition trajectory of 

molecular weight of PMMA, with DE (solid 

line) and SQP (dash dotted line) algorithms 

which optimized the transition times in addition 

SQP: Gradients using 

sensitivity equations 

DE: Gradient free Sim

No

J* x 10-7 No of 

function 

evaluations 

J* x 10-7, No of 

function 

evaluat-

ions

1 1.0698 1669 1.0698 6331

2 1.0818 1615 1.0708 6841

3 1.0991 1432 1.0945 7066

4 1.1011 2028 1.1016 6040

5 1.1313 586 1.1031 5804

6 1.1313 816 1.1045 6895

7 1.1313 881 1.1045 7109

8 1.1313 1303 1.1917 7597

9 1.1347 2056 1.2268 7373

10 1.1457 1437 1.2268 7373
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to the manipulated inputs and switching 

intervals.  P = 1. 

Fig. 5. CASE II.  Optimal transition trajectory of 

manipulated inputs namely initiator and coolant 

flow rates, with DE (solid line) and SQP (dash 

dotted line) algorithms. 

4. CONCLUSIONS 

Optimal grade transition has emerged as a key 

strategy in the polymer industry, notably in gas-

phase polymerization of olefins, to enable flexible 

operation. Our studies reveal that grade transition 

encountered during PMMA production results in a 

non-convex optimization problem having multiple 

optima.  Thus, widely used solvers such as SQP may 

provide an inferior transition policy.  Although DE 

has attributes consistent with global optimization, the 

DE solution is highly dependent on the mutation 

strategy as well as its parameters. Also, we 

demonstrate that explicit optimization of transition 

time yields solutions where the transition policies 

quickly converge to the new grade steady state 

values in addition to reducing the transition horizon.

Table 4: Tolerances used by the ODE solver (ode15s

of MATLAB  6.5) and the optimizer (fmincon in 

MATLAB  6.5) in obtaining the SQP based 

solutions reported in Table 3.

Absolute

error 

1 x 10-6Integration 

Tolerances

Relative

error  

1 x 10-10

Decision

Variable 

1 x 10-10

Constraint 

violation

1 x 10-9

Termination 

Tolerances 

Used by 

Optimizer

Objective

Function 

1 x 10-8
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