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Abstract: For most applications, the rotary kiln product quality control problem is
to apply a certain temperature profile to the solids within the kiln through direct
contact with a hot flue gas produced by combustion. Since it is very difficult to
measure the solids temperature profile in the kiln, due to the harsh environment
and the rotating motion of the shell, quality control is often achieved in practice
by controlling the solids discharge temperature close to some target value. The
rational behind that is twofold: 1) the solids discharge temperature is often highly
correlated to Copyright c© 2006 IFAC
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1. INTRODUCTION

Rotary kilns are frequently used in the chemical
and mineral processing industries since they can
accommodate the production of various kinds of
products over a wide range of operating condi-
tions. These very versatile process equipments are
used for the calcination of lime and coke, the
pyrolysis of various kinds of wastes, and for ore
roasting and sintering. They are also used to dry
a wide variety of products, such as fish and Soya
meal, minerals, sawdust, and grain, bark, coal,
fertilizer, and other aggregates. Rotary kilns are,
however, very complex systems involving simul-
taneous solid-gas heat and mass transfer coupled
to chemical reactions and solids transportation

1 Supported by NSERC (Canada).

problems. Fundamental modelling of these sys-
tems to improve understanding and operational
practices is still a very active research area (Finnie
et al., 2005).

For most applications, the rotary kiln product
quality control problem is to apply a certain
temperature profile to the solids within the kiln
through direct contact with a hot flue gas pro-
duced by combustion. Since it is very difficult
to measure the solids temperature profile in the
kiln, due to the harsh environment and the ro-
tating motion of the shell, quality control is of-
ten achieved in practice by controlling the solids
discharge temperature close to some target value.
The rational behind that is twofold: 1) the solids
discharge temperature is often highly correlated
to product quality measured in the laboratory,
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and 2) this temperature is easier to measure with
good accuracy using IR pyrometers, which also
provides more frequent measurements than labo-
ratory quality analyses (in the order of seconds
instead of a few times per day). The typical
quality control strategy is to maintain the solids
discharge temperature above a lower limit, be-
low which product quality starts degrading (pro-
duction loss), and below an upper limit, above
which the kiln automatically shuts down for safety
reasons. In the latter case, several minutes are
required to restart the kiln and also involve pro-
duction losses. Achieving a solids discharge tem-
perature within these limits is, however, no longer
sufficient due to constantly increasing fuel costs
and the pressure to reduce CO2 emissions (e.g.
Kyoto agreement) and other combustion pollu-
tants such as CO, NOx and SO2. The solution
to simultaneously reduce gaseous emissions and
fuel consumption while maintaining the desired
product quality is to reduce temperature varia-
tions as much as possible to bring its target value
closer to the lower temperature limit (i.e. reduce
overheating).

Reducing discharge temperature variability is dif-
ficult since this amount in reducing variations
in the heat released by the combustion process.
In most rotary kiln applications, turbulent non-
premixed combustion is used, which means that
combustion and mixing of the fuel and the oxidizer
(e.g. air) occur simultaneously, at the burner tip.
This type of combustion process is more chaotic
and difficult to control than when the fuel and
air are premixed and then burned (Yu and Mac-
Gregor, 2004). Moreover, the secondary air flow
rate is not always measured (but changed using
fans), and several rotary kilns are operated using
multiple sources of fuel having different heats of
combustion.

Implementing feedback controllers on such a ro-
tary kiln to control the discharge temperature
using, for example, total fuel flow rate as the ma-
nipulated variable is the first step in reducing vari-
ability. However, these kilns have long dead-times
and slow dynamics and are affected by several
sources of unmeasured disturbances, several of
them introduced by the combustion process itself.
To further reduce discharge temperature (quality)
variability ones need to predict the impact of these
unmeasured disturbance and to forecast them in
the future. This is very difficult to do with the
actual instrumentation due to the absence of in-
ternal state measurements. The main contribution
of this work is to provide one such internal state
sensor to forecast product quality using images
of the combustion flame taken within the kiln.
This new sensor could be used in conjunction
with any process control strategy and would fit
particularly well into a Model Predictive Control

(MPC) framework. It can also be of great help to
operators when the kilns are manually controlled,
as is often the case in industry.

Flame imaging has already been investigated in
the past, but most of these contributions were per-
formed on laboratory scale combustion systems
and premixed flames, and their approach was to
compute geometrical and luminous properties of
the flame extracted from gray scale images and use
them to either classify the flame into arbitrarily
defined states (Bertucco et al., 2000; Victor et

al., 1991) or to predict various quantities such as
flicker rate (Huang et al., 1999), unburnt carbon,
CO2 and NOx emissions (Shimoda et al., 1990; Lu
et al., 1999; Yan et al., 2002) or fuel and air flow
rates (Tao and Burkhardt, 1995). Only a few past
investigations were extracting the flame features
from RGB color images (Wang et al., 2002; Key-
van, 2003) and were taking advantage of the three
wavelengths to estimate the flame temperature
distribution using the bicolor method. Finally,
a few research works analyzed the flames using
spectrometers (Keyvan, 2003) from which it is
possible to extract more precise chemical informa-
tion about the radicals present in the flame. An
additional limitation of these approaches consists
of extracting the flame visual features directly
from the image space. Since the flame is turbu-
lent, it bounces around continuously and hence,
extracting the flame visual characteristics requires
finding the location of the flame boundaries for
each image. This step increases computation time
and might cause difficulties for on-line monitoring
of highly turbulent flames. This problem has re-
cently been addressed by Yu and MacGregor (Yu
and MacGregor, 2004) who applied the Multi-
variate Image Analysis (MIA) technique to RGB
images of non-premixed turbulent flames from an
industrial boiler. This method will be used in this
work to build a dynamic model between the flame
image and solids discharge temperature.

The rest of this paper is organized as follows:
the industrial rotary kiln system is presented in
Section 2, as well as the data and flame images
collected from it. In Section 3, Multivariate Image
Analysis and Regression (MIA and MIR) meth-
ods to extract the features of flame images and
to regress them against discharge temperature
(product quality) are presented. Three approaches
for forecasting the product quality are described
and compared in Section 4: forecasts based on
flame images, on an autoregressive model and
finally by combining both preceding techniques
with a Kalman filter. Finally, some conclusions
are drawn in Section 5.
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Fig. 1. Rotary kiln and imaging system setup

2. INDUSTRIAL PROCESS AND
COLLECTED DATA AND IMAGES

The rotary kiln studied in this work is shown in
Figure 1, along with the flame monitoring system.
A total of four of these kilns are currently operated
by QIT-Fer et Titane inc. (Sorel-Tracy, Qubec,
Canada), each of them are about 220 ft long and
have a diameter of about 12 ft. The kiln is used
to apply a heat treatment to raw ore by a direct
contact with a hot gas flowing in countercurrent
with the solids. The mean residence time of the
solids within the kiln is currently about 80 min-
utes as determined by the rotational speed and
the inclination of the kiln, as well as the solids
throughput. A number of thermocouples are in-
serted through the kiln shell at different locations
along the kiln length. However, these are consid-
ered unreliable by operators and engineers. They
are located in an extremely harsh environment
and would require frequent maintenance to ensure
reliable readings, which can be performed only
during shutdowns since they rotate with the shell.
Only the roasted ore (final product) discharge
temperature obtained using an IR pyrometer is
considered to be a reliable solids temperature
measurement. The solids discharge temperature
is strongly related to roasted ore quality and is
currently used by operators for quality control
since laboratory quality measurements are only
available every few hours and are obtained from
a composite sample of all the kilns. It is the
variations in the discharge temperature that will
be modeled using flame imaging.

The combustion takes place at the solids discharge
end of the kiln. Two types of fuel as well as pri-
mary air are fed to the burner tip from three con-
centric pipes without premixing. The flow rates of
primary air and the two fuel types are measured
on-line. Fuel A is produced in another part of the
plant and both its flow rate and heat of combus-
tion vary. The flow rate of fuel B (supplied to the
plant) is adjusted to maintain heat released by
the combustion, based on a relationship involving

Periods Date Number of frames

1 May 2004 2526

2 June-July 2004 6730

3 August 2004 1839

4 November 2004 23134

5 February 2005 46229

Total: 80458

Table 1. Summary of collected images

the ratio of standard heat of combustion of each
fuel. Finally, secondary air is also blown in the kiln
to support complete combustion and to maintain
a certain amount of excess oxygen in off-gas for
safety considerations. Secondary air flow rate is
not currently measured, but changed using fans.

The color CCD video camera (JVC TK-C1380)
is installed in a small opening just behind the
burner. An air-cooling device is used to protect
the CCD from damage caused by high tempera-
tures. The output signal of the camera is sent to
a portable computer located in the control room,
where the frames are digitized using a frame grab-
ber card. Each of the resulting digital image forms
a three way array or a ”cube” of data consisting of
640 x 480 pixels (spatial dimensions) and, for each
of these pixels, the light intensity in the red (R),
the green (G), and the blue (B) colors are stored in
the third dimension of the cube (i.e. the spectral
dimension is 3). The RGB light intensities vary
between 0 and 255 with a resolution of 24 bytes.

To develop prediction models for solids discharge
temperature (quality), a total of 80458 such im-
ages were collected over time at a rate of 1 frame
every 10 seconds. Images were intentionally gath-
ered at different periods during year 2004-2005
to capture any seasonal variations and to test
the robustness of the prediction models. Table 1
summarizes the five image collection periods.

On-line kiln operation data was also collected and
synchronized with the flame images. About 50
measurements currently are available around the
kilns. However, the most relevant measurements
for this work were solids throughput and discharge
temperature, as well as the following combustion
related variables: fuel (A and B) and primary air
flow rates, fuel ratio and total fuel flow rate, and
the shutter position of the secondary air blower.

3. FEATURE EXTRACTION AND
REGRESSION BASED ON MIA AND MIR

3.1 Extraction of Flame Image Features using

MIA

Prior to developing models between flame images
and solids discharge temperature, ones needs to
extract the features of flame images in order to for-
mulate the regression problem. It has been shown
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by Yu and MacGregor (Yu and MacGregor, 2004)
that flame color features can be efficiently ex-
tracted using a MIA technique, since it classifies
the image pixels according to their spectral char-
acteristics (e.g. combinations of RGB intensities)
without considering their spatial position. This
means that flames having a similar coloration (i.e.
similar heat release) will be projected in a similar
region of the MIA low dimensional feature space
even if they are located differently in the image.
This is a very useful characteristic since the ob-
jective of this work is to develop a model between
heat released by the flames (i.e. flame color) and
product quality rather than tracking the position
of highly turbulent flames that bounce around
constantly. MIA therefore allows extracting flame
information without first locating the flame within
the image. This is a major advantage compared to
conventional flame image analysis techniques used
in previous research working directly in the image
space, hence requiring additional computing time.

The MIA technique will be briefly discussed here,
but for more details the reader is referred to
Geladi and Grahn (Geladi and Grahn, 1996) and
to a few of papers (Yu et al., 2003) using this
technique for various quality control applications.
MIA essentially consists in performing a Multi-
Way Principal Component Analysis (MPCA) on
a digital multivariate image. This involves two
steps. First, the digital image X is unfolded from
a three-way array to a two-way matrix X:

X
(Nrow,Ncol,Nspect)

unfold
−→ X(Nrow×Ncol,Nspect)

(1)

where Nrow and Ncol correspond to the spatial
dimensions of the image (640 and 480 in this
study), whereas the third dimension or spectral
dimension is identified by Nspect. Since the images
have three spectral channels (R, G, and B), Nspect

equals 3. This unfolding operation collects the
RGB intensities of each pixel row wise in matrix
X. Second, PCA is performed on the unfolded
digital image X:

X =

K∑

a=1

tapT
a + E (2)

where K is the number of principal components,
the ta vectors are the score vectors, and the cor-
responding pa vectors are the loading vectors. For
RGB images, the maximum number of compo-
nents is 3. If K < 3, then E contains the residuals
of the PCA decomposition. A kernel algorithm
is typically used to compute this decomposition
since X has a very large number of rows (N =
640480 = 307200) and a small number of columns
(3). In this algorithm, the loadings vectors (pa)
are obtained from a singular value decomposition
(SVD) of the very low dimensional kernel matrix
XT X (only 3 × 3 for an RGB image). The score

vectors are then computed using ta = Xpa. The
MIA technique as described previously is used for
the analysis of a single image. When MIA is to be
used for the analysis of a set of J images, then
the kernel matrix is calculated as

∑J
i=1 XT

i Xi

and then SVD is performed on that summation
matrix to calculate the loading vectors.

As for the analysis of data matrices using PCA,
the interpretation of image features is performed
using score plots, and particularly t1 − t2 score
plots since in most MIA applications using RGB
images, the first two principal components explain
most of the variance (Yu and MacGregor, 2004).
However, due to the very large number of score
values typically encountered in image analysis
(total number of pixels or 307200 for a 640 ×
480 image), the score plots are usually displayed
as 2-D density histograms and shown as images
themselves to enhance their visual appearance.
To obtain such a score histogram, denoted as
TT , the t1 − t2 score plots is first divided into a
number of bins, usually 256 × 256, and the pixels
falling into each bin are then counted and stored
in matrix TT at the corresponding bin location.
After selecting a proper color map proportional to
the pixel density in each bin, the 2-D score density
histogram TT (256 × 256 × 1) can be displayed
as an image. When a set of images are analyzed
using MIA, a common scaling range is used for the
scores prior to compute the density histograms.
This scaling range corresponds to the minimum
and maximum values of all t1 and t2 score vectors
of the set of images.

An alternative way to interpret the image infor-
mation is to refold the ta (Nrow ×Ncol × 1) score
vectors in a three-way array Ta (Nrow ×Ncol × 1)
according to the same spatial coordinates as in
the original image X (i.e. pixel locations), and
then show each Ta as a univariate image. This
is useful to visually identify the information ex-
tracted from the original image by each principal
component (Yu and MacGregor, 2004).

3.2 Multivariate Image Regressionsubsec:MIR)

The aim of this work is to build a dynamic model
between the flame color features extracted from
each image and the corresponding solids discharge
temperature measurement (i.e. quality variable).
This can be accomplished using Multivariate Im-
age Regression (MIR), which refers to a fam-
ily of techniques used for regressing quality or
response variables on image features. Image re-
gression problems can be formulated in several
ways, depending on the image feature extraction
method. In this study, solids discharge tempera-
ture is regressed on the t1 − t2 score density his-
tograms (i.e. distribution features) obtained from
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Fig. 2. Multivariate Image Regression (MIR)
problem formulation

flame images using MIA (see previous section).
However, prior to build regression models, one
needs to solve the dimensionality issue arising
from the fact that for each score histogram (i.e.
a matrix of dimension Nbt1 × Nbt2) correspond
a single temperature measurement (i.e. a scalar).
Dimensions Nbt1 and Nbt2 are the number of bins
dividing the score plot along the t1 and t2 score
axes respectively. This problem was addressed by
storing the elements of each score histogram ma-
trix (i.e. number of pixels falling into each bin)
row wise in a new matrix XMIR as follows:

XMIR(i, 1 : Nbt1 × Nbt2) =

[TTi(1, 1 : Nbt1) TTi(2, 1 : Nbt1) . . .

. . . TTi(Nbt2, 1 : Nbt1)]

i = 1, 2, . . . , J

(3)

This procedure is schematically shown in Figure
2 for the score histogram of flame image i (TTi)
with Nbt1 = Nbt2 = 29 (i.e. score histogram di-
vided using a grid of 29×29). In this way, the t1−
t2 score density histogram information obtained
for image i is all contained in row i of XMIR

whereas the corresponding quality measurement
is stored in the ith row of the quality matrix Y .
Any appropriate regression method can then be
used to build a model between XMIR and Y ,
such as Ordinary Least Squares (OLS), Partial
Least Squares (PLS), etc. For this regression to be
meaningful, however, one must absolutely make
sure that a common scaling range has been ap-
plied to the t1−t2 score density histograms before
storing their elements in XMIR, and that these
elements are always stored in the same order to
preserve information congruency.

Finally, dividing score plots using a grid of 256×
256 is appropriate for image interpretation and vi-
sualization using MIA as discussed in Section 3.1.
For image regression purposes, however, such a
resolution is often unnecessarily high, and would
unduly increase computing time and memory re-
quirements. Most previous work on MIR make use
of a 32 × 32 grid. After some testing, a grid of
29 × 29 bins was selected for convenience, but no
further improvements in the results were obtained
by increasing the grid resolution.

Model A B C D

Forecast (min) 0 +5 +10 +15

R2

X,cum
(%) 59.8 59.9 59.9 59.8

R2

Y,cum
(%) 79.7 76.4 71.9 68.3

Q2

X,cum
(%) 77.8 74.4 69.4 66.0

RMSEP 16.22 17.35 18.20 19.10

Model E F G H

Forecast (min) +20 +40 +60 +80

R2

X,cum
(%) 52.9 53.3 53.3 53.2

R2

Y,cum
(%) 61.8 49.1 37.2 28.3

Q2

X,cum
(%) 60.3 47.1 34.8 25.3

RMSEP 20.13 22.82 25.30 27.01

Table 2. Summary statistics for the var-
ious dynamic models between flame im-
ages and solids discharge temperature

4. PREDICTION RESULTS

A subset of the data discussed in Section 2 was
used to build dynamic models between the color
features of flame images and solids discharge tem-
perature. After removing outliers, only the data
for which no operation disruption (kiln shutdown)
occurred within an 80 minutes window from cur-
rent time was kept for model development. From
the 80458 original images, only 53300 satisfied the
above criteria and were kept for model building
and validation.

The summary statistics for each prediction model
are presented in Table reftab:stats. It shows
the number of PLS components (A) used for
each MIR model determined by cross-validation,
three cumulative multiple correlation coefficients
(R2

X,cum, R2
Y,cum, and Q2

X,cum), and the root
mean square prediction errors (RMSEP). The
R2

X,cum statistics correspond to the percentage
of the total variance in the image information
(X) used to explain Y whereas R2

Y,cum gives the
percentage of the total variance of Y explained
by the model. The cumulative Q2

X,cum value is
the percentage of the total variance of Y that
can be predicted by the models using a leave-one-
out cross validation procedure. Model A shows a
very interesting result which is about 80% of the
discharge temperature variations are explained by
the flame color features, and hence are related to
variations in the combustion process. The remain-
ing 20% may be caused by feed disturbances (i.e.
changes in moisture content and solids composi-
tion and feed rate) and measurement noise. This
confirms that stabilizing the combustion process
could significantly reduce temperature variations
and therefore shows the importance of monitoring
the flame and kiln walls. As the forecast horizon
increases from 0 to 80 minutes in the future, the
rate of increase in the RMSEP is lower than linear.
Predicting discharge temperature t + 80 minutes
in the future using as the only the image color
feature at time t as the only source of informa-
tion still allow to explain as much as 30% of the
variations.
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Fig. 3. Measured and predicted discharge temper-
ature at time t, t + 40 and t + 80 minutes in
the future using the flame image collected at
time t (model A, F, and H respectively)

Figure 3 shows the prediction performance of
models A, F, and H on a validation data set,
consisting of 48000 images not used for model
building (only 5300 images were used for model
development). A very good agreement between
the time series, even for model H. .......

5. CONCLUSION

When ran simultaneously, models A-H will pro-
vide a temperature forecast from time t to time
t + 80 minutes, which will be very useful for kiln
operators to take appropriate control decisions,
when the kiln is manually operated. This set of
temperature predictions could also be incorpo-
rated into various predictive control schemes when
automatic kiln control is preferred. In future work,
ways to improve discharge temperature forecasts
by adding past images to that one collected at
time t will be investigated. This is not trivial since
each image contains large amounts of information.
Combining the current prediction models with
past temperature measurements into an ARMA
time series models framework is considered. How
to used the image information for combustion con-
trol and discharge temperature (quality) control
will also be investigated.
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(1991). A computer vision system for the
characterization and classification of flames in
glass furnaces. In: Conference Record of the

IEEE Industry Applications Society Annual

Meeting. pp. 1109–1117.
Wang, F., X.J. Wang, Z.Y. Ma, J.H. Yan, Y. Chi,

C.Y. Wei, M.J. Ni and K.F. Cen (2002).
The research on the estimation for the nox
emissive concentration of the pulverized coal
by the flame image processing technique. Fuel

81, 2113–2120.
Yan, Y., G. Lu and M. Colechin (2002). Moni-

toring and characterisation of pulverized coal
flames using digital imaging techniques. Fuel

81, 647–656.
Yu, H. and J.F. MacGregor (2004). Monitoring

flames in an industrial boiler using multivari-
ate image analysis. AIChE J. 50, 1474–1483.

Yu, H., J.F. MacGregor, G. Haarsma and
W. Bourg (2003). Digital imaging for on-
line monitoring and control of industrial
snack food processes. Ind. Eng. Chem. Res.

42, 3036–3044.

IFAC - 76 - ADCHEM 2006


