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Abstract: We present a stabilizing scheduled output feedback Model Predictive Control
(MPC) algorithm for constrained nonlinear systems with large operating regions. We
design a set of local output feedback predictive controllers with their estimated regions of
stability covering the desired operating region, and implement them as a single scheduled
output feedback MPC which on-line switches between the set of local controllers and
achieves nonlinear transitions with guaranteed stability. This algorithm provides a general
framework for scheduled output feedback MPC design.
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1. INTRODUCTION

Most practical control systems with large operating
regions must deal with nonlinearity and constraints
under output feedback control. Nonlinear Model Pre-
dictive Control (NMPC) is a powerful design tech-
nique that can stabilize processes in the presence of
nonlinearities and constraints. Comprehensive reviews
of state feedback NMPC algorithms can be found in
(De Nicolao et al., 2000). An output feedback NMPC
algorithm can be formulated by combining the state
feedback NMPC algorithm with a moving horizon ob-
server (MHE)(Findeisen et al., 2000b) or an extended
Kalman filter (Kothare and Morari, 2000). For an out-
put feedback NMPC algorithm, nonlinear program-
ming (NLP) problems are solved at each sampling
time.

Besides developing efficient techniques such as multi-
ple shooting for solving NLP (Findeisen et al., 2000b)
and parallel programming for control of nonlinear
PDE systems (Ma et al., 2002), researchers have pro-
posed various methods to simplify NMPC on-line
computation. In (Scokaert et al., 1999), it was pro-
posed that instead of the global optimal solution,
an improved feasible solution obtained at each sam-
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pling time is enough to ensure stability. In (Magni
et al., 2001), a stabilizing NMPC algorithm was de-
veloped with a few control moves and an auxiliary
controller implemented over the finite control hori-
zon. In (Jadbabaie et al., 2001), stability is guaranteed
through the use of an a priori control Lyapunov func-
tion (CLF) as a terminal cost without imposing termi-
nal state constraints. In (Angeli et al., 2000), nonlinear
systems were approximated by linear time varying
(LTV) models, and the optimal control problem was
formulated as a min-max convex optimization. In (Lu
and Arkun, 2002), nonlinear systems were approxi-
mated as linear parameter varying (LPV) models, and
a scheduling quasi-min-max MPC was developed with
the current linear model known exactly and updated at
each sampling time.

For a control system with a large operating region,
it is desired for the controller to achieve satisfac-
tory performance of the closed-loop system around
all setpoints while allowing smooth transfer between
them. Pseudolinearization was used in the quasi-
infinite horizon NMPC formulation to obtain a closed
expression for the controller parameters as a function
of the setpoint (Findeisen et al., 2000a). A novel gain
scheduling approach was introduced in (McConley et
al., 2000), in which a set of off-line local controllers
are designed with their estimated regions of stability



overlapping each other. In (El-Farra et al., 2002), a
bounded controller was used to define an explicit re-
gion of stability for a predictive controller.

In this paper, we extend the scheduled state feedback
MPC design in (Wan and Kothare, 2003) to the output
feedback case. For an individual local output feedback
predictive controller, we characterize explicitly an es-
timate of its region of stability under the condition
that the initial state estimation error is norm bounded,
and we also develop a moving horizon scheme to on-
line estimate the norm bound of the state estimation
error. Then we design a set of local output feedback
predictive controllers with their estimated regions of
stability overlapping each other. On-line, we imple-
ment the resulting family of local controllers as a
single scheduled output feedback MPC whose param-
eters are changed if certain switching criteria on the
estimated state and the norm bound of the state esti-
mation error are satisfied. This supervisory schedul-
ing of the local controllers moves the state through
the intersections of the estimated regions of stability
of different controllers to the desired operating point
with guaranteed stability. This algorithm provides a
general framework for the scheduled output feedback
MPC design, which can incorporate any local output
feedback MPC design scheme once its explicit region
of stability is characterized. Furthermore, by locally
representing the nonlinear system as a set of linear
time varying (LTV) models, the original nonlinear
non-convex optimization problem can be reduced to a
convex optimization problem involving Linear Matrix
Inequalities (Wan and Kothare, 2003).

2. LOCAL OUTPUT FEEDBACK MPC FOR
CONSTRAINED NONLINEAR SYSTEMS

2.1 State Feedback And No Disturbances

Consider a discrete-time nonlinear dynamical system
described by

x
�
k � 1 ��� f

�
x
�
k ��� u � k ��� (1)

where x
�
k �	� X 
 ℜn � u

�
k �	� U 
 ℜm are the system

state and control input, respectively, X and U are com-
pact sets. Assume f

�
x � u ���
� f1

�
x � u ������� fn

�
x � u ��� T

are continuous differentiable in x and u.

Definition 1. Given a set U, a point x0 � X is an equi-
librium point of the system (1) if a control u0 � int

�
U �

exists such that x0 � f
�
x0 � u0 ��� We call a connected set

of equilibrium points an equilibrium surface.

Suppose
�
xeq � ueq � is a point on the equilibrium sur-

face. Within a neighborhood around
�
xeq � ueq � , i.e.,

Πx ��� x � ℜn ��� xr � xeq
r
��� δxr � r � 1 ��������� n ��
 X � and

Πu ��� u � ℜm � � ur � ueq
r
�!� δur � r � 1 ��������� m �"
 U � let

x̄ � x � xeq and ū � u � ueq. The objective is to mini-
mize the infinite horizon quadratic objective function

min
ū # k $ i % k &(' F # k & x̄ # k $ i % k & J∞

�
k �

subject to

� ūr
�
k � i � k � �)� δur*max � i + 0 � r � 1 � 2 ��������� m (2)� x̄r
�
k � i � k � �)� δxr*max � i + 0 � r � 1 � 2 ��������� n (3)

where J∞
�
k ��� ∑∞

i ' 0 , x̄ � k � i � k � T Q x̄
�
k � i � k �-� ū

�
k �

i � k � T R ū
�
k � i � k �/. with Q 0 0 � R 0 0.We as-

sume that at each sampling time k, a state feed-
back law ū

�
k � i � k �1� F

�
k � x̄ � k � i � k � is used to min-

imize J∞
�
k � . At sampling time k � to derive an upper

bound on J∞
�
k � , define a quadratic function V

�
x̄ �2�

x̄T Q
�
k �43 1x̄ � Q

�
k �10 0 � Suppose V

�
x � satisfies the fol-

lowing exponential stability constraint

V
�
x̄
�
k � i � 1 � k � � α2V

�
x̄
�
k � i � k ����� V

�
x̄
�
k � k ��� � 1

(4)

with 0 5 α 5 1. There exists a γ
�
k �60 0 such that

V
�
x̄
�
k � i � 1 � k ��� � V

�
x̄
�
k � i � k ��� � � 1

γ
�
k �87� x̄ � k � i � k � T Q x̄

�
k � i � k �9� ū

�
k � i � k � T R ū

�
k � i � k � �

(5)

Summing (5) from i � 0 to i � ∞ and requiring
x̄
�
∞ � k �:� 0 or V

�
x̄
�
∞ � k ���:� 0 � it follows that J∞

�
k � �

γ
�
k � V �

x̄
�
k � k ��� � γ

�
k ��� Therefore, the optimization is

formulated as

min
γ # k &;* F # k & γ

�
k � (6)

subject to (2)-(5). An ellipsoidal feasible region of the
optimization (6) is given by S �=< x̄ � ℜn >> x̄T R 3 1x̄ � 1 ? ,
where R is the optimal solution Q of the following
maximization

max
F # k & det

�
Q
�
k ��� (7)

subject to (2)-(4). Replacing the state constraint (3) by
x̄
�
k � i � k �@� S � i + 0 � or, equivalently

R � Q 0 0 (8)

which confines the current state and all future pre-
dicted states inside S , we develop an exponentially
stable MPC algorithm with an estimated region of
stability.

Theorem 1. (Exponentially stable MPC) Consider the
nonlinear system (1) within the neighborhood

�
Πx � Πu �

around
�
xeq � ueq �A� Given the controller design param-

eter 0 5 α 5 1. At sampling time k � apply u
�
k �"�

F
�
k � � x � k � � xeq �B� ueq where F

�
k � is obtained from

min
γ # k &C* F # k & γ

�
k � subject to (2), (4), (5) and (8). Here R is

obtained from the maximization (7) subject to (2)-(4).

Suppose
�
xeq � ueq � is locally stabilizable, then there

exist a neighborhood
�
Πx � Πu � around

�
xeq � ueq � and

0 5 α 5 1 such that the above local state feedback
controller exponentially stabilizes the closed-loop sys-
tem with an estimate of its region of stability S �D

x � ℜn >>> � x � xeq � T R 3 1 � x � xeq � � 1 E8�
Proof. The proof can be found in the Appendix. F



2.2 State Feedback And Asymptotically Decaying
Disturbances

Consider the nonlinear system (1) subject to the un-
known additive asymptotically decaying disturbance
d
�
k ��� xp � k � 1 �8� f

�
xp � k ��� u � k ���6� d

�
k � , where we

have made a distinction between the state of the
perturbed system, xp � k ��� and the state of the unper-
turbed system, x

�
k � . In order for xp � k � 1 � to re-

main in the region of stability S , we develop a suf-
ficient condition between the norm bound of d

�
k �

and the controller design parameter α � Let x̄p � k � �
xp � k � � xeq � x̄

�
k � 1 �@� f

�
xp � k �A� u � k ��� � xeq � Suppose

x̄p � k �8� S , (i.e.,
�
x̄p � k � � 2

R � 1
� 1) � �

x̄p � k � 1 � � 2
R � 1 ��

x̄
�
k � 1 �9� d

�
k � � 2

R � 1 � �
x̄
�
k � 1 � � 2

R � 1 � 2x̄
�
k � 1 � T R 3 1

d
�
k ��� �

d
�
k � � 2

R � 1 � where u
�
k � is computed by Theo-

rem 1. From (8) and (4), we know that
�
x̄
�
k � 1 � � 2

R � 1
�

�
x̄
�
k � 1 � � 2

Q # k &�� 1
� α2 �

x̄p � k � � 2
Q # k &�� 1

� α2 � Therefore,

invariance is guaranteed if
�
x̄p � k � 1 � � 2

R � 1
� α2 �

2α
�
d
�
k � � R � 1 � �

d
�
k � � 2

R � 1 � �
α � �

d
�
k � � R � 1 � 2 � 1 �

A sufficient condition is
�
d
�
k � � R � 1

� 1 � α, which
means that the disturbance should be bounded in
a region S d � � d � ℜn � dT R 3 1d � �

1 � α � 2 � � Fur-
thermore, since d

�
k � is asymptotically decaying, the

closed-loop trajectory asymptotically converges to the
equilibrium

�
xeq � ueq � .

2.3 Output Feedback

Consider the nonlinear system (1) with a nonlinear
output map

y
�
k �-� h

�
x
�
k ���:� ℜq (9)

where h
�
x � u ��� � h1

�
x � ����� hq

�
x � � T

are continuous
differentiable. For all x � x̂ � Πx and u � Πu � consider a
full order nonlinear observer with a constant observer
gain Lp,

x̂
�
k � 1 � � f

�
x̂
�
k �A� u � k ���9� Lp

�
h
�
x
�
k ��� � h

�
x̂
�
k �����

(10)

The error dynamic system is e
�
k � 1 ��� f

�
x
�
k ��� u � k ��� �

f
�
x̂
�
k �A� u � k ��� � Lp

�
h
�
x
�
k ��� � h

�
x̂
�
k �����A� Define a quadratic

function Ve
�
e �2� eT Pe � P 0 0 � Suppose for all time

k + 0 � x
�
k ��� x̂ � k �1� Πx and u

�
k �1� Πu, and Ve

�
e � satis-

fies the following exponential convergent constraint

V
�
e
�
k � i � 1 ��� � ρ2V

�
e
�
k � i ����� 0 5 ρ 5 1 (11)

In order to facilitate the establishment of the relation
between

�
d

�
R � 1 and

�
e
�

P in � 2.4, we want to find a P
as close to R 3 1 as possible. Therefore, we minimize γ
such that

γR 3 1 + P + R 3 1 (12)

Theorem 2. Consider the nonlinear system (1) and (9)
within the neighborhood

�
Πx � Πu � around

�
xeq � ueq ���

Given the observer design parameter 0 5 ρ 5 1 � the
constant observer gain Lp of the full order observer
(10) is obtained by solving

min
γ * P* Lp

γ (13)

subject to (11) and (12).

Suppose
�
xeq � ueq � is locally observable, then there

exist a neighborhood
�
Πx � Πu � around

�
x eq � ueq � and

an observer design parameter 0 5 ρ 5 1 such that the
minimization (13) is feasible. Furthermore, if for all
time k + 0 � x

�
k ��� x̂ � k � � Πx and u

�
k ��� Πu, then the

above observer is exponentially convergent.

Proof. The proof can be found in the Appendix. F
Now we combine the state feedback MPC in Theorem
1 with the observer in Theorem 2 to form a local
output feedback MPC for the constrained nonlinear
system.

Algorithm 1. (Local output feedback MPC for con-
strained nonlinear systems) Consider the nonlinear
system (1) and the output map (9) within the neigh-
borhood

�
Πx � Πu � around

�
xeq � ueq � . Given the con-

troller and observer design parameters 0 5 α 5 1 and
0 5 ρ 5 1 � At sampling time k 0 0 � apply u

�
k �"�

F
�
k � � x̂ � k � � xeq ��� ueq � where x̂

�
k � is solved by the

observer in Theorem 2 with the output measurement
y
�
k � 1 � and F

�
k � is solved by the state feedback MPC

in Theorem 1 based on x̄
�
k �-� x̂

�
k � � xeq �

2.4 Stability Analysis of Output Feedback MPC

For the output feedback MPC in Algorithm 1 to be
feasible and asymptotically stable, it is required that
for all time k + 0 � x

�
k ��� x̂ � k � � Πx � In this subsec-

tion, we study conditions on x
�
0 � and x̂

�
0 � such that

x
�
k ��� x̂ � k �6� S is satisfied for all times k + 0 �

Consider the closed-loop system based on the output
feedback MPC in Algorithm 1,

x
�
k � 1 � � f

�
x̂
�
k ��� u � k ���9� d1

�
k �

x̂
�
k � 1 � � f

�
x̂
�
k ��� u � k ���9� d2

�
k �

with d1
�
k � � f

�
x
�
k �A� u � k ��� � f

�
x̂
�
k ��� u � k ��� and d2

�
k � �

Lp
�
h
�
x
�
k ��� � h

�
x̂
�
k ������� At time k � u

�
k � is obtained by

using the state feedback MPC in Theorem 1 based on
x̂
�
k � � xeq �

Suppose x
�
k ��� x̂ � k ��� S . Since f is continuous differ-

entiable, there exist β1 � β2 0 0 such that
�
d1

�
k � � R � 1

�
β1

�
e
�
k � � P and

�
d2

�
k � � R � 1

� β2
�
e
�
k � � P. Suppose ini-

tially x
�
0 ��� x̂ � 0 �"� S and

�
e
�
0 � � P

� η : � 1 3 α
max � β1 * β2 � ,

then
�
d1

�
0 � � R � 1

� 1 � α and
�
d2

�
0 � � R � 1

� 1 � α �
which in turn lead to x

�
1 �A� x̂ � 1 �8� S (see � 2.2) and�

e
�
1 � � P

� η (see � 2.3), and so on. Since for all time
k + 0, x

�
k ��� x̂ � k �-� S � the state feedback MPC in Theo-

rem 1 is exponentially stable, the observer in Theorem
2 is exponentially convergent, and the combination of
both asymptotically stabilizes the closed-loop system.

Theorem 3. Consider the nonlinear system (1) and
(9). Suppose

�
xeq � ueq � is locally stabilizable and ob-

servable, then there exist a neighborhood
�
Πx � Πu �

around
�
xeq � ueq � and controller and observer design

parameters 0 5 α 5 1 and 0 5 ρ 5 1 such that the



output feedback MPC in Algorithm 1 asymptotically
stabilizes the closed-loop system for any x

�
0 ��� x̂ � 0 �1�

S � D
x � ℜn >>> � x � xeq � T R 3 1 � x � xeq � � 1 E satisfy-

ing
�
x
�
0 � � x̂

�
0 � � P

� η �
Proof. Refer to the derivation in � 2.4. F
2.5 Observability Analysis of Output Feedback MPC

For the stabilizing output feedback MPC in Theorem
3, the state is not measured, but from the output of
the system and the estimated state, we can observe
the exponential decay of the norm bound of the state
estimation error, and thus observe the real state incre-
mentally.

Consider the stabilizing output feedback MPC in The-
orem 3 � Let the current time be k + T 0 0 � From k � T
to k, an input sequence � u

�
k � T ����������� u � k � 1 � ��� Πu

is obtained by the controller based on � x̂ � k � T �����������
x̂
�
k � 1 ����� S . The state evolution starting from

x
�
k � T � driven by � u

�
k � T ����������� u � k � 1 ��� is inside

S � Πx. Consider an auxiliary system x̃
�
k � 1 �8�

f
�
x̃
�
k �A� u � k ��� starting from x̃

�
k � T � � x̂

�
k � T � driven

by � u � k � T ����������� u � k � 1 ��� � Suppose the state evolu-
tion of the auxiliary system from k � T to k is also
inside Πx, then we can get

x
�
k � 1 � � x̃

�
k � 1 � � f

�
x
�
k �A� u � k ��� � f

�
x̃
�
k �A� u � k ���

y
�
k � � ỹ

�
k ��� h

�
x
�
k ��� � h

�
x̃
�
k ���

Let VT : � ∑k 3 1
j ' k 3 T

�
y
�
j � � ỹ

�
j � � 2. Suppose

�
xeq � ueq �

is locally observable, then there exist a neighbor-
hood

�
Πx � Πu � around

�
xeq � ueq � and T � µ 0 0 such

that VT + µ
�
x
�
k � T � � x̂

�
k � T � � 2

P, or equivalently,
�
x
�
k � � x̂

�
k � � 2

P
� ρT VT

µ �
Theorem 4. Consider the nonlinear system (1), (9)
and the stabilizing output feedback MPC in Theorem
3. On-line, at time k + T , if the state evolution
starting from x̂

�
k � T � driven by the input sequence� u

�
k � T ����������� u � k � 1 ��� from the controller is inside

Πx � then
�
x
�
k � � x̂

�
k � � 2

P
� ρT VT

µ .

Proof. The proof can be found in the Appendix. F
3. SCHEDULED OUTPUT FEEDBACK MPC FOR

CONSTRAINED NONLINEAR SYSTEMS

Algorithm 2. (Design of scheduled output feedback
MPC) For the nonlinear system (1) and the output
map (9), given an equilibrium surface and a desired
equilibrium point

�
x # 0 & � u # 0 & ��� Let i : � 0 �

(1) Specify a neighborhood
�
Π # i &

x � Π # i &
u � around�

x # i & � u # i & � satisfying Π # i &
x 
 X and Π # i &

u 
 U �
(2) Given the controller and observer design param-

eter 0 5 α # i & 5 1 and 0 5 ρ # i & 5 1 � design Con-

troller #i (Algorithm 1) with its estimated region
of stability

S # i & ��� x � ℜn
>>>>
�
x � x # i & � T �

R # i & � 3 1

7�
x � x # i & � � 1 E

Store � x # i & � u # i & � � R # i & � 3 1 � P # i & � η # i & � T # i & � µ # i &	� in

a lookup table;
(3) Select an equilibrium point

�
x # i $ 1 & � u # i $ 1 & � satis-

fying x # i $ 1 & � int
�
S # i &

θ � with

S # i &
θ � � x � ℜn

>>>>
�
x � x # i & � T �

R # i & � 3 1

7�
x � x # i & � � θ # i & 5 1 E

Let i : � i � 1 and go to step 1, until the region
 M
i ' 0S # i & with M � max i covers a desired portion

of the equilibrium surface.

On-line, we implement the resulting family of lo-
cal output feedback predictive controllers as a single
controller whose parameters are changed if certain
switching criteria are satisfied. We call such a con-
troller scheme a scheduled output feedback MPC.

For the case that x
�
0 �A� x̂ � 0 � � S # i & � i �� 0 satisfying�

x
�
0 � � x̂

�
0 � � P � i 
 � η # i & , Controller #i asymptotically

converges the closed-loop system to the equilibrium�
x # i & � u # i & � � Because x # i & � int

�
S # i 3 1 &

θ � , both x
�
k � and

x̂
�
k � will enter S # i 3 1 &

θ in finite time. At time k, in order
to switch from Controller #i to #

�
i � 1 � , we need to

make sure that the initial conditions for stability of
Controller #

�
i � 1 � are satisfied, i.e., x

�
k ��� x̂ � k �	� S # i 3 1 &

and
�
x
�
k � � x̂

�
k � � P � i � 1 
 � η # i 3 1 & �

Suppose x̂
�
k �2� S # i 3 1 &

θ � We know that��� x � k � � x # i 3 1 & ��� �
R � i � 1 
 � � 1

� �
x
�
k � � x̂

�
k � � �

R � i � 1 
 � � 1 � ��� x̂ � k � � x # i 3 1 & ��� �
R � i � 1 
 � � 1

� �
x
�
k � � x̂

�
k � � P � i � 1 
 � ��� x̂ � k � � x # i 3 1 & ��� �

R � i � 1 
 � � 1

and
�
x
�
k � � x̂

�
k � � 2

P � i � 1 
 � ζi � # i 3 1 & �
x
�
k � � x̂

�
k � � 2

P � i 
 with
ζi � # i 3 1 & obtained by solving minζi � � i � 1 
 ζi � # i 3 1 & sub-

ject to ζi � # i 3 1 & 0 0 and ζi � # i 3 1 & P # i & � P # i 3 1 & + 0 �
Hence x

�
k � � S # i 3 1 & and

�
x
�
k � � x̂

�
k � � P � i � 1 
 � η # i 3 1 &

are satisfied, if

�
x
�
k � � x̂

�
k � � 2

P � i 

� 1

ζi � # i 3 1 & min � 1 � θ # i 3 1 & � � η # i 3 1 & � 2 � � (14)

From Theorem 4, we know that if Controller # i has
been implemented for at least T # i & time steps, and if
the state evolution starting from x̂

�
k � T # i & � driven



by the input from Controller #i is inside Π # i &
x � then

�
x
�
k � � x̂

�
k � � 2

P � i 
 � �
ρ � i 
 � T � i 


V � i 
T
µ � i 
 � By imposing an upper

bound δi � # i 3 1 & on V # i &
T � we can upper bound the state

estimation error at current time k. If

δi � # i 3 1 & � µ # i &
ζi � # i 3 1 &�� ρ # i &�� T � i 
 7 (15)

min � 1 � θ # i 3 1 & � � η # i 3 1 & � 2 �
then the satisfaction of (14) is guaranteed. Further-
more, because the observer is exponentially converg-
ing, for any finite δi � # i 3 1 & � there exists a finite time

such that V # i &
T

� δi � # i 3 1 & is satisfied.

Theorem 5. (Scheduled output feedback MPC) Off-
line, construct M � 1 local predictive controllers by
Algorithm 2. On-line, given x

�
0 �A� x̂ � 0 �B� S # i & satisfying�

x
�
0 � � x̂

�
0 � � P � i 
 � η # i & for some i � Apply Controller

#i. Let T # i & be the time period during which Con-
troller #i is implemented. If for Controller #i 0 0 � (1)

T # i & + T # i & � (2) x̂
�
k � � S # i 3 1 &

θ � (3) the state evolution
starting from x̂

�
k � T # i & � driven by the input from

Controller #i is inside Π # i &
x , and V # i &

T
� δi � # i 3 1 & � then,

at the next sampling time, switch from Controller #i
to Controller #

�
i � 1 � ; Otherwise, continue to apply

Controller #i. The above scheduled output feedback
MPC asymptotically stabilizes the closed-loop system
to the desired equilibrium

�
x # 0 & � u # 0 & � .

Proof. Refer to the derivation in � 3. F
Remark 1. If for the M � 1 local predictive con-
trollers constructed by Algorithm 2, not only x # i & �
int
�
S # i 3 1 &

θ � � i � 1 ��������� M, but also x # i & � int
�
S # i $ 1 &

θ � �
i � 0 ��������� M � 1 � then on-line, the scheduled MPC in
Theorem 5 can not only switch from Controller #i�
i � 1 ��������� M � to Controller #

�
i � 1 � , but also switch

from Controller #i
�
i � 0 ��������� M � 1 � to Controller #

�
i �

1 � with δi � # i $ 1 & defined as (15) with i � 1 replaced by
i � 1 �

4. EXAMPLE

Consider the highly nonlinear model of a continuous
stirred tank reactor (CSTR) (Magni et al., 2001).

ĊA � q
V

�
CA f � CA � � k0 exp � � E

RT
� CA

Ṫ � q
V

�
Tf � T �9� � � ∆H �

ρCp
k0 exp � � E

RT
� CA

� UA
VρCp

�
Tc � T � (16)

where CA is the concentration of A in the reactor,
T is the reactor temperature, and Tc is the tem-
perature of the coolant stream. The parameters are

q � 100 l/min � V � 100 l � CA f � 1 mol/l,
Tf � 400K, ρ � 103g/l, Cp � 1J/(g K), k0 � 4 � 71 7108 min 3 1 � E � R � 8000K � ∆Hrxn � � 2 7 105J/mol, �
UA � 105J/(min K) � Sampling time is 0.03 min. We
design seven local output feedback predictive con-
trollers to cover the operating region 360K � T �
400 and 0 � 3mol/l � CA

� 1mol/l � Let α � 0 � 98 � θ �
0 � 9 � Q � diag

� 1
0 � 5 � 1

400 � and R � 1
300 for all the con-

troller designs and ρ # 0 & ��������� ρ # 6 & � 0 � 91 ��������� 0 � 97 for the
observer designs. Let T � 10, and we use the lin-
earized models at the equilibrium points to estimate
µ # i & . Let δ � 1 for all switches. Figure 1 shows the
seven local output feedback predictive controllers with
their explicit regions of stability, and the nonlinear
transitions by using the scheduled MPC � Figure 2
shows the time responses. Close-up views of the re-
sponses of the real and estimated temperatures are
provided to show fast convergence of the observer.
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Fig. 1. Phase plots of the nonlinear transitions

from
�
0 � 92 � 361 � T to

�
C # 1 &

A � T # 1 & � T and from�
0 � 42 � 401 � T to

�
C # 5 &

A � T # 5 & � T � Lines with width
2 for

�
CA � T � T and lines with width 0.5 for�

ĈA � T̂ � T .

5. CONCLUSIONS

In this paper, we have proposed a stabilizing scheduled
output feedback MPC formulation for constrained
nonlinear systems with large operating regions. Since
we were able to characterize explicitly an estimated
region of stability of the designed local output feed-
back predictive controller, we could expand it by de-
signing multiple predictive controllers, and on-line
switch between the local controllers and achieve non-
linear transitions with guaranteed stability. This al-
gorithm provides a general framework for the sched-
uled output feedback MPC design. Furthermore, we
have shown that this scheduled MPC is easily imple-
mentable by applying it to a highly nonlinear CSTR
process.
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Fig. 2. Time responses for the nonlinear transi-

tions from
�
0 � 92 � 361 � T to

�
C # 1 &

A � T # 1 & � T and from�
0 � 42 � 401 � T to

�
C # 5 &

A � T # 5 & � T with solid lines for
the real states and dotted lines for the estimated
states �

APPENDIX

Proof of Theorem 1: Within a neighborhood
�
Πx � Πu �

around
�
xeq � ueq � , we locally represent the nonlinear

system (1) by a LTV model x̄
�
k � 1 � � A

�
k � x̄ � k �B�

B
�
k � ū

�
k � with � A �

k � B
�
k � � � Ω � For all x � Πx

and u � Πu � the Jacobian matrix � ∂ f
∂x � ∂ f

∂u � � Ω with

∂ f
∂x �

������
∂ f1

∂x1
����� ∂ f1

∂xn
...

. . .
...

∂ fn

∂x1
����� ∂ fn

∂xn

������� and ∂ f
∂u �

������
∂ f1

∂u1
����� ∂ f1

∂um
...

. . .
...

∂ fn

∂u1
����� ∂ fn

∂um

������� �

It is straight forward to establish the closed-loop ex-
ponential stability within S based on the LTV model.
Since the LTV model is a representation of a class of
nonlinear systems including the given nonlinear sys-
tem (1) within the neighborhood

�
Πx � Πu � , the closed-

loop nonlinear system is exponentially stable within
S . F
Proof of Theorem 2 and 4: Following the same pro-
cedure as in the proof for Theorem 1, we locally rep-
resent the nonlinear error dynamics as a LTV model
e
�
k � 1 � � �

A
�
k � � LpC

�
k ��� e

�
k � with � A �

k � T C
�
k � T � T

� Ψ. For all x � x̂ � Πx and u � Πu � the Jacobian matrix	 � ∂ f
∂x
� T � ∂h

∂x
� T 
 T � Ψ with ∂ f

∂x �
������

∂ f1

∂x1
����� ∂ f1

∂xn
...

. . .
...

∂ fn

∂x1
����� ∂ fn

∂xn

�������

and ∂h
∂x �

������
∂h1

∂x1
����� ∂h1

∂xn
...

. . .
...

∂hq

∂x1
����� ∂hq

∂xn

� ����� � It is straight forward

to establish the exponential convergency of the ob-
server and the norm bound of the state estimation error
within S based on the LTV model and the nonlinear
model. F
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