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Abstract: We design a leak detection system consisting of an adaptive Luenberger-
type observer based on a set of two coupled one dimensional first order nonlinear
hyperbolic partial di erential equations governing the flow dynamics. It is assumed
that measurements are only available at the inlet and outlet of the pipe, and output
injection is applied in the form of boundary conditions. For the linearized model
without friction and leak, exponential convergence of the state estimates to the
plant state is shown by Lyapunovs method. The observer design is performed for
the continuum model, ensuring that convergence properties established theoreti-
cally are not an artifact of the method of discretization. Heuristic update laws for
adaptation of the friction coe cient and leak parameters are given, and simulations
demonstrate their ability to detect, quantify and locate leaks.
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1. INTRODUCTION

Transportation of liquids in pipelines requires
monitoring to detect malfunctioning such as leaks.
In the petroleum industry, leaks from pipelines
may potentially cause environmental damage, as
well as economic loss. These are motivating fac-
tors, along with requirements from environmental
authorities, for developing e cient leak detection
systems. While some leak detection methods are
hardware-based, relying on physical equipment
being installed along the pipeline, the focus of
this paper is on software-based methods that work
for cases with limited instrumentation. In fact,
instrumentation in the petroleum industry is usu-
ally limited to the inlet and outlet of pipelines,
only. This calls for sophisticated signal process-
ing methods to obtain reliable detection of leaks.
Some software-based leak detection methods per-
form statistical analysis on measurements (black

box), while others incorporate models based on
physical principles. Our method falls into the lat-
ter category, in that we will use a dynamic model
of the pipe flow based on a set of two coupled
hyperbolic partial di erential equations.

There have been numerous studies on model based
leak detection. We mention here the most rel-
evant ones with regard to our work. Based on
a discretized pipe flow model, Billman and Iser-
mann (1987) designed an observer with friction
adaptation. In the event of a leak, the outputs
from the observer di ers from the measurements,
and this is exploited in a correlation technique
that detects, quantifies and locates the leak. Verde
(2001) used a bank of observers, computed by the
method for fault detection and isolation developed
by Hou and Müller (1994). The underlying model
is a linearized, discretized pipe flow model on a
grid of nodes. The observers are designed in
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such a way that all but one will react to a leak.
Which one of the observers that does not react
to the leak depends on the position of the leak,
and this is the mechanism by which the leak is
located. The outputs of the remaining observers
are used for quantifying the leak. The bank of
observers are computed using the recursive nu-
merical procedure suggested by Hou and Müller
(1994), however it was shown in Salvesen (2005)
that due to the simple structure of the discretized
model, the observers may be written explicitly.
This is important, because it removes the need
for recomputing the bank of observers when the
operating point of the pipeline is changed. Verde
(2004) also proposed a nonlinear version, using an
extremely coarse discretization grid.

Several companies o er commercial solutions to
pipeline monitoring with leak detection. Fantoft
(2005) uses a transient model approach in con-
junction with the commercial pipeline simulator
OLGA2000, while EFA Technologies (1987, 1990,
1991) uses an event detection method that looks
for signatures of no-leak to leak transitions in the
measurements.

The detection method of Verde (2001) using a
bank of observers, can potentially detect multiple
leaks. However, multiple simultaneous leaks is an
unlikely event, so the complex structure of a bank
of observers seems unnecessary. In this paper,
we instead employ ideas from adaptive control,
treating the size and location of a single point
leak as constant unknown parameters. This dif-
fers from the method of Billman and Isermann
(1987), since we will model the leak in the ob-
server, thereby obtaining state estimates also in
a leak situation. Another important aspect of
our method is that the observer is designed for
the continuum model, ensuring that convergence
properties established theoretically are not an ar-
tifact of the method of discretization. Our leak de-
tection system consists of an adaptive Luenberger-
type observer, based on a set of two coupled
one dimensional first order nonlinear hyperbolic
partial di erential equations governing the flow
dynamics. It is assumed that measurements are
only available at the inlet and outlet of the pipe,
and output injection is applied in the form of
boundary conditions. Heuristic update laws for
adaptation of the friction coe cient and the two
leak parameters are suggested.

2. MATHEMATICAL MODEL

2.1 Physical Model

For liquid flow in a pipe we have the mass conser-
vation

+ + 2 = 0 (1)

and the momentum conservation (ignoring fric-
tion for now)

+ +
1

= 0 (2)

for ( ) (0 ) × (0 ), and where is flow
velocity, is pressure, and is density. The
relation between pressure and density is modelled
as (Nieckele et al. (2001))

= +
2

(3)

where is a reference density at reference pres-
sure , and is the speed of sound. Equation
(1)—(2) also describes gas flow in a pipe, simply
by replacing (3) with the ideal gas law. Under the
conditions we consider, we assume is su ciently
large to ensure 0 In compact form, we have¸

+ ( )

¸
= 0 (4)

where, using (3),

( ) =
+

2

+

(5)

= 2 (6)

and the boundary conditions are

(0 ) = 0 ( ) (7)

( ) = ( ) (8)

The eigenvalues of are

1 = 2 = + (9)

Assuming that ¿ which is always the case in
the applications we are considering, the eigenval-
ues are distinct and satisfy

1 0 2 (10)

The system is therefore strictly hyperbolic. Steady
state solutions (¯ ¯) of (4), must satisfy

( )

¸
= 0 (11)

Since ( ) is invertible ( 6= 0), we have that

¯
= 0

¯
= 0 (12)

so ¯ and ¯ are constant. The boundary conditions
(7)—(8) yield ¯= and ¯ = 0.

2.2 Model in Characteristic Form

Consider now the change of coordinates

( ) = ln

µ
+

+ ¯

¶
+ ¯ (13)
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( ) = ln

µ
+

+ ¯

¶
+ ¯ (14)

which clearly is defined for all physically feasible
and . It is easy to see that it’s inverse is

( ) = ( + )̄ exp (( ) (2 )) (15)

( ) = ¯ + ( + ) 2 (16)

Notice that the fixed point (¯ ¯) corresponds to
(0 0) in the new coordinates. The time derivative
of (13)—(14) is

=
+

+ (17)

=
+

+ (18)

Inserting for and from (4) yields

=
+ ( + )

+

µ
2

+
+

¶

= ( + )

µ
+

+

¶
= ( + ) (19)

=
+ ( + )

+

µ
2

+
+

¶

= ( )

µ
+

+

¶
= ( ) (20)

Using (16), we obtain

+ (¯ + + ( + ) 2) = 0 (21)

+ (¯ + ( + ) 2) = 0 (22)

The boundary conditions are obtained from (15)—
(16), and are

(0 ) + (0 ) = 0 (23)

( ) ( ) = 0 (24)

The characteristic form (21)—(22) is convenient for
the observer design carried out in the next section.

3. OBSERVER DESIGN

In reality, input signals to pipelines are usually
choke openings at the inlet and outlet. Here, we
instead view 0 ( ) and ( ) in (7)—(8) as inputs
to the process, and construct the copy of the plant
dynamics (4)

ˆ
ˆ

¸
+ (ˆ ˆ)

ˆ
ˆ

¸
= 0 (25)

with boundary conditions

ˆ (0 ) = 0 ( ) (26)

ˆ( ) = ( ) (27)

Notice that the input to (4)—(8) is also copied
in (25)—(27). Equation (25)—(27) can be viewed
as a Luenberger-type observer, and convergence
is guaranteed when the process is operated at
asymptotically stable fixed points, which is usu-
ally the case for pipelines. However, we look for
alternatives to the boundary conditions (26)—(27)
which yield better convergence properties. Taking

0 ( ) = (0 ) and ( ) = ( ) as process
measurements, we may apply output injection to
(25)—(27). In transformed coordinates, we obtain

ˆ +
³
¯ + +

³
ˆ + ˆ

´
2
´
ˆ = 0 (28)

ˆ +
³
¯ +

³
ˆ + ˆ

´
2
´
ˆ = 0 (29)

with boundary conditions (we omit the argument
for brevity)

ˆ (0) + ˆ (0) = 0

³
(0) (0) ˆ (0) ˆ (0)

( ) ( ) ˆ ( ) ˆ ( )
´

(30)

ˆ ( ) ˆ ( ) =
³
(0) (0) ˆ (0) ˆ (0)

( ) ( ) ˆ ( ) ˆ ( )
´

(31)

where 0 and are functions to be designed.
Notice that the boundary injections (30)—(31)
may be any function of the known signals at both
ends of the pipe. For convergence analysis, we
consider the linearization of (21)—(22) and (28)—
(29) around (0 0) and form the dynamics of the

observer error, defined as ˜ = ˆ, ˜ = ˆ

We obtain

˜
˜

¸
+

˜
˜

¸
= 0 (32)

with boundary conditions

˜ (0) + ˜ (0) = 0

³
(0) (0) ˆ (0) ˆ (0)

( ) ( ) ˆ ( ) ˆ ( )
´

(33)

˜ ( ) ˜ ( ) =
³
(0) (0) ˆ (0) ˆ (0)

( ) ( ) ˆ ( ) ˆ ( )
´

(34)

where

=
¯ + 0
0 ¯

¸
(35)

Following Xu and Sallet (2002) and Coron et al.
(2004), consider the Lyapunov function candidate

=
1

+ ¯

Z
0

˜2 ( +¯)

+
1

¯

Z
0

˜2 ( ¯) (36)
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recalling the assumption that À |¯|. The time
derivative of along solutions of (32)—(34) is

˙ = + ˜2 (0) ˜2 (0)

˜2 ( ) ( +¯) + ˜
2
( ) ( ¯) (37)

At this point we need to select 0 and such

that ˜2 (0) ˜2 (0) and ˜2 ( ) ( +¯) +
˜2 ( ) ( ¯) are negative. We adopt the par-
ticularly simple choice made in Coron et al.
(2004), and select 0 and such that

˜ (0) = 0
˜ (0) (38)

˜ ( ) = ˜ ( ) (39)

in which case

˙ =
¡
1 2

0

¢
˜2 (0)³

( +¯) 2 ( ¯)
´
˜2 ( ) (40)

So, if

| 0| 1 and | | (41)

then

˙ (42)

Since (36) defines a norm equivalent to the 2

norm on [0 ], it follows that system (32) with
(38)—(39) is exponentially stable at the origin
in the 2 norm. Notice that (41) implies that
whenever | | 1, there exists 0 for which
(42) holds. Replacing (26)—(27) with the new
boundary conditions, the observer becomes

ˆ
+ ˆ

ˆ
+ ( + )̂

ˆ
= 0 (43)

ˆ
+

+ ˆ

ˆ
+ ˆ

ˆ
= 0 (44)

with boundary conditions

ˆ (0) = (0) +
1 0

1 + 0
ln

µ
+ (0)

+ ˆ(0)

¶
(45)

ˆ( ) = ( + ( ))

× exp

µ
1

(1 + )
( ( ) ˆ ( ))

¶
(46)

When 0 = 1 and = 1, (45)—(46) reduces to
(26)—(27). It is interesting to notice that the above
Lyapunov analysis does not provide exponential
convergence in this case. Another interesting ob-
servation to make is that the design is independent
of the working condition (¯ )̄. Figure 1 shows the
observer error in terms of evolution in time of the

2(0 ) norm of ( ) ˆ ( ) for the cases
with and without output injection (the 2 norm
of ( ) ˆ( ) looks qualitatively the same).
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Fig. 1. Observer error with (solid) and without
(dashed) output injection.

4. ADAPTATION OF FRICTION
COEFFICIENT

Adding friction to the model (4), we have the mass
balance

+ + ( + ) = 0 (47)

and momentum conservation

+ +
2

+
= (1 + )

2

| |
(48)

where is the pipe diameter, and is considered
an unknown constant that accounts for uncer-
tainty in the friction coe cient , which is given
by Schetz and Fuhs (1996)

1
= 1 8log10

"µ
3 7

¶1 11
+
6 9

Re

#
(49)

is the pipe relative roughness, Re is the
Reynolds number defined as

Re = (50)

and is the fluid viscosity. The observer is then

ˆ
+ ˆ

ˆ
+ ( + )̂

ˆ
= 0 (51)

ˆ
+ ˆ

ˆ
+

2

+ ˆ

ˆ
=

³
1 + ˆ

´ ˆ
2

|ˆ| ˆ
(52)

which incorporates an estimate ˆ of and
with boundary conditions (45)—(46). Consider the
heuristic parameter update law

˙̂
=

³
˜ ( ) + ˜ (0)

´
(53)

where is a strictly positive constant. In physi-
cal coordinates, equation (53) corresponds to

˙̂
= ( 1 + 2) (54)
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Fig. 2. Error in estimated friction factor, that is
ˆ .

where

1 = (0) ˆ (0) + ln

µ
+ ˆ(0)

+ (0)

¶
(55)

2 = ( ) ˆ ( ) + ln

µ
+ ( )

+ ˆ( )

¶
(56)

Figure 2 shows the evolution of ˆ when the
initial friction in the observer is twice that of the
plant.

5. LEAK DETECTION

Adding a leak to the model (47)—(48), with = 0
we have the mass balance

+ + ( + ) =
2

( ) (57)

and the momentum conservation

+ +
2

+
=

2

| |
+
1 2

+
( )

(58)
where is the pipe cross sectional area. Assuming
a point leak, we select ( ) as

( ) = ( ) (59)

where and are the size of the leak and
position of the leak, respectively, and denotes
the Dirac distribution. The observer is then

ˆ
+ ˆ

ˆ
+( + )̂

ˆ
=

2

ˆ ( ˆ ) (60)

ˆ
+ ˆ

ˆ
+

2

+ ˆ

ˆ

=
ˆ

2

|ˆ| ˆ
+
1 2

+ ˆ
ˆ ˆ ( ˆ ) (61)

which incorporates estimates of the leak size and
position, ˆ , ˆ . Consider the heuristic parameter
update laws

˙̂ =
³
˜ (0) ˜ ( )

´
(62)

and
˙̂ =

¯̄ ¯̄ 1 1
(63)

where
= ˜ ( ) + ˜ (0) (64)
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Fig. 3. Estimated size of leak (solid) and actual
size of leak (dashed).
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Fig. 4. Estimated position of leak (solid) and
actual position of leak (dashed).

and and are strictly positive constants.
In physical coordinates, equation (62)—(63) corre-
sponds to

˙̂ = ( 1 2) (65)

˙̂ = ( 1 + 2) | 1 + 2|
1 1

(66)

where 1 and 2 are given in (55)—(56). Figures
3—4 show the evolution of the estimates (65)—(66)
for a leak occuring at = 0 25 minutes.

6. SIMULATIONS WITH OLGA

The leak detection test in the previous section was
a nominal test, where the plant dynamics and the
observer dynamics were identical (except for out-
put injection, of course). Here, we perform more
realistic tests, replacing the plant dynamics by the
state-of-the-art flow simulator OLGA2000 1 . For
two di erent cases, summarized in Table 1, we run
our leak detection scheme (60)—(63) with (45)—
(46). In the table, denotes the mass rate of
fluid at the inlet. Figure 5 shows that the leaks
are quantified very accurately, while localization
is somewhat noisy. However, the average error in
position taken over the last 15 seconds shown in
the Figure, is within 0 25% and 0 36% of the pipe
length for Cases I and II, respectively.

1 OLGA2000 is a commercially available flow simulator
widely used by the petroleum industry. It is developed by
Scandpower AS.
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Parameter Case I Case II Unit

990 8000 m

0 10 0 51 m

1 26 3 1 2 3 m/s

1 38 9 1 24 9 Pa

0 0063 0 0056 Pa s

0 0 m
ˆ 0 13 0 028 -

4 9 12 5 kg/s

505 4000 m

70 300 kg/s

Table 1. Numerical coe cients.
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Fig. 5. Leak detection applied to OLGA simula-
tions.

7. CONCLUDING REMARKS

We have designed a leak detection system for
pipelines consisting of an adaptive Luenberger-
type observer and heuristic update laws for the
parameters characterizing a point leak. The only
available process information is flow velocity and
pressure at the inlet and outlet of the pipe. Sim-
ulations with a state-of-the-art flow simulator as
process, demonstrate accurate quantification and
localization in two test cases.
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