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Abstract: In this work the identification of first-order plus dead-time models from
a relay experiment is considered. The relay excitation is applied to the closed-loop.
Alternative techniques for identification are examined and simple algorithms are
proposed for dealing with the dead-time. Simulation examples are used to illustrate
the techniques.
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1. INTRODUCTION

The estimation of continuous-time models from
sampled data has received some attention in last
years, motivated by the need of such models to
recover physical parameters or to allow the use of
design techniques developed for continuous-time
controllers. An extensive list of references on the
subject can be found in (Mensler, 1999), in which
a detailed survey discusses the advantages of a
direct approach in relation to the indirect estima-
tion of a discrete-time model plus a later trans-
formation into a continuous-time model. Several
papers have been presented in recent conferences
(for instance, 13th IFAC Symposium on System
Identification (SYSID 2003) and 16th IFAC World
Congress 2005) to report new developments and
applications.

The continuous-time results reported in the liter-
ature mainly address finite-dimensional systems.
But dead-time is present in several industrial
processes so that simple models such as first and
second order dead-time continuous time one are

widely used to tune industrial controllers. In the
design of PID controllers the process model that
receives most attention is first-order plus dead-
time model (FOPDT) (Sudaresan and Krish-
naswamy, 1977). There are a few methods to esti-
mate parameters for this model. Among them one
can mention the graphics and the area methods
(Åström and Hägglund, 1995). A method less sen-
sitive to noise is proposed in (Wang et al., 1999)
which uses least-squares method to estimate the
parameters of FOPDT model. Variants of this
methods are used in (Wang and Zhang, 2001)
and (Wang et al., 2000). Other method for open
loop unstable processes is presented in (Marchetti
and Lewin, 2001). For such simple models the
results are remarkably good and motivated the
present work. Methods of closed-loop identifica-
tion have been used in industrial applications
(Forssell and Ljung, 1999). The closed-loop iden-
tification doesn’t cause stops in system opera-
tion comparing with the open-loop identification.
Besides this reason, there are others to do ex-
periments of closed-loop identification which are:
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demands of safety in the operation of the process
or because the process has unstable behavior
in open-loop, which are found in many indus-
trial processes (Ljung, 1999). There are situations
where the plants are stable but restrictions in
production are strong reasons not to allow exper-
iments in open-loop. An additional consideration
to accomplish experiments in closed-loop is that
the dynamic exhibited by the plant with the old
controller must be more important to design a
high performance controller than the dynamic of
the plant in open-loop.

In this paper three techniques for the estimation of
continuous-time systems from discrete-time mea-
surements with data obtained from relay based
closed-loop experiments are compared.

The first technique is the one presented in
((Coelho and Barros, 2003)) where least-squares
minimization is used with a search for a initial
dead-time estimate. The second technique uses
an approximated model. Both techniques use only
time-domain data.The third one is a constrained
least-squares minimization which uses frequency
data obtained from a relay experiment.

This paper is organized as follows. In Section
2, the problem statement is presented. The re-
lay closed loop experiment used to obtain time
and frequency information is presented in Section
3. The continuous-time identification of FOPTD
techniques are presented in Section 4. In Section
5 the techniques are compared using simulations
of examples and, finally, conclusions are presented
in Section 6.

2. THE PROBLEM STATEMENT

In this paper it is considered the identification of
first-order plus dead-time (FOPDT) continuous-
time models represented by

G (s) =
b

s + a
e−Ls. (1)

It is assumed closed-loop operation and that the
excitation is generated from a relay-based exper-
iment. In this paper is considered a closed-loop
with transfer function T (s), process transfer func-
tion G(s), controller C(s), and loop gain L(s).
Although it is desired to estimate a continuous-
time model, the available data to the estimation is
discrete-time. The aim of the paper is to evaluate
the improvements obtained, for such simple mod-
els, with the introduction of frequency domain
information as constraints in the minimization
problem.

The frequency domain information is obtained by
using a relay based test as described in the sequel.

3. THE LOOP GAIN RELAY EXPERIMENT

A basic procedure for the estimation of a general
frequency point of the loop gain transfer function
using a relay feedback is presented in (de Arruda
and Barros, 2003). The feedback structure applied
for loop transfer function estimation is presented
in Fig. 1. The conditions of the limit cycle opera-
tion are defined by the following proposition.

Consider the closed loop relay system shown in
Fig (1). Assume that for a stable closed loop T (s)
and a real positive number r, the transfer function

F (s) =
2
r

T (s)
T (s)

(
1−r

r

)
+ 1

− 1 (2)

is also stable. Then if a limit cycle is present it
oscillates at a frequency ωo such that

|L (jωo)| ≈ r .

See (de Arruda and Barros, 2003).

Fig. 1. Relay Closed Loop Experiment for Loop
Transfer Function Estimation.

Selecting r = 1, the current loop gain crossover
frequency ωg can be estimated. This estimate is
denoted ω̂g. In this case the scheme reduces to
the one presented in (Schei, 1992).

The setpoint yr (t) is the loop gain experiment
excitation applied to the closed loop T (s) formed
by the process G(s) with controller C (s) . The
process transfer function at the crossover fre-
quency is estimated computing the DFT of one
period of the process input u and output y when
the relay oscillation is present and steady. This
loop gain relay excitation is used at all examples.

4. TECHNIQUES USED FOR THE
IDENTIFICATION OF FOPDT MODELS

In this Section the identification techniques are
described.

4.1 Technique 1: Identification of FOPDT Model
with Dead-Time Search

This technique is the one presented in ((Coelho
and Barros, 2003)) for a closed-loop step response
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In this paper the excitation used is the one ob-
tained from the loop gain relay experiment with
r = 1.

Under mild conditions the process model (1)can
be written as

y (t) = −a

∫ t

0

y (τ) dτ + b

∫ t−L

0

u (τ) dτ. (3)

It can also be rewritten as

y (t) = −a

∫ t

0

y (τ) dτ+b

∫ t

0

u (τ) dτ−b

∫ t

t−L

u (τ) dτ.

(4)
Then, define

φ (t) =
[
−

∫ t

0

y (τ) dτ

∫ t

0

u (τ) dτ −
∫ t

t−L

u (τ) dτ

]T

,

θ =
[
a b1 b2

]T
. (5)

and Eq.(4) can be written in regression form

y (t) = φ (t) θ. (6)

Unfortunately, the value of L is not known. In this
case, a straightforward procedure is to search for
the best fit among several values of L. An algo-
rithm presented in ((Coelho and Barros, 2003)) is
used to avoid estimate a L which is a multiple of
the sampling period. Its motivation comes from
the fact that b1 = b2 for the true value of L.
Is choose a range for the dead-time, [Lmin, Lmax],
with Lmin = kminTs and Lmax = kmaxTs . Using
a regression model the parameters for each value
of k in [kmin, kmax] are estimated. For each value
i = k − kmin + 1 estimate θ̂i is computed⎡

⎣ ai

bi
1

bi
2

⎤
⎦ =

⎡
⎣ θ̂i (1)

θ̂i (2)
θ̂i (3)

⎤
⎦ . (7)

an estimate of L, say L1, is recovered

L1 = k̂Ts with k̂ = min
i

∣∣bi
1 − bi

2

∣∣ .

So, applying the estimator to the regression vector

φ (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−
∫ t

0

y (τ) dτ∫ t

0

u (τ) dτ

− 1
L1

∫ t

t−L1

u (τ) dτ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (8)

θ =
[
a b β

]T
, (9)

the final estimate
{

â, b̂, L̂ = β̂/b̂
}

are ob-
tained and the corresponding model GLS1 (s).

4.2 Technique 2: Identification of FOPTD Model
using Approximation

In this second technique, the following approxi-
mation for model 1 is used:

G (s) =
b (1 − sL)

s + a
(10)

the process model (10) can be written as

y (t) = −a

∫ t

0

y (τ) dτ + b

∫ t

0

u (τ) dτ − bLu(t).

(11)
Define

φ (t) =
[
−

∫ t

0

y (τ) dτ

∫ t

0

u (τ) dτ u (t)
]T

,

θ =
[
a b β

]T
. (12)

This case is equivalent to choose L1 = Ts in the
first technique. The final estimate

{
â, b̂, L̂ = β̂/b̂

}
are obtained and the corresponding model GLS2 (s).

4.3 Technique 3: Identification of FOPTD Model
with Frequency Domain Constraints

In the third technique, equality constraints are
used with the least-squares minimization ((Nelles,
2001)). The procedure solves a time least-squares
problem submitted to a constraint on frequency.
The constraint is obtained through the process
frequency response on the first harmonic of the
relay experiment signal. The frequency response
is obtained computing the DFT of process input
and output. In this frequency, the loop gain has
approximately magnitude one. Assuming the data
is grouped in a vector from yielding matrices Y
and θ̂. The least-squares optimization problem is
given by

J =
(
Y − Φθ̂

)T (
Y − Φθ̂

)
(13)

submitted to the

Mθ = γ. (14)

which express the equality constraints in the time
and frequency domains in a linear form.

The equality constraint is defined through the
following regression vector which is obtained using
the linear form 14 given by:

ẑ = xT (ω) θ̂

with

ẑ = jωĜ (jω) ; xT (jω) =
[−Ĝ (jω) 1 −jω

]
θ =

[
a b β

]T

where ω is the crossover frequency estimated using
the relay experiment. More frequencies points may
have been used.

IFAC - 99 - ADCHEM 2006



In this case, the least-squares optimization prob-
lem with constraint is equivalent to minimize in
relation to θ̂ and λ the cost function given by

J =
(
Y − Φθ̂

)T (
Y − Φθ̂

)
+ λ(γ − Mθ) (15)

By defining

E = 2ΦT Φ

F = 2ΦT Y

The optimal solution has a closed-form

[
E −MT

M 0

] [
θ

λT

]
=

[
F
γ

]

which can be solved explicitly as

λT =
[
ME−1MT

]−1 [
γ − ME−1F

]
θ̂ = [E]−1 (F + MT λT )

The final estimate
{

â, b̂, L̂ = β̂/b̂
}

are ob-
tained and the corresponding model GLS3 (s).

5. SIMULATION EXAMPLES

In this section the closed loop identification al-
gorithms are applied to three processes. The cost
function used to compare the estimates is

ε =
1
N

N−1∑
k=0

[y (kTs) − ŷ (kTs)]
2

where y (kTs) is the actual process output (with
noise), while ŷ (kTs) is the estimated process out-
put from a closed loop simulation with the same
controller and under the same step setpoint. In all
experiments Ts = 0.1s, kmax = 50 samples (= 5s),
kmin = 5 samples (= 0.5s), and the controller used
is C1 = 1 + 0.1

s . White noise is added only to
the output of the process. The processes and the
results are shown below.

5.1 Example 1

In the first example it is used a FOPDT model

G1(s) =
0.14

s + 0.12
e−0.95s.

The noise variance is 0.02. The estimates are

GLS1(s) =
0.1329

s + 0.1099
e−0.6397s

GLS2(s) =
0.1354

s + 0.1144
e−0.8381s

GLS3(s) =
0.1368

s + 0.1164
e−0.8326s.

The mean squared errors are

ε1 = 7.549e−05, ε2 = 1.562e−05, ε3 = 1.009e−05.

The estimated crossover frequency is ŵg = 0.1017
and the processes have the following magnitudes
in this frequency

|G1(jŵg)| = 0.8901
|GLS1(jŵg)| = 0.8878
|GLS2(jŵg)| = 0.8848
|GLS3(jŵg)| = 0.8851.

All techniques yields good results. The nyquist
plot is shown in Fig. (2).
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Fig. 2. Nyquist plot for process 1

In other simulation for the same G1(s), the noise
variance is increased to 0.05. The estimates are

GLS1(s) =
0.1255

s + 0.1001
e−0.3302s

GLS2(s) =
0.1335

s + 0.1133
e−0.9368s

GLS3(s) =
0.1379

s + 0.1179
e−0.9043s.

The mean squared errors are

ε1 = 2.83e−04, ε2 = 2.93e−05, ε3 = 2.532e−06.

The estimated crossover frequency is ŵg = 0.1018.
The process magnitude in this frequency are

|G1(jŵg)| = 0.8901
|GLS1(jŵg)| = 0.8786
|GLS2(jŵg)| = 0.8762
|GLS3(jŵg)| = 0.8849.

Increasing the noise variance the third technique
provides a better fitting in the crossover frequency
and the decreasing of the quadratic error. The
loop gain experiment and nyquist plot are shown
in Fig. (3) and (4).
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Fig. 3. Loop Gain Experiment for process 1.
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Fig. 4. Nyquist plot for process 1

5.2 Example 2

The process is now given by

G2(s) =
0.14

(s + 0.12)(s + 1)
e−0.95s.

The noise variance is 0.02. The estimates are

GLS1(s) =
0.1314

s + 0.1093
e−1.5325s

GLS2(s) =
0.1276

s + 0.1057
e−1.4075s

GLS3(s) =
0.1299

s + 0.1074
e−1.3854s.

The mean squared errors are

ε1 = 7.693e−05, ε2 = 1.255e−04, ε3 = 1.365e−04.

The estimated crossover frequency is ŵg = 0.0983
and the process magnitudes

|G2(jŵg)| = 0.8981
|GLS1(jŵg)| = 0.8939
|GLS2(jŵg)| = 0.8836
|GLS3(jŵg)| = 0.8922.

Although there was a better fitting in the crossover
frequency if compared with the second technique,
the error have increased because the use of the
constraint. The nyquist plot is shown in Fig. (5).

In other simulation for the same G2(s), the noise
variance is increased to 0.05. The estimates are

GLS1(s) =
0.1254

s + 0.1017
e−1.2603s

GLS2(s) =
0.1275

s + 0.1076
e−1.5736s

GLS3(s) =
0.1319

s + 0.1104
e−1.5193s.
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Fig. 5. Nyquist plot for process 2.

The mean squared errors are

ε1 = 2.143e−04, ε2 = 7.22e−05, ε3 = 7.975e−05.

The estimated crossover frequency is ŵg = 0.0985.
The process magnitude in this frequency are

|G2(jŵg)| = 0.8975
|GLS1(jŵg)| = 0.8858
|GLS2(jŵg)| = 0.8741
|GLS3(jŵg)| = 0.8914.

Increasing the noise variance the third technique
provides a better fitting in the crossover frequency
and the decreasing of the quadratic error if com-
pared with the first technique. The loop gain ex-
periment and nyquist plot are shown in Fig. (6)
and (7).
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Fig. 6. Loop Gain Experiment for process 2.
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Fig. 7. Nyquist plot for process 2

5.3 Example 3

The process is now given by

G3(s) =
1

(s + 1)8
.
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The noise variance is 0.001.The estimates are

GLS1(s) =
0.2978

s + 0.2929
e−4.8819s

GLS2(s) =
0.1529

s + 0.1357
e−2.8747s

GLS3(s) =
0.1737

s + 0.1569
e−2.3721s.

The mean squared errors are

ε1 = 0.0021, ε2 = 0.0124, ε3 = 0.0154.

In this case, the estimated crossover frequency is
ŵg = 0.0985 and the process magnitudes are

|G3(jŵg)| = 0.9621
|GLS1(jŵg)| = 0.9639
|GLS2(jŵg)| = 0.9120
|GLS3(jŵg)| = 0.9377.

The constrained least-square minimization if com-
pared with the second technique produces a data
fitting with a larger quadratic error despite a
closer model in the crossover frequency to the real
process. The loop gain experiment and nyquist
plot are shown in Fig. (8) and (9).
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Fig. 8. Loop Gain Experiment for process 3.
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Fig. 9. Nyquist plot for process 3.

6. CONCLUSIONS

In this paper three techniques for the identifi-
cation of continuous-time FOPTD models from
closed loop step response was presented. One of
the techniques use frequency domain information
as equality constraints. Structures for identifi-
cation in closed loop were also discussed. The
use of constrains provided a better fitting in the
crossover frequency, a good issue in closed loop
identification and controller design.
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