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Abstract: A procedure based on convex optimization techniques for deriving norm-

bounded uncertainty models for MIMO systems is presented.  The procedure is developed 

for unstructured additive uncertainty models, but in principle this is no limitation since 

any uncertainty model of LFT type can be transformed into such a model.  The models 

are determined by matching to process data available in the form of frequency responses 

of a set of individual models or sets of input-output data.  Conditions for the existence of 

solutions to the data-matching problems are defined by LMIs.  Uncertainty models that 

tightly match the data are obtained by minimizing an ellipsoidal uncertainty region.  An 

application to distillation is included.  Copyright © 2006 IFAC
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1. INTRODUCTION 

Many robust control design methods are based on a 

linear transfer function model incorporating a 

weighted norm-bounded uncertainty description.  

The construction of a non-conservative uncertainty 

model from process data is a significant problem. 

The generation of useful process data for uncertainty 

modeling is a nontrivial task.  This task is especially 

difficult if the system is multivariable and ill-

conditioned or nonlinear.  In practice, the dynamics 

of such a system cannot be captured in a single linear 

model without some advanced uncertainty modeling. 

An appealing approach to uncertainty modeling is 

first to determine a set of individual models, then to 

construct an uncertainty model that encompasses all 

these models. In this way “difficult” dynamics, 

which may be hard to include in a single model, can 

be split between several models.  Furthermore, the 

use of several models may facilitate the task of 

separating noise and dynamics so that noise and bias 

largely can be excluded from the model set 

(Häggblom and Böling, 1998). 

One way of constructing a norm-bounded uncertainty 

model from a set of individual models is to employ 

model-matching techniques. The basis of this method 

is that the uncertainty model should be capable of 

reproducing every model in the model set. Such a 

technique has been used by Hindi et al. (2002).  

However, if the identification has given several 

models, it is because different input sequences and 

operating points generate different models.  It is then 

valid to assume that a model only applies to the input 

sequence used to generate the data from which the 

model was determined.  This suggests derivation of 

an uncertainty model using input-output matching 

instead of model matching.  It can be shown that 

model matching cannot produce a model less conser-

vative than input-output matching for a given model 

structure (Nyström et al., 2003) . 

An important aspect in uncertainty modeling is the 

choice of objective function to be minimized so as to 

obtain a non-conservative uncertainty model, which 

“tightly” matches the known data. A natural choice is 

to minimize the largest possible discrepancy between 

a nominal model and the uncertainty model.  This 

results in a norm-minimization problem and has been 

used, e.g., by Hindi et al. (2002). 
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In this paper it is argued that a less conservative 

uncertainty model is obtained by minimizing the size 

of the ellipsoidal region that the deviations between 

the outputs from the uncertainty model and a nom-

inal model cover.  This results in a determinant-mini-

mization problem. 

A significant task is also the development of a 

suitable numerical procedure for solving the prob-

lem.  Generally, convex optimization methods are 

desired.  In this paper it is shown that the deter-

minant-minimization problem can be formulated as a 

convex optimization problem, where the various 

data-matching requirements and certain norm-related 

constraints can be expressed as linear matrix inequal-

ities (LMIs). Both model matching and input-output 

matching as well as methods based on norm 

minimization can be handled by essentially the same 

procedure. 

An application to uncertainty modeling of a distil-

lation column is included. 

2. PROBLEM FORMULATION 

2.1 Uncertainty Description

We consider linear multiple-input multiple-output 

(MIMO) uncertainty models of the form 

0 1 2( ) ( ) ( ) ( ) ( )G s G s W s s W s , 1  (1) 

where 0 ( )G s  is a stable nominal transfer matrix 

model, 1( )W s  and 2 ( )W s  are stable transfer matrix 

filters acting as uncertainty weights, and ( )s  is a 

norm-bounded uncertainty matrix.  Only uncertainty 

with an unstructured  matrix is considered in this 

paper. 

Structurally, model (1) is an additive uncertainty 

model, but obviously multiplicative input and output 

uncertainties can be handled by including 0G  in 1W

or 2W .  In fact, general linear fractional transfor-

mation (LFT) models 

1

0 1 3 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆG G W I W W  , ˆ 1 , 3

ˆ 1W  (2) 

can be cast in the form of (1) (Chen and Gu, 2000; 

Hindi et al., 2002).   Thus, (1) can represent a large 

class of uncertainty model types.

2.2 Data Matching in the Frequency Domain

We wish to determine 1W  and/or 2W  so that the 

uncertainty model (1) can reproduce sets of known 

frequency-response data with a minimum amount of 

conservatism.  This means that any reduction of the 

region of uncertainty covered by the model would 

result in some data being irreproducible. 

We shall use data matching as the technique for 

determining a non-conservative uncertainty model.  

It is assumed that frequency-response data are 

known at a number of relevant frequencies 

for a number of data sets k , 1, ,k N , either as 

(a)  smoothed (noise-free) input-output data 

( j ), ( j ) :k ku y  or (b) transfer matrix data 

( j ) :kG . In addition, a nominal model 

0 ( j )G  may be known in either case. In the sequel, 

the argument “ j ” is omitted for convenience. 

In practice, the data may be obtained from a number 

of identification experiments k , 1, ,k N .  In 

case (a), the smoothing of output data can be accom-

plished by fitting a model kG  to data and using the 

output from this model as the output ky , i.e., 

k k ky G u , k  (3) 

This is a convenient way of excluding noise and 

retaining “difficult” dynamics, which cannot easily 

be included in a single model (e.g., due to non-

linearity), in the model set (Böling et al., 2004; 

Häggblom et al., 2003).  The modeling technique to 

be described does not require a nominal model 0G  to 

be known initially, but if such a model is used, it can 

be obtained, e.g., by fitting a single model to all 

available input-output data. 

Since the uncertainty modeling is based on data 

obtain, e.g., through identification, it is important that 

the identification experiments are thoroughly 

exciting and that they adequately cover the relevant 

operating region.  We think that this requirement is 

of greater concern than, e.g., the possible uncertainty 

associated with the individual models kG . Therefore, 

we do not take such uncertainty into account. 

2.3 Input-Output Matching vs Model Matching

Case (a), mentioned above, can be considered an 

input-output matching problem and case (b) a model 

matching problem.  Insofar as these kinds of tech-

niques have been used for uncertainty modeling, 

model matching seems to be the predominant choice 

(see Hindi et al., 2002; Farag and Werner, 2004).  

However, model matching generally results in an 

uncertainty model having a larger region of uncer-

tainty than a model determined by input-output 

matching (Nyström et al., 2003). 

This can be explained by the fact that in model 

matching, every model kG , 1, ,k N , is assumed 

to apply for all possible inputs, whereas only a single 

input-output pair ( , )k ku y  is associated with kG  in 

input-output matching.  If the identification experi-

ments have resulted in a set of models, it is because 

different input sequences (as well as different oper-

ating points and conditions) give different models.  

Thus, it is realistic to assume that a model applies 

only to the input sequence used for generating the 

data, from which the model was determined. 

Because of this, we propose input-output matching as 

the main method for uncertainty modeling. However, 
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because both methods have merit, and only model 

data might be available in a given case, we do 

consider both methods in this paper.  Furthermore, 

the techniques for input-output matching and model 

matching are quite similar.  

3. UNCERTAINTY MODELING BY CONVEX 

OPTIMIZATION 

3.1 Minimizing the Region of Uncertainty

Calculations for the uncertainty modeling are 

performed “frequency-by-frequency” for a set of 

relevant frequencies .  At each frequency, we 

desire a non-conservative norm-bounded uncertainty 

description 

0 1 2G G W W , ( ) 1  (4) 

where ( )  is the maximum singular value of .

As a result of the optimization, we will obtain fre-

quency responses of 1W  and 2W , and possibly of a 

new 0G , at all frequencies considered.  A model of 

the form (1) requires that transfer function matrices 

are fitted to these frequency responses.  Although the 

frequency responses are determined subject to 

appropriate data-matching conditions, the same data-

matching conditions should again be enforced during 

the fitting so as not to introduce unnecessary conser-

vatism or violation of constraints.  However, we shall 

not consider this part of the problem in this paper. 

Although the uncertainty modeling is based on 

certain frequency-response data, a model relevant for 

arbitrary (norm-bounded) inputs u , 1u , is de-

sired.  Here, u  denotes the Euclidean 2-norm of u .

For such an input, the deviation e  between the 

output from the uncertainty model and the nominal 

model is a measure of the uncertainty.  This 

deviation is given by 

0 1 2: ( )e G G u W W u  (5) 

Here, 2W u  is an input to the uncertainty block .

An unstructured uncertainty , ( ) 1 , can then 

produce any output x  bounded by 2x W u .

When x  varies over its range of possible values, the 

deviation 1e W x  covers an ellipsoidal region.  This 

interpretation may not be immediately obvious when 

the entities are complex valued, but it can be justified 

(Häggblom, 2005a).  When 1W  has full row rank 

(which is necessary for arbitrary data matching), the 

size (volume) of this ellipsoid is proportional to 
* 1/ 2

1 1det( )
n

W W x , where n  is the size of the matrix 

*
1 1W W  (equal to the number of outputs) and super-

script * denotes complex-conjugate transpose. We are 

interested in minimizing the size of this ellipsoid for 

the worst input u .  This gives the objective function 

* 1/ 2
1 1 2det( )

n
J W W W  (6) 

to be minimized subject to appropriate data-matching 

and other constraints. 

The scaling factor 2W  introduces a potential prob-

lem in the minimization of J . However, since the 

values of the right-hand sides of (4) and (6) do not 

change if one of the weights is multiplied by a 

positive scalar and the other weight is divided by the 

same scalar, 2W  can, without loss of generality, be 

required to have a given norm and can thus be 

excluded from (6). 

If possible, we require the objective function to be 

convex.  The determinant in (6) is the determinant of 

a positive definite matrix, but it is not a convex 

function.   Fortunately, it can be transformed to an 

equivalent convex function and one way of doing it 

is to take the logarithm of the determinant (Vanden-

berghe et al., 1998).  However, this results in a con-

vex objective function for a maximization problem.  

Since we want to minimize the determinant, we need 

to use the inverse of the positive definite matrix.  We 

thus want to 

 minimize 1log detY  (7) 

where 

   * 1/ 2
1 1: ( ) 0Y W W  (8) 

Here, “ ” denotes “positive definite”. 

An obvious alternative to the minimization of 
1detY  is minimization of 1W .  This would mini-

mize the largest possible deviation of e ,  but the size 

of the resulting uncertainty region would generally 

be larger than that obtained by determinant mini-

mization.  In norm minimization, a scalar weight 

would in fact be sufficient (Böling et al., 2004). 

For robustness reasons in controller design, it might 

be desirable to restrict 1W  even when 1detY  is 

minimized.  Let us introduce the restriction 

1 1W  (9) 

This is equivalent with the matrix inequalities 

1/ 2 1
1 1 1( )W W Y I 1

1 0I IY I  (10) 

or

1

0
Y I
I I

 (11) 

which can be used as a constraint when 1detY  is 

minimized. 

We note that although we do not try to minimize the 

largest deviation e , we do consider the most harmful 

input u , 1u .  Since the input 2W u  to  also 

covers an ellipsoidal region when u , 1u , varies 

over its admissible range of values, a reasonable 

alternative would be to minimize the product of the 

sizes of the two ellipsoids (Häggblom, 2005b). 

Next we shall derive constraints imposed by data 

matching requirements.  For ease of presentation, we 

start with model matching. 
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3.2 Model Matching

In model matching it is required that every kG G

can be reproduced by some allowed perturbation 

k  in accordance with (4). We thus require a 

condition which guarantees that 

0 1 2:k k kE G G W W , ( ) 1k  (12) 

can be satisfied exactly.  In principle, we can con-

struct such a k  explicitly, but we shall here use a 

result from the literature. 

Let n m
kE , 1

n pW , 2
q mW , n p ,

q m .   Then there is a p q
k , ( ) 1k , if 

and only if (Poolla et al., 1994; Chen and Gu, 2000) 

1 1

2 2

0k

k

W W E

E W W
 (13) 

We note that this condition does not require any of 

the matrices to be square; it is only required that the 

dimensions of k  are not less than those of kE .

In order to be useful for our purposes, the data 

matching condition should be linear with respect to 

the optimization variables.  As given, (13) is not 

linear with respect to Y , defined in (8).  However, 

(13) can be reformulated in various ways (see, e.g., 

VanAntwerp and Braatz, 2000).  The condition is 

equivalent with  

1 1 0W W , * 1
2 2 1 1( ) 0k kW W E W W E  (14) 

If we introduce Y according to (8) and define 

   *
2 2: 0X W W  (15) 

the latter part of (14) can be written  

0k kX E Y YE  (16) 

This, in turn, can be written as the linear matrix 

inequality (LMI) 

* 0
( )

k

k

I YE

YE X
 , k  (17) 

which is linear in Y  and X .

If we want to optimize also with respect to 0G , (17) 

has to be modified slightly.  By defining 

   0:Z YG  (18) 

(17) can be written as  

* 0
( )

k

k

I YG Z

YG Z X
 , k  (19) 

which is linear in Y , Z  and X .

As discussed in the previous section, 2W  needs to 

be restricted.  Otherwise, (16) can always be satisfied 

by  a  sufficiently  large X   regardless of Y .  Let  us  

thus introduce the restriction 

2 2W  (20) 

This is equivalent with the matrix inequalities 

     2
2 2 2W W X I 2 1

2 0I XX X  (21) 

or

2
2

0
X X

X I
 (22) 

In principle, arbitrary structures can be imposed on 

1W  and 2W , resulting in corresponding structures for 

Y  and X . These structures would most commonly 

be block-diagonal ones.  If desired, the structure of 

Z  could also be constrained, thus affecting the 

structure of the estimated 0G .

More generally, Y , X  and Z  may belong to certain 

sets ,  and , respectively.  The general opti-

mization problem based on model matching can then 

be formulated as follows: 

1

, ,
minimize det ,

subject to (19), (22), (11)

Y X Z
Y

 (23) 

3.2 Input-Output Matching

In the case of input-output matching we require

0 1 2:k k k k ke y G u W W u , ( ) 1k  (24) 

Similarly as above, we can derive the LMIs 

* * 0
( )

k

k k k

I Ye

Ye u Xu
, k  (25) 

and

* 0
( )

k k

k k k k

I Yy Zu

Yy Zu u Xu
, k  (26) 

where the latter is used if 0G  is to be updated. 

The general optimization problem based on input-

output matching can now be formulated as follows: 

1

, ,
minimize det ,

subject to (26), (22), (11)

Y X Z
Y

 (27) 

3. APPLICATION TO DISTILLATION 

A distillation column is a multivariable system 

usually characterized by a strong directionality, 

which means that the transfer matrix is ill-condi-

tioned and nearly singular.  In order to be useful for 

controller design, a model must provide a good 

description of the directionality properties. 

It tends to be almost impossible to capture these 

properties with sufficient accuracy in a single linear 

model determined through system identification.  

The nonlinearity of the plant further complicates the 
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matter.  Therefore, an appealing approach in the 

modeling of a distillation column is to determine a 

set of linear models.  Such a set has been determined 

by Häggblom and Böling (1998) and will be used in 

this application. 

The distillation column is a pilot-scale two-product 

column, which was identified by applying a series of 

step changes in the high- and low-gain input direc-

tions.  From these experiments, a nominal model as 

well as six additional models were determined as 

transfer matrix models composed of second-order 

transfer functions with deadtime (Häggblom and 

Böling, 1998).  The models have two outputs (distil-

late and bottoms composition) and two inputs (reflux 

and vapor to the reboiler). 

Various types of “simple” uncertainty models have 

been considered for this column and a multiplicative 

output uncertainty model of the form 

1 0( )G I W G  (28) 

was found adequate in previous studies  (Nyström et
al., 2003; Böling et al., 2004; Häggblom, 2005b).  In 

these studies, the 2 2  weight matrix 1W  was deter-

mined frequency by frequency by matching to input-

output data using determinant minimization. Transfer 

function filters were also determined by fitting to the 

calculated weights. The possibility of adjusting the 

nominal model so as to reduce the conservatism of 

the uncertainty model was not considered. 

The convex optimization formulation presented in 

this paper was not available in the previous works.  

Thus, the optimizations were non-convex with 

various numerical problems.  By the present formu-

lation it is straightforward to solve the problem.  The 

calculation of a nominal model and other types of 

uncertainty models can be handled within the same 

framework. 

In this paper, we shall compare the uncertainty 

models obtained by determinant minimization with 

models obtained by minimization of the maximum 

singular value of the weight matrix.  We shall con-

sider full weight matrices, diagonal weight matrices 

and scalar weights.  We shall also illustrate how the 

uncertainty model can be improved by optimizing 

the nominal model. For simplicity, we only illustrate 

the results by steady-state data. 

Table I shows the nominal model obtained by fitting 

to all input-output data in Table II.  Experiments 1–3 

are step changes in the low-gain direction and experi-

ments 4–6 step changes in the high-gain direction of 

the distillation column. 

Figure 1 shows the experimental data points as the 

coordinates of the components of the deviation 

0k k ke y G u  (29) 

normalized by ku .  Because the data points farthest 

away from the origin are close to the coordinate axes, 

it is sufficient to use a diagonal uncertainty weight 

matrix 1W  in the uncertainty model (28). The 

smallest ellipse in Fig. 1 illustrates the uncertainty 

region of model (28) obtained when the size (i.e., 

area) of this region is minimized.  The uncertainty 

model can generate any point inside the ellipse.  As 

can be seen, all experimental points are in the region 

and it cannot be made smaller, using a diagonal 

weight and the given nominal model, without exclu-

ding some experimental point. 

Figure 1 also shows the uncertainty region obtained 

by minimizing the maximum singular value of the 

diagonal weight 1W  as well as the uncertainty region 

for an optimal scalar weight.  Clearly, these are 

larger than the uncertainty obtained by minimizing 

the size of the uncertainty region.  It can also be 

mentioned that the uncertainty region obtained by 

model matching is an order of a magnitude larger 

than the one obtained by data matching. 

TABLE I 

Nominal Steady-State Model

0

0.04229 0.09349
(0)

0.11733 0.27858
G

TABLE II 

Steady-State Data of Individual Experiments 

Exp. # 1u 2u 1y 2y

1 10.0 5.0 0.06180 0.23315

2 20.0 10.0 0.09280 0.42640

3 10.0 5.0 0.04135 0.20590

4 0.5 1.0 0.11513 0.50204

5 1.0 2.0 0.22997 0.76869

6 0.5 1.0 0.17393 0.33254

−0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Second component of e
k
/||u

k
||

F
irs

t c
om

po
ne

nt
 o

f e
k/||

u k||

Fig. 1.  Normalized output deviations of experimental

points with uncertainty regions at steady state:

smallest region ( ), region with smallest norm

( ), smallest region with scalar weight (  · ). 
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The experimental points in Fig. 1 indicate that the 

uncertainty regions could be reduced by adjusting the 

nominal model.  Figure 2 shows the result of such an 

adjustment obtained by solving the problem defined 

in Eq. (27).  Note that the positions of the experi-

mental points are changed because the nominal 

model affects the deviations ke .  Note also the diffe-

rences between the scales in Fig. 1 and Fig. 2.  

Figure 3 shows the corresponding result for the cases 

when the maximum singular value of a full weight 

matrix 1W  is minimized and when an optimal scalar 

weight is used.  Even though the nominal model is 

adjusted so as to minimize these weights, the resul-

ting models have uncertainty regions significantly 

larger than that of the model obtained by solving Eq. 

(27).   

4. CONCLUSIONS 

A procedure based on convex optimization tech-

niques for deriving norm-bounded uncertainty 

models for MIMO systems has been presented.  The 

procedure applies for uncertainty models with a 

norm-bounded unstructured uncertainty, but other-

wise quite general model types (additive, multipli-

cative, LFT uncertainty) as well as placement and 

structures of weights can be handled.  Data for the 

uncertainty modeling may be available as sets of 

input-output data or a number of deterministic 

models.  Generally, input-output data is preferable 

since it gives a less conservative uncertainty model.  

The uncertainty modeling is based on data (or model) 

matching in the frequency domain, for which neces-

sary and sufficient conditions are expressed by LMIs.  

The size (area, volume) of an ellipsoidal uncertainty 

region, or its norm (largest distance from the origin), 

may be minimized.  As indicated by an application to 

distillation modeling, minimization of the size of the 

uncertainty region tends to be the superior approach.  

The uncertainty models contain a nominal model, 

which strongly affects the size of the uncertainty 

region, and which may be adjusted so as to minimize 

this region. 
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Fig. 2.  Experimental points and uncertainty region

for full optimal weight and nominal model.
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Fig. 3. Experimental points and uncertainty regions

for full weight with smallest norm ( ) and smallest 

scalar weight (  · ) with optimal nominal model.
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