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Abstract: Recent works in the nonlinear MPC literature have presented “realtime”
optimization approaches based upon incremental updating of input parameters
using local descent directions of the cost functional. The main downside to these
methods is their strong dependence upon the values used to initialize the input
parameters. In this note we study the robustness issues associated with non-
local search methods in continuous-time MPC, and demonstrate a framework for
robustly incorporating these approaches in a realtime setting.

Keywords: nonlinear model predictive control, robustness, nonlinear systems,
realtime optimization

1. INTRODUCTION

The flexibility of model predictive control (MPC)
for dealing with constraints has lead to its rapid
emergence as the advanced control method of
choice in the process industries. However, compu-
tational complexity remains the main limitation
preventing the use of MPC in many applications.

Current application of nonlinear MPC is lim-
ited to so-called “perfect model” implementa-
tions, which rely on nominal robustness guaran-
tees such as discussed in (Magni and Sepulchre,
1997; Grimm et al., 2004; Grimm et al., 2003).
In particular, in (Grimm et al., 2004) it is shown
that continuity of either the value function or

the MPC feedback policy are sufficient for nom-
inal robustness to disturbance inputs; while the
feedback policy may generally be discontinuous
for nonlinear problems, the value function can be
made continuous using appropriate inner approx-
imations of the constraint limits.

1 Work supported by the National Sciences and Engineer-
ing Research Council of Canada.
2 Corresponding author. email: guaym@chee.queensu.ca.

However, as discussed in (Coron and Rosier,
1994), discontinuous feedback policies for continuous-
time systems are potentially non-robust to mea-
surement error in the feedback loop. While (Messina
et al., 2005) show that discrete-time MPC exhibits
nominal robustness to measurement noise, (Tuna
et al., 2005) demonstrate that this nominal ro-
bustness may approach zero for systems with fast
sampling.

In this work, we demonstrate that realtime MPC
methods based on gradient-driven local opti-
mization are automatically nominally robust to
measurement errors. Furthermore, we proceed to
demonstrate a means by which non-local opti-
mization methods can be incorporated into a real-
time framework without violating nominal robust-
ness. This work is organized as follows. Section 2
discusses the lack of robustness in the standard
definition of MPC, while Section 3 reviews the
basic ideas of realtime MPC and presents robust-
ness results. Section 4 discusses the incorporation
of nonconvex optimization into a realtime frame-
work, and a simulation example is included in
Section 5.
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1.1 Preliminaries

Throughout this work, ‖s‖
∞

denotes a vector
∞−norm, whereas the space L∞

I
of bounded func-

tions on domain I have norm ‖s(·)‖
L

∞ . A func-
tion γ : [0,∞) → R≥0 is of class K if it is
monotone increasing from γ(0) = 0. The notations

S, S̊, ∂S, co{S}, and µ(S) respectively denote the

closure, interior, boundary (i.e. S \ S̊), convex
hull, and Lebesgue measure of a set S. We de-
fine the distance dS(s) � infs′

∈S ‖s − s′‖ and the
ball B(S, ε) � {s | dS(s) ≤ ε}. Finally, a function
f ∈ Cp+ if f ∈ Cp, with all ∇pf locally Lipschitz.

The system of interest is any nonlinear dynamic

ẋ = f(x, u), x(0) = x0 (1)

subject to pointwise constraints of the form
(x, u) ∈ X×U ⊆ R

n×R
m, such that µ(X×U) > 0.

The control objective is regulation of x to a (not
necessarily connected) target set Σx ⊂ X, which is
weakly invariant under (1) for (x, u) ∈ Σ � Σx ×
Σu(x). Performance is measured by the function

J(x,u[0,T ]) =

∫ T

0

L(xp, u) dτ + W (xp(T )) (2a)

s.t. ẋp = f(xp(τ), u(τ)), xp(0) = x (2b)

(xp(τ), u(τ)) ∈ X × U, ∀τ ∈ [0, T ] (2c)

xp(T ) ∈ Xf (2d)

Unless stated otherwise, the functions f(·, ·),
L(·, ·), and W (·) are assumed C0+, and there
exists γ1, γ2 ∈ K such that L(x, u) ≥ γ1(dΣ(x, u))
and W (x) ≥ γ2(dΣx

(x)). It is assumed that Xf

and W satisfy sufficient conditions for stability as
detailed in (Mayne et al., 2000), and x0 is feasibly
open-loop stabilizable to the origin.

2. CONTINUOUS-TIME MPC AND
MEASUREMENT ERRORS

A generic continuous-time MPC feedback u =
kmpc(x) which minimizes (2) is given by

kmpc(x) = lim
τ↓0

u∗

[0,T ](τ) (3a)

u∗

[0,T ] = arg min
u[0,T ]

J(x,u[0,T ]) (3b)

J∗(x) � J(x,u∗

[0,T ]) . (3c)

The minimization (3b) is over piecewise continu-
ous functions u[0,T ] ∈ L∞

[0,T ], and solutions are not
necessarily unique, so kmpc : X → U is a possibly
discontinuous and set-valued mapping.

The closed-loop dynamics therefore properly take
the form of the differential inclusion

ẋ ∈ f(x, kmpc(x)) . (4)

A uniformly continuous function x(t) is a classical

solution on the interval t ∈ [0, T ) if it satisfies

(4) for almost all t ∈ (0, T ). Traditional MPC
stability proofs, such as (Mayne et al., 2000; Chen
and Allgower, 1998), correspond to showing J∗(x)
is nonincreasing over all classical solutions to (4).

It follows from (Grimm et al., 2003) that if the
state constraint in (2) is replaced with one of the
form x(τ) ∈ X′(τ), where Xf ⊂ X′(t2) ⊂ X′(t1) ⊂
X for all 0 ≤ t1 < t2 ≤ T , then there exists a
δ > 0 such that for ‖d‖

L
∞ ≤ ε, global asymptotic

stability (GAS) of classical solutions to (4) implies
the same for

ẋ ∈ f(x, kmpc(x)) + d(t) . (5)

In contrast, arbitrarily small measurement error

ẋ ∈ f(x, kmpc(x + e(t))) . (6)

can cause kmpc to “dither” around a discontinuity,
generating trajectories which may differ greatly
from any classical solution of (4). This illustrates
the notion of Filippov solutions to (4), defined as
any trajectory x(t) satisfying ẋ ∈ F(x), F(x) �

co{f(x, kmpc(x))}, for almost all t ∈ (0, T ). This
type of dithering can induce directions of motion
not even in the span of ∇uf(x, ·), and hence not
covered by the standard stability proof for kmpc.

To demonstrate the potential impact of measure-
ment noise, in similar spirit to (Tuna et al., 2005)
we offer the following extension of (Coron and
Rosier, 1994, Prop. 1.4). First, it is necessary to
(loosely) define the Clarke normal cone NC

S
(s) at

s ∈ ∂S as the convex hull of every vector normal to
S at arbitrary s′, with s′ → s (Clarke et al., 1998).

Lemma 1. Assume all classical solutions to (4) are
GAS. Define H = {x ∈ X | kmpc(x)\kmpc(x) �= ∅},
and for each z0 ∈ H, let Z(z0) denote the set
of Filippov solutions z : I → R

n to (4) with
z(0) = z0 and I ⊆ [0,∞) maximal. Then any
initial state x(0) ∈ Hu

Hu � {z0 ∈ H | sup
z(·)∈Z(z0)

lim
t↑∂I

dΣ(z(t)) > 0}

can be prevented from reaching Σx by arbitrarily
small measurement error. Furthermore, if the set

Ho
u �{z0∈Hu | ∀ξ∈NC

Hu
, ∃ν∈F(z0) s.t. 〈ξ, ν〉>0}

is nonempty, then ∃δ(·) ∈ K and a neighbourhood
H of Ho

u with measure µ(H) ≥ δ(ε) > 0 such that
any initial state x(0) ∈ H can be prevented from
reaching Σ by a measurement error ‖e‖

L
∞ ≤ ε.

The first claim is essentially a direct application of
(Coron and Rosier, 1994, Prop. 1.4). The second
claim is an extension, which essentially states that
if Filippov solutions span every outward direction,
then measurement error can induce flows back
towards Ho

u from any point sufficiently close (i.e.
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with x and x + e on “opposite sides” of Ho
u ). This

is relatively straightforward given f ∈ C0+.

Within the context of chemical processes, there is
potential for this type of effect any time a con-
troller must make a choice between two distinct
paths. One major instance in which this occurs
is when x is near the threshold at which a prof-
itable trajectory becomes infeasible with respect
to state constraints, and must be abandoned for a
less profitable one. 3 Another situation of interest
is when pieces of equipment must be arbitrarily
selected from a group for some type of preferen-
tial treatment (e.g. starting up parallel pumps in
sequence to avoid electrical trips, applying acti-
vation heat to parallel reactors sequentially due
to steam limitations, etc). This is of particular
concern when responding to unplanned events re-
quiring decisive response to mitigate losses.

3. DESCENT-BASED REALTIME METHODS

It is apparent from Section 2 that robustness
issues due to measurement noise stem from the
assumed globality of the minimization in (3).
In practice, however, only local solutions can be
guaranteed online; in fact, precisely locating even
a local minimum within one sampling period can
be difficult. For this reason, a variety of “real-
time” approaches such as (Ohtsuka, 2004; Cannon
and Kouvaritakis, 2000; DeHaan and Guay, 2005)
allow the optimization parameters to evolve in-
crementally within the same timescale as the dy-
namics. In this section, we study whether these
approaches suffer the same lack of robustness to
measurement error discussed in Section 2. Our
presentation will follow the method of (DeHaan
and Guay, 2005), reviewed briefly, 4 but an effort
is made to generalize whenever possible.

3.1 Description of Realtime Method

The approach in (DeHaan and Guay, 2005) allows
for piecewise parameterization of the control input
using a parameter vector ωT = [π; θ], consisting
of an ordered time support π ∈ R

N+1
≥0 and vectors

θi ∈ R
p for each of the N intervals. Using a pre-

selected basis φ (e.g. polynomial, exponential), the
input trajectory is parameterized piecewise as

up(τ, ω) =

⎧⎨
⎩

φ(τ, θ1) τ ∈ [0, π1]

φ(τ − πi−1, θi)
τ ∈ (πi−1, πi],

i ∈ {2 . . .N}

(7)

3 this is still possible even if (2b) is nominally robust with
respect to d(t), and X(τ) is nested as discussed previously.
4 for omitted details, see (DeHaan and Guay, 2005)

which is substituted for u(τ) in (2), to define
J(x, ω) in an obvious manner. The closed-loop
system evolves continuously as

ẋ = f(x, krt(ω)), krt(ω) = up(π0, θ1) (8a)

ω̇ = g(x, ω) (8b)

while h(ω) � π1 − π0 > 0 (8c)

where ω(0) = ω0 is assumed to be chosen as a
feasible (but sub-optimal) parameterization with
respect to (2b,c). Upon equality h(ω) = 0 (i.e. the
first switching point of (7) is reached), the reset

ω+ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π+
i =

⎧⎨
⎩

0
πi+1

πN + δ(xp(πN ))

i = 0
1 ≤ i < N

i = N

θ+
i =

{
θi+1

κ(xp(πN ))
1 ≤ i < N

i = N

(9a)

when h(ω) � π1 − π0 = 0 (9b)

occurs, where δ : Xf → R>0 and κ : Xf → R
p

are C0+ functions representing a local control
law which feasibly initializes the parameters for
the new interval being augmented to the horizon.
This makes the closed-loop behaviour that of
a hybrid system 5 . Stability is proven by the
invariance principle, using the strict decrease of
J(x, ω) under (8), the non-increase under (9) 6 ,
and the fact that h(ω) ≡ 0 is not invariant.

The precise definition of g(x, ω) in (8) varies some-
what between methods, in particular depending
on the manner by which the constraints (2c,d)
are enforced. We thus distinguish between two
classes of approach. In all cases, gradients of J are
ensured to exist by strengthening the assumptions
on L(·, ·), W (·), f(·, ·) to C1+.

3.1.1. Interior-point Approaches In the ap-
proach of (DeHaan and Guay, 2005), the con-
straints (2c,d) are replaced by an augmented cost
Ja(x, ω) which incorporates C1+ barrier functions
into L(x, u) and W (x). Then g(x, ω) is of the form

g(x, ω) = G(ω, υ), υ � −k∇ωJ
a(x, ω) (10)

where υ represents the nominal descent-update,
while G is a locally Lipschitz operator, possibly
including such operations as projecting υ to keep
ω in a desired convex set, limiting the growth
rate of ω, etc. In particular, G ensures both
〈∇ωJ

a,G(ω, υ)〉 ≤ 0 and limh(ω)↓0(π̇1 − π̇0) < 0
(so event (9b) is well defined under small per-
turbations). Stability follows using Ja as a Lya-
punov function, since dJa

dt
≤ −L(x, krt(ω)) +

〈∇ωJ
a,G(ω, υ)〉 < 0. The open interior of all

constraints is rendered invariant, thus preserving
feasibility given feasible initial conditions.

5 While (Ohtsuka, 2004; Cannon and Kouvaritakis, 2000)
do not include hybrid behaviour, they are still encompassed
in (7)-(9) by simply defining π̇ ≡ 1, π0(0) �= π1(0).
6 guaranteed by conditions on the design of κ(x) and δ(x)
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3.1.2. Active set-based Approaches In the ap-
proach of (Cannon and Kouvaritakis, 2000), the
update law is of the form (10), but with ∇ωJ

instead of ∇ωJ
a. Constraint feasibility is ensured

by incorporation a parameter projection into the
definition of G, which removes components of υ

directed out of the (x-dependent) feasible set for
ω. Since the feasible parameter set is impractical
to calculate online, this approach corresponds to
testing along the length of the prediction xp(τ) for
constraint violation. Effectively, this is compara-
ble to incorporating a lagrange-multiplier trajec-
tory λ(τ) into the minimization. For robustness,
this approach must include a τ -varying constraint
X′(τ) of the form discussed in Section 2.

3.2 Robustness of Descent-based Methods

The question of robustness for the class of descent-
based approaches discussed in Section 3.1 is an-
swered by the following Lemma. Measurement
errors in (8)-(10) are interpreted as (2) taking
the form J(x + e(t), ω) when evaluating ∇ωJ and
xp(πN ) in the feedbacks.

Lemma 2. Assume f(·, ·), L(·, ·), W (·) ∈ C1+. For
any initial condition (x0, ω0) such that predic-
tions (2b-d) are strictly feasible, global asymp-
totic stability of the target Σx under closed-loop
dynamics (8)-(9) is nominally robust to additive
disturbances and measurement errors.

Sketch of Proof: By standard results, the pre-
diction xp(τ) of (2b) is Lipschitz with respect to
small changes in its initial condition x. Then for
interior-point approaches, ∇ωJ

a(x, ω) is C0+ in x,
as are the dynamics of (8), (9) and the jump con-
dition h(ω). If z(t) is any closed-loop solution from
z(0) = x(0), perturbed by ‖d, e‖

L
∞ ≤ ε, then it

follows that x(t) and z(t) are “close” in the sense
limε↓0{maxs∈R+ mins′

∈R+ ‖x(s) − z(s′)‖} = 0.
Feasibility and approximate-GAS of z(·) for suffi-
ciently small ε > 0 follow by the strict feasibility
and asymptotic stability of x(·). A similar argu-
ment works for active-set approaches.

The robustness margins discussed above may be
quite small, since the proof makes no use of the
update (8b) to compensate by adjusting the input
parameterization (since it cannot be guaranteed
that this is possible, when ∇ωJ ≈ 0). However,
it is important to note that any method based
upon achieving minimizing solutions (as opposed
to incremental improvement) must necessarily be
implemented in a sampled-data framework, with
significantly slower sampling rates than used by
realtime methods. Such methods then require
an equally restrictive assumption of open-loop
robustness between sampling instances.

4. ROBUSTLY INCORPORATING
NONCONVEX METHODS

Since descent-based realtime methods evolve con-
tinuously within connected neighbourhoods of
their initial conditions, they do not generate dif-
ferential inclusions (assuming C1+ process dy-
namics). As such, a local descent-based method
automatically exhibits nominal robustness to mea-
surement errors, unlike global approaches. The
obvious downside is that performance depends
strongly upon the quality of the initial condition.

One simple approach to reducing the impact of ω0

is to instead allow for multiple initial conditions to
be specified; i.e. to allow for multiple independent
sets of parameters to be (locally) minimized in
parallel. It will first be shown how this can be
done in a manner robust to measurement noise,
after which we will provide discussion on more
sophisticated extensions of this approach.

4.1 Modified Realtime Dynamics

Let q ≥ 1 denote the number of independent
input parameter sets calculated online, denoted
ωi, i ∈ {1, . . . q}. For convenience it is assumed all
parameterizations use the same basis φ, although
each ωi contains an independent time support πi,
potentially of length N i �= N j intervals. The flows
(8) then take the form

ẋ =f(x, krt(ω
i∗)), krt(ω

i∗) = up(πi∗

0 , θi∗

1 ) (11a)

ω̇i =

{
gi(x, ωi) i = i∗

gi(x, ωi) i �= i∗
∀i ∈ {1 . . . q} (11b)

while πi∗

1 − πi∗

0 > 0, and (11c)

while J(x, ωi∗) < (1+ε)J(x, ωi), ∀i �= i∗ (11d)

where ε > 0 is a design constant, and i∗ ∈ N

is an additional state of the system identifying
which one of the parameter sets is “active”. The
vectorfields gi(x, ωi) are of the form discussed in
Section 3, while gi reflects that a different update
law may be desired if ωi is not active.

Equality of (11c) triggers the reset (9) (for ωi∗

only). Meanwhile, equality of (11d) triggers

(i∗)+ = choose

{
arg min

i∈{1...q}
J(x, ωi)

}
(12)

in which “choose” represents any arbitrary con-
vention for selecting between multiple minimiz-
ers. If an interior-point approach is used for the
gi(x, ωi), then (11d) and (12) are interpreted us-
ing Ja(x, ωi); regardless, we adopt the convention
that J(x, ωi) = +∞ if either (2c,d) do not hold.

Using J(x, ωi∗) as a Lyapunov function, the pre-
vious stability arguments still hold in light of the
strict decrease of J(x, ωi∗) under reset (12). The
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robustness of this stability to small measurement
errors e(t) hinges on the fact that ε > 0 in
(11d); i.e. for ε = 0, (11a) becomes a differential
inclusion with u = krt(Ω), Ω = {ωi | J(x, ωi) =
minj J(x, ωj)}, and is no longer robust to arbi-
trarily small measurement errors. The nominal
robustness of (11) can therefore be summarized:

Claim 3. ∃ε(·) ∈ K s.t. (11) is robust to measure-
ment errors ‖e‖

L
∞ ≤ ε(ε), with ε from (11d)

4.2 Possible Extensions

It is crucial to note that stability depends upon
feasible update and resets of the active parame-
terization ωi∗ only. Infeasibility of any wi, i �=
i∗, simply results in that parameterization being
(temporarily) excluded from consideration as a
candidate in (12). Likewise, arbitrary reset map-
pings of the form (ωi)+ = hi(x, ω1, . . . , ωp), i �= i∗

can be executed at any time without impacting
stability. To discuss the wide variety of optimiza-
tion approaches that could be used to design gi

and hi is beyond the scope of this note. Instead,
we simply highlight a few possible approaches that
could be used, 7 and postpone analysis of their
relative merits to future research.

Infeasible-point approaches: The likelihood of
identifying the global (or at least a better) min-
imum significantly increases if the optimization
is allowed to temporarily pass through infeasible
regions. Thus, the gi(x, ωi) update laws may be
based upon infeasible-point methods without any
weakening of guaranteed feasibility of x(t).

Quasi-Global Search Methods: Several meth-
ods exist for generating a continuous search tra-
jectory which attempts to visit many or all of the
minima on the surface. This includes augmenting
the search with extra velocity dynamics to help
escape shallow minima, or methods which switch
between ascent and descent phases. The gi(x, ωi)
could be based on any one of these.

Deterministic Resetting If
∥∥∇ωiJ(x, ωi)

∥∥, i �=
i∗, becomes sufficiently small without triggering
(11d), then it may be desirable to reset ωi. One
could, for example, generate a very crude branch-
and-bound (off-line, or in a slower timescale) to
identify new values for ωi showing potential as
minimizers, differing sufficiently from other ωj.

Stochastic Resetting Similar to the above,
there are many stochastic approaches which could
be used to reset ωi. This can be done in conjunc-
tion with a deterministic master, which shapes the
statistical distribution to target regions of interest
or rule out regions which are not.

7 references regrettably omitted for space considerations

5. SIMULATION EXAMPLE

In order to illustrate the approach, we consider a
simple exothermic reaction A → B taking place
in a non-isothermal, gas-phase CSTR. The sys-
tem is comprised of three states; although many
equivalent coordinate systems can be used, the
equations are most clear for the choice: n (to-
tal moles of gas in reactor), nA (moles of A),
and T (reactor temperature). The control ob-
jective is specified as regulation to the target
(n, nA, T )ss = (2.5kmol, 0.25kmol, 500K), corre-
sponding to an ideal gas pressure of 1040kPa,
from the initial state (n, nA, T )0 = [2, 0.5, 350].
Manipulated variables are the outlet molar flow
Fout, and rate of heat removal Q̇. Using several
simplistic assumptions, the system equations are

ṅ = Fin − Fout (13a)

ṅA = Fin −
nA

n
Fout − k(T )nA (13b)

Ṫ = Fin

Tin−T

n
−k(T )

∆Hr

cp

nA

n
+

Q̇

cp n
(13c)

where k(T ) = k0e
−

E

RT . System parameters are

∆Hr = −5000
kJ

kmol
R = 8.314

m3 kPa

kmol K

V = 10m3 E = 8000
m3 kPa

kmol
cp = 10

kJ

kmol K

Tin = 300K k0 = 6.2s−1 Fin = 0.25kmol s−1

An important objective of the controller is to en-
sure the system trajectories avoid passing through
the shaded region in the P − T plane shown in
Figure 1, for example to avoid undesireable ther-
modynamic behaviour of other components in the
gas stream which occurs in that region. Using the
ideal gas law, this constraint was incorporated as
(2c) in the form g(n, T ) ≤ 0.

350 400 450 500
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700
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900

1000

1100

P
re

ss
ur

e 
[k

P
a]

Temperature [K]

infeasible

Fig. 1. System trajectories in the P − T plane:
closed loop (solid), optimal (dots), initializa-
tions ω1

0 (dash), ω2
0 (dash-dot). Small circle

indicates switch in active ωi.

The cost function was assumed to be L(x, u) =
xT diag(10, 10, 1e-3)x + uT diag(0.2, 0.5)u, where
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Fig. 2. System trajectories: closed loop (solid),
initializations ω1

0 (dash), ω2
0 (dash-dot)

xT = [n, nA, T ]dev and uT = [Q̇, Fout]dev are devi-
ations from the indicated steady state. The termi-
nal penalty W (x) is the quadratic solution to an
algebraic Ricatti equation for the linearized (13),
and the local control law κ(x) was derived from
the optimal linear controller using the method
presented in (DeHaan and Guay, 2005).

Using simple piecewise constant parameteriza-
tions, two sets of parameters ω1 and ω2 (both
with N = 15, δ(x) ≡ 1s, shown in Figure 2)
were adapted online. The initializations ω1

0 and
ω2

0 corresponded to different paths around the
constraint region in the P-T plane (whose image is
a skewed infinite cylinder in the x-space). As can
be seen in Figure 1, neither initialization was very
close to the infinite-horizon optimal solution. The
controller initially selected the active parameter-
ization ω1 (i.e. “over” the constraint in Fig. 1),
but as the dynamics and adaptation progressed,
the active parameterization switched to ω2 in time
to feasibly pass under the constraint region.

6. CONCLUSIONS

Using existing results concerning discontinuous
feedbacks, it has been demonstrated that a naive
implementation of global search methods creates
a robustness concern with respect to measure-
ment noise for continuous-time (i.e. fast-sampled)
MPC. While purely local realtime methods do
not exhibit this characteristic, any mechanism for
evaluating alternative paths generates a potential
robustness concern. By incorporating hysteresis
in the decision making, a framework has been
created for improving the performance of realtime
approaches in a nominally robust manner.
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