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∗ UMR Analyse des Systèmes et Biométrie, INRA, 2 place
Pierre Viala, 31060 Montpellier Cedex 1, France

∗∗ Laboratoire de Bitechnologie de l’Environnement, INRA,
Avenue des étangs, 11100 Narbonne, France

Abstract: In a recent work, a new regulator of the output of a continuous auto-
catalytic bioprocess, by means of recirculation loop, has been presented. It was
shown that controlling the recirculation flow rate allows the stabilization of the
output in presence of an uncontrolled input flow rate. In the present paper, we
extend this result when the input substrate concentration is unknown. For this
purpose, we propose the design of an observer of the input concentration which,
coupled with a slightly different control law reminiscent of the one used in the case
where the input concentration is known, guarantees the regulation of the output.
Copyright c©2006 IFAC.
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1. INTRODUCTION

1.1 Context

In a recent work (cf. (Harmand et al., 2005)), a
new control law for regulating the output of a
continuous auto-catalytic process was proposed.
While most of the available studies of the liter-
ature use the input flow rate Q as the control
variable, it was proposed to control the process
through a recirculation loop. Among others, ad-
vantages are that no storage tank is needed any-
more at the entrance of the process and that
the flow rate has not to be known perfectly. The
particular process configuration considered to do
so is described in Fig. 1 where α ∈ [0, 1] and β ≥ 0
are the manipulated variables.

1 This work was supported by the french INRA-INRIA
project “MERE”.
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Fig. 1. General view of the bioprocess configura-
tion under interest.

1.2 Modeling

The function D(t) = Q(t)/V be given, the model
of this system described in Figure 1 can be written
as it follows:

IFAC - 195 - ADCHEM 2006



Ẋ = µ(S)X + uD(t) (Xin − X)

Ṡ = −µ(S)
Y

X + uD(t) (Sin − S)
(1)

where S and X stand for the biomass and the
substrate concentrations (in mg/l) in the reactor
and u = α+β

1+β ∈ [0, 1] is the control variable. µ(S)
is the reaction rate (in t−1), Y the conversion yield
(in mg of substrate consumed by mg of biomass
formed) and V the volume of the reactor (in l).
All these quantities are assumed to be known.

Sin and Xin are the unknown input substrate and
biomass concentrations (in mg/l), possibly time
varying but bounded:

(Xin(t), Sin(t)) ∈ [Xin,Xin] × [Sin, Sin], ∀t ≥ 0,

where Xin ≥ Xin ≥ 0 and Sin ≥ Sin > 0 are
known numbers.

The control problem investigated in the paper is
the regulation of the output

Sout = uS + (1 − u)Sin (2)

even though Sin is unknown. We consider a time-
varying reference trajectory to be tracked, that
we denote S�

out(·), and we introduce the following
hypothesis.

Hypothesis H0. There exist numbers S
�

out ≥
S�

out > 0 such that S�
out(t) ∈ [S�

out, S
�

out] for all
t ≥ 0, with

S
�

out < Sin .

1.3 Regulation of Sout when Sin is known

In this section, we recall the result we obtained
when Sin is perfectly known (Harmand et al.,
2005). We introduce usual assumptions on the
growth function µ(·).

Hypothesis H1. The function µ(·) is a non-negative
Lipschitz continuous function with µ(0) = 0 and
µ(S�

out) > 0, that fulfills

µ(S) ≥ µ(S�
out), ∀S ∈ [S�

out, Sin] (3)

Contrary to usual approaches for which the input
flow rate D is a manipulated variable, D is here
imposed but we assume that it is bounded, with
known bounds.

Hypothesis H2. There exist numbers D ≤ D and
T ≥ 0 such that D(t) ∈ [D, D] for all t ≥ T , with
D > 0 and

D < µ(S�
out)

Xin + Y (Sin − S�
out)

Y (Sin − S�
out)

. (4)

Then we have the following result (cf. (Harmand
et al., 2005)):

Proposition 1. Assume H0-H1-H2 are satisfied by
the system (1). Then for any initial condition such
that X(0) > 0 and 0 ≤ S(0) < Sin, the feedback

u�(t, S, Sin) =
Sin − S�

out(t)
Sin − min(S�

out(t), S)
(5)

drives the output Sout(·), defined in (2), at S�
out(·)

in finite time.

On the one hand, it is supposed here that the
substrate concentration S inside the reactor: it
is the case in many biotechnological industries,
in particular in those where the input character-
istics are not well known (biological Wastewater
Treatment Plants for instance). Here, we consider
the problem of controlling such bioprocesses. On
the other hand, the measurement of X is also
necessary: as it will be seen, it is rather a tech-
nical requirement and it can be argued that this
measurement can be difficult to obtain in practice
(it is part of the perspectives to develop a version
of the proposed controller that will not need the
measurement of X). Finally, when dealing with
these biosystems, Sin is usually considered as an
unknown input. While the above results were valid
when Sin is measured, we show in the remaining
part of the paper how to construct an observer
for Sin under some mild assumptions (Section
2). Then we show how to couple this estimation
with the control law (5) to achieve the regulation
of the output (Section 3). Simulation results are
presented and discussed in Section 4 while conclu-
sions and perspectives are drawn in Section 5.

2. INPUT CONCENTRATION OBSERVER

In most of known approaches, the regulation of
the substrate concentration at the output of a
bioprocess requires the knowledge of the substrate
concentration at the input of the process (in a
sense, most of the available nonlinear approaches,
as for example the well known adaptive controller
by (Bastin and Dochain, 1990), should be con-
sidered as feedforward-feedback controllers rather
than as feedback controllers). However, a number
of practical and economical reasons makes the
measurement of the input substrate concentration
a difficult task. Thus, for control as well as for
monitoring and diagnosis purposes, an accurate
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estimation of this exogenous input is appreciated.
To our best knowledge, only very few approaches
have been specifically proposed for estimating
unknown input concentrations of biosystems (cf.
(Aubrun et al., 2001), (Sperandio and Quein-
nec, 2004), (Theilliol et al., 2002) and (Theilliol
et al., 2003)).

We propose here a new observer, which is of
interest by itself, independently of our control
objective:

˙̂
S = −µ(S)

Y
X + uD(t)(Ŝin − S)

+uD(t)(θ + θ2)(S − Ŝ)
˙̂
Sin = uD(t)θ3(S − Ŝ)

(6)

where θ > 1 is a parameter to be tuned. The only
assumption on the unknown function Sin(·) we
require is to have a bounded first derivative.

Hypothesis H3. Sin(·) is differentiable and there
exists M < +∞ such that |Ṡin(t)| ≤ M , for any
time t.

Proposition 2. Under Hypothesis H3, for any con-
trol law u(·) such that inft≥0 u(t)D(t) = γ > 0
and any non-negative initial conditions of (1)–(6)
such that Ŝ(0) = S(0) and Ŝin(0) ∈ [Sin, Sin],
then the estimation of Sin provided by (6) fulfills
the following inequality, for any t ≥ 0

|Ŝin(t) − Sin(t)| ≤ 2M

θ − 1
+

θ

θ − 1
(Sin − Sin)e−γθt.

(7)

Remark 3. When the unknown Sin is constant
(M = 0), the convergence (7) of the observer is
exact. In face of unknown variations of Sin(·),
the convergence (7) is practical (by practical, it
is meant that, tuning parameters, one can ensure
that the error variables enter an arbitrary small
neighborhood of the origin).

Proof. Define the error variables eS = Ŝ −
S and eSin = Ŝin − Sin, whose dynamics can
straightforwardly be written as follows

d

dt

[
eS

eSin

]
= u(t)D(t)A

[
eS

eSin

]
−

[
0

Ṡin

]
with

A =
[−θ − θ2 1

−θ3 0

]
One can easily check that the eigenvalues of A are
−θ and −θ2. Remark also that due the choice of
initial conditions of (6), one has

eS(0) = 0, |eSin
(0)| ≤ Sin − Sin (8)

Consider the time parameterization

τ :=

t∫
0

u(s)D(s)ds ≥ γt, t ≥ 0 (9)

and define the function

ψ(τ) =
dSin

dt (τ)
u(τ)D(τ)

∈
[
−M

γ
,
M

γ

]
. (10)

This leads to write the dynamics

d

dτ

[
eS

eSin

]
= A

[
eS

eSin

]
−

[
0

ψ(τ)

]
(11)

Consider the change of variables

z1 = θeS − eSin , z2 = −θ2eS + eSin . (12)

One can readily check that

dz1

dτ
= −θz1 + ψ(τ),

dz2

dτ
= −θ2z2 − ψ(τ),

which implies the following inequalities, using (10)

|zi(τ)| ≤ M

γθi
+ |zi(0)|e−θiτ (i = 1, 2) (13)

From equations (12) and (13), one obtains easily
the inequality

|eSin(τ)| ≤
(θ + θ−1)M

γ + θ2(|z1(0)| + |z2(0)|)e−θτ

θ2 − θ

Finally, from (8), one has |zi(0)| ≤ Sin − Sin

(i = 1, 2), and the announced estimation of the
error is guaranteed

|Ŝin(t) − Sin(t)| ≤ 2M

θ − 1
+

θ

θ − 1
(Sin − Sin)e−γθt.

3. COUPLING THE OBSERVER WITH THE
FEEDBACK CONTROL LAW

Let us first define the saturation function sat[S
in,Sin]

as follows

sat[Sin,Sin](σ) = max(Sin, min(Sin, σ)).

Then, coupling the feedback law (5) with the
observer (6) leads to the following result.

Proposition 4. Under Hypotheses H0-H1-H2-H3,
for any initial condition X(0) > 0, Ŝ(0) = S(0) ∈
[0, Sin[ and Ŝin(0) ∈ [Sin, Sin], the dynamic
output feedback law

ũ∗(t, S, Ŝin) := u∗(t, S, sat[Sin,Sin](Ŝin)) (14)
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where u∗(·) is defined in (5) and Ŝin is given by
(6) possesses the following property

lim sup
t≥0

|Sout(t) − S∗
out(t)| ≤ Ω

with

Ω =
2M

θ − 1

(
1 − Sin − S

∗
out

Sin

)
.

Remark 5. Notice that ũ∗(·) is well defined be-
cause of the saturation and Hypothesis H0.

Proof. From Hypothesis H1, it is immediate to
check that the domain D = �∗

+ × [0, Sin[ is
invariant under the dynamics (1), for any non-
negative control law u(·). Fix an initial condition
(X(0), S(0)) ∈ D and denote (X(·), S(·)) the
solution of system (1) with the dynamic output
feedback (14). Denote also

ũ(t) = ũ∗(t, S(t), Ŝin(t))

Observe that from assumptions H0 and H2 one
has the inequality

ũ(t) ≥ u = (1 − S
∗
out/Sin) > 0.

Consequently, there exists T ′ > 0 such that
S(t) ≤ S∗

out(t) for any t ≥ T ′ (see Lemma 1 in
Appendix). Posit S̃in(t) = sat[S

in
,Sin](Ŝin(t)) and

ẽSin(t) = S̃in(t) − Sin(t) and it follows, for any
t ≥ T ′,

Sout(t) =
S̃in(t) − S∗

out(t)

S̃in(t) − S(t)
(S(t) − Sin(t))

+Sin(t)
= S∗

out(t)

−ẽSin(t)

(
1 − S̃in(t) − S∗

out(t)

S̃in(t) − S(t)

)
︸ ︷︷ ︸

Γ(t)

where 0 ≤ Γ(t) ≤ Γ = 1− (Sin −S
∗
out)/Sin. Then

|Sout(t) − S∗
out(t)| ≤ |Ŝin(t) − Sin(t)|Γ, (15)

for all t ≥ T ′. Finally, notice that u(t)D(t) ≥
γ = u D > 0, for t ≥ T , and one conclude from
Proposition 2:

|Sout(t) − S∗
out(t)| →

[
0,

2M

θ − 1
Γ
]

as t → +∞.

4. SIMULATIONS

Numerical simulations were performed using the
control law presented here above, with a Monod
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Fig. 2. Sin is an unknown constant: Sin and
estimations with different values of θ.
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Fig. 3. Sin is an unknown constant: Sout with
different estimations of Sin.

growth function: µ(S) = µmaxS/(KS + S). Vari-
ables S and X were measured online. The follow-
ing model parameters were used: µmax = 0.045,
KS = 10, Y = 0.05, V = 40, D is the sum of
a constant (D̄ = 0.02 1/h) and of three other
signals:

i) a sinusoid of magnitude 0.0025 and of fre-
quency 0.02,

ii) a sinusoid signal of magnitude 0.001 and of
frequency 0.0002,

iii) a square signal of magnitude 0.0015 and of
frequency 0.015.

Thus, at t = 100, a set point step was simulated.
The input substrate concentration is measured
and is built as follows. It consists of the sum of:

i) a constant equal to 475 mg/l
ii) a sinusoid of magnitude 25 and of frequency

0.01
iii) a sinusoid of magnitude 15 and of frequency

0.005

The objective is to regulate the output substrate
concentration Sout between S�

out = 30 mg/l and
50 mg/l. First, it was verified that condition (4)
holds given the extreme expected values of D, Sin

and S�
out. The simulations were performed over
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Fig. 4. Sin is time-varying: Sin and estimations
with different values of θ.
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Fig. 5. Sin is time-varying: Sout with different
estimations of Sin.
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Fig. 6. S and Ŝ in presence of a measurement noise
(Sin is time-varying).

a period of 300 hours. The results are shown in
Figures 2 to 5.

Obviously, simulation results are in accordance
with theoretical developments. It should be no-
ticed that the regulation exhibits good perfor-
mance whatever the case investigated: Sin con-
stant (in this case, the convergence of the observer
is exact) and Sin variable (in which case the con-
vergence is practical).
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Fig. 7. Sout in presence of measurement noise on
S (Sin is time-varying).

In presence of a 10 % measurement noise on S
(cf. Figure 6), it can be seen in Figure 7 that
the performance of the controller remains correct,
even when Sin is time-varying.

5. CONCLUSIONS AND PERSPECTIVES

This paper proposed a new observer of an un-
known input substrate concentration. It was
shown that it exhibits an exact convergence prop-
erty if Sin is constant while it is practical when
Sin is time varying a bounded first derivative. The
coupling of this estimator to a control law first
proposed in (Harmand et al., 2005), allows us to
track any bounded reference trajectory. However,
it should be stressed that, while in its original
form only S and Sin were necessary, in the present
paper, the measurement of S and X are required.
Thus, extension of the present approach to cases
where X is unmeasured is under investigation.

6. APPENDIX

Lemma 6. Under Hypotheses H0-H1-H2, for any
initial condition (X(0), S(0)) ∈ �∗

+ × [0, Sin[ and
any control law such that u = inft≥0 u(t) > 0, S
stays below S∗

out after a finite time.

Proof. From Hypothesis H1, we immediately de-
duce that the domain �∗

+ × [0, Sin[ is invariant by
the dynamics (1), for any non-negative control law
u(·). Make the change of variable (S,Z) = (S, X+
Y S):

Ṡ = F (t, S, Z) = u(t)D(t)(Sin(t) − S)

−µ(S)
Y

(Z − Y S)

Ż = −u(t)D(t)(Z − Zin(t))

where Zin = Xin + Y Sin. Remark that, for
any t ≥ 0, Zin(t) ∈ [Zin, Zin], where Zin =
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Xin + Y Sin and Zin = Xin + Y Sin. Thus, from
u(t)D(t) ≥ u D > 0, we infer that Z(t) converges
exponentially towards [Zin, Zin].

Remark that S ∈ [S∗
out, Sin[ implies the following

inequality, for any t ≤ T

F (t, S, Z) ≤ (D − µ(S�
out))(Sin − S)

−µ(S)
Y

(Zin − Y Sin) +
µ(S)
Y

(Zin − Z)
(16)

At S = S∗
out, one has

F (t, S∗
out, Z) ≤ −δ +

µ(S∗
out)

Y
(Zin − Z)

where δ = µ(S�
out)(Zin − Y S�

out)/Y − D(Sin −
S�

out) (notice that condition (4) ensures δ > 0).
But the convergence of Z towards the interval
[Zin, Zin] implies the existence of T1 ≥ T such
that

F (t, S∗
out, Z) ≤ −δ

2
< 0, t ≥ T1

Then, the existence of a finite time T2 ≥ T1 such
that S(T2) ≤ S∗

out implies that the variable S(t)
stays below S∗

out for any future time t ≥ T2. We
show now that such a time T2 necessarily exists.

If such a time T2 does not exist, then S(t) > S∗
out

for any t ≥ T1. We distinguish three cases:

Case 1. Zin > Y Sin and D ≤ µ(S�
out) (note

that condition (4) is necessarily fulfilled), then
from (16) and the convergence of Z(·) towards
[Zin, Zin], we deduce the existence of T3 ≥ T1

such that

F (t, S, Z(t)) ≤ −1
2

µ(S�
out)

Y
(Zin − Y Sin) < 0

for all t ≥ T3. We conclude that S(·) reaches S�
out

in finite time, thus a contradiction.

Case 2. If Zin > Y Sin and D > µ(S�
out), we

obtain the following inequality from (16) and (4)

F (t, S, Z) ≤ −δ +
µ(S)
Y

(Zin − Z) .

The asymptotic properties of Z(·) allow then to
write

F (t, S, Z(t)) ≤ −δ

2
< 0, t ≥ T ′

3

for a certain T ′
3 ≥ T1. Thus we obtain again a

contradiction.

Case 3. If Zin ≤ Y Sin, then condition (4) ensures
D < µ(S�

out). One can then write, from (1) and
(3), the following inequalities for all t ≥ T1

Ẋ ≥ (µ(S�
out) − D)X ,

Ṡ ≤ −(µ(S�
out) − D)

X

Y
+

D

Y
(Y Sin − Zin)

+
D

Y
(Zin − Z(t)).

Since X(T1) is positive, X(·) is increasing, and
there exist γ > 0, T ′

1 ≥ T1 such that (µ(S�
out) −

D)X(t) > D(Y Sin −Zin)+γ for all t ≥ T ′
1. From

the convergence of Z(·), we deduce that there
exists T ′′

3 ≥ T ′
1 such that

Ṡ(t) ≤ − γ

2Y
< 0, t ≥ T ′′

3

that leads again to a contradiction.
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