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Abstract:  The development of on-line digital imaging systems for process 
monitoring and control is illustrated through two industrial applications:  i) the 
control of coating concentration and distribution on snack food products, and ii) the 
monitoring of boiler systems through imaging of the combustion processes. Feature 
information extracted from images using Multivariate Image Analysis (MIA) based 
on Principal Component Analysis (PCA), is used to develop models to predict 
product quality and process property variables. The imaging systems are used to 
monitor these product quality and process property variables, to detect and diagnose 
operational problems in the plants, and to directly implement closed-loop feedback 
control.  
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1. INTRODUCTION 

 
The availability of informative, inexpensive, and 
robust on-line sensors is one of the most important 
factors for the successful monitoring and control of 
processes. The petrochemical industry made rapid 
advances in multivariable model predictive control 
largely because they had the availability and 
abundance of inexpensive and informative sensors 
such as thermocouples, pressure transducers, flow 
meters, pH and ion-specific meters and gas 
chromatographs. This is a direct result of the fact that 
the major streams in petrochemical processes consist 
of well mixed gases and liquids which made the use 
of such sensors very easy. On the other hand, the 
solids processing industry has had much less success 
at implementing advanced control precisely because 
of the lack of such sensors. In industries that produce 
solid products, generally product properties are 
measured periodically by manually collecting 
samples and then analyzing them in the laboratory. 
The analysis procedure often requires that the 
samples be destroyed and the procedures are time 
consuming and manpower intensive. However, with 
the advent of inexpensive digital cameras over the 

past decade, things are changing rapidly. Today an 
RGB color camera connected to a fairly powerful PC 
is on the order of only a few thousand dollars or so. 
In contrast, to insert a simple thermocouple well into 
a process line or a reactor is considerably more 
expensive. If affordable digital imaging systems can 
be used to effectively extract subtle information on 
the behavior of a process or on the quality of the 
product, then it could indeed lead to a more rapid 
application of advanced control in process industries 
manufacturing solid products such as pulp and paper, 
polymer sheet and films, and food products. 

 
Much of the literature on digital image processing 
involves methods for altering the visual image in 
some way in order to make it more visually 
appealing, or to extract information on the shapes, 
boundaries or location of various observable features. 
In this sense traditional image processing techniques 
(Ross et. al., 2001; Stojanovic et. al., 2001; Katafuchi 
et. al., 2000) serve as automated vision systems 
performing operations faster and more precisely than 
human operators. These are indeed a very important 
class of problems. However, many quality 
monitoring and control problems are more similar to 



 

those treated in this paper. They do not involve 
image enhancement issues, but rather the extraction 
of subtle information from the image (much of which 
is not readily visible to the human eye) that is related 
to product quality. Two examples are treated in this 
paper: prediction of the average coating 
concentrations and the distribution of the coating on 
snack food products passing on a moving belt under 
the imaging system, and the prediction of the heating 
content of the waste fuel stream and the NOx and 
SO2 concentration in the off-gas generated in a boiler 
system. In these situations image processing is not 
concerned with image enhancement or even with the 
image space at all. Rather, the problem is one of 
information extraction from the image and the use of 
such information for prediction, monitoring and 
control. For this purpose a different set of techniques 
falling under the heading of multivariate image 
analysis (MIA) (Esbensen and Geladi, 1989; Geladi 
and Grahn, 1996) which employs multivariate 
statistical techniques such as Principal Component 
Analysis (PCA) and Partial Least Squares (PLS) 
have been developed. In this approach most of the 
analysis is done in the latent variable feature space 
rather than in the image space. Although most of the 
MIA methods have been applied to the analysis of 
single still images, an indication of their potential for 
monitoring time varying images was presented by 
Bharati and MacGregor (1998), and subsequently 
applied to the on-line monitoring of lumber defects 
(Bharati and MacGregor, 2003), and pulp and paper 
quality (Bharati and MacGregor, 2003). In this paper 
we report on the development of two industrial on-
line imaging systems. The first is for the extraction 
of coating content and distribution from time varying 
images of snack food products, and for the on-line 
monitoring and control of the industrial snack food 
product lines. In the second, a feature extraction 
method is presented for monitoring the combustion 
process in a boiler system using color flame images. 
More detals can be found in Yu and MacGregor 
(2003a), Yu et. al. (2002) and Yu and MacGregor 
(2003b). 

 
 

2. BASIC THEORY OF MIA 
 

In the most commonly used electronic cameras, the 
color of each pixel is characterized by the numerical 
values (normally integers from 0 to 255) of its red, 
green and blue (RGB) channels. Therefore, a color 
image can be expressed as a 3-way matrix. Two 
ways are the spatial coordinates and the third way is 
the color channel. Without considering the spatial 
coordinates of the pixels, we can unfold the image 
matrix and express it as a 2-way matrix. In this paper, 
the feature variables extracted are computed in PCA 
score space obtained using Multivariate Image 
Analysis (MIA) techniques (Geladi and Grahn, 1996).  

 
Without considering the spatial coordinates of pixels, 
we can unfold the image matrix and express it as a 2-
way matrix. MPCA is equivalent to performing PCA 
on this unfolded image matrix I.  
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where K is the number of principal components, the 
tk’s are score vectors and the corresponding pk’s are 
loading vectors. For RGB color image, the maximum 
number of principal components is 3. 

 
A kernel algorithm is used to compute the loading 
vectors. In this algorithm a kernel matrix (ITI) is first 
formed (for a set of images, kernel matrix is 
calculated as the summation of individual kernel 
matrix for each image), and then singular value 
decomposition (SVD) is performed on this very low 
dimension matrix (3×3 for an RGB color image) to 
obtain loading vectors pa (a=1,… K).  

 
After obtaining loading vectors, the corresponding 
score vectors tk are then computed via tk=I⋅pk. tk is a 
long vector with length N (N is the number of total 
pixels in the image). After proper scaling and round 
off, it can be refolded into the original image size and 
displayed as an image.  
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Tk is the score image of component k. The values of 
Tk are integers from 0 to 255. It should be pointed 
out that when many images are studied, a common 
scaling range (tk,min and tk,max) should be used for all 
the images. 
 
Since the first two components explain most of the 
variance, instead of working in original 3-
dimensional RGB space, working in the t1-t2 score 
space allows us interpret the images much easier.  

 
Inspection on t1-t2 score plot is a common tool in 
general PCA analysis to give an overview of the 
whole system. However, when the studied objects are 
images, because of large number of pixels many 
pixels would fall overlap each other in t1-t2 score plot. 
Therefore a 256×256 histogram, is used to describe 
t1-t2 score plot space in this situation (Geladi and 
Grahn, 1996) and a color coding scheme, in which a 
darker color indicates a lower intensity (black 
indicates no pixel falling) and a brighter color 
indicates a higher intensity, is used to indicate the 
intensity of the pixel locations in the score plot.  

 
 

3. SNACK FOOD APPLICATION 
 
 

3.1 Problem description 
 

In this application the objective is to develop a model 
to prediction coating concentration and the 
distribution of the coating coverage on the snack 
food products. 

 
The first step is to collect an adequate dataset. A 
successful model requires a set of sample images 



 

including both uncoated and coated product samples 
with varied coating levels. For each coated product 
image, the corresponding average coating is obtained 
by lab analysis of the product. 110 images are 
collected from the on-line camera system and grab 
samples corresponding to those images are taken to 
the lab for analysis. Half of them are used as a 
training dataset and another half are used as a test set 
The images are all 480×640 RGB color images, with 
256 intensity levels in each channel. Some sample 
images are shown in Figure 1. 

 

   
Uncoated Low-coated High-coated 

 
Figure 1 Sample snack food images 

 
3.2 Methodology 

 
Let us consider a data set of color images and the 
corresponding lab analyzed average coating 
concentrations. A model to predict coating 
concentration can be obtained by regressing features 
extracted from the images against the corresponding 
average coating concentrations. In this research, 
Partial Least Squares regression (PLS) is employed 
because of the high correlation among the feature 
variables.  

 
Feature extraction is a critical step to achieve good 
prediction results. In Yu and MacGregor (2003a), six 
feature extraction methods (including 2 overall 
feature methods and 4 distribution feature methods) 
are compared and discussed. Examples show that for 
predicting the average coating level of the whole 
image, all six methods can achieve good results. 
However, when predicting the coating level from 
small sub-images, only one method (method 6) 
exhibits sufficient robustness in prediction (Yu and 
MacGregor, 2003a). This method will be briefly 
introduced in the following. 

 
The method first starts with a fine (256× 256) 
histogram in the t1-t2 color space, and then lumps the 
elements in that space into histogram bins that are 
expected to contain similar values of coating 
concentration. In order to define histogram bin 
classes in the score space that contain pixels having 
similar coating content, two covariance plots are 
computed between the counts in the histogram bins 
and two variables, z1 and z2, related to the average 
coating concentrations in the images. 
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Two covariance plots were necessary in order to 
obtain a unique or one-to-one correspondence 
between the bin classes and coating content (Yu and 
MacGregor, 2003a). For each (t1, t2) location, a phase 
angle can be computed for the observed point in the 
space of the two covariance values. Therefore an 
angle plot can be obtained in which similar angle 
values indicate similar coating content. Figure 2 is 
the color-coded angle plot in the t1-t2 space. 32 bins 
are selected based on angle values. Image pixels 
having (t1,t2) values falling within the same bin 
should have similar coating levels. Then, a one-
dimensional histogram can be formed for each image 
by counting the number of pixels falling in each bin. 
The final feature variables are chosen as the 32 
values of the cumulative histogram (Yu and 
MacGregor, 2003a).  

 

 
 

Figure 2 Color coded angle plot in t1-t2 space, with 
32 bins based on angle values 

 
Once the feature variables have been obtained we can 
build inferential models by regressing these feature 
variables against the laboratory coating concentration 
for the training set. PLS regression is used because 
the feature data is highly correlated, and because it 
permits for validation of data from new images. 

 
After obtaining the PLS model using the training 
data set, the prediction performance of the model was 
evaluated against the test data sets. Figure 3 plots the 
predicted average coating level vs. the lab analysis 
data. The fit of the training data is very good, and the 
prediction of the new test data is almost equally good. 

 

 
Figure 3 Predicted vs. observed coating content 

 
To obtain a prediction for each new image the 
product pixels are projected onto the t1-t2 plane 
obtained by the PCA model. By counting the number 
of pixels falling into each of the bins (Figure 3), we 
obtain the 32 bin cumulative one-dimensional 
histogram to be used as regressor variables in the 
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PLS model. Average coating level is then predicted 
by the PLS model. 

 
The method developed above is almost independent 
of the image size (Yu and MacGregor, 2003a). 
Therefore, the coating distribution can be estimated 
by a small window strategy (Yu and MacGregor, 
2003a). In this small window strategy, the image is 
divided into many small pieces (see Figure 4), and 
the coating distribution is obtained by calculating the 
average coating concentration for each sub-image. 
Variance of the coating distribution can be estimated 
from this distribution and used for on-line monitoring. 
See Yu and MacGregor (2003a) for further details on 
this and other approaches for estimating the coating 
distribution. 

 

 
 

Figure 4 An image divided into 20×20 windows 
 
 
3.3 On-line results 

 
The model developed has been successfully 
implemented on the industrial production lines. Some 
on-line results are presented in this section. More 
results can be found in Yu et. al. (2003).  

 
Some of the first data collected from the imaging 
system are shown in the upper plot in Figure 5. The 
raw coating predictions are shown by the light gray 
line. For this evaluation study frequent grab samples 
were taken every 5 minutes and analyzed later in the 
lab. These are shown as circles in the Figure 5. One 
can see that the predicted coating concentrations 
from the images are in good agreement with the lab 
analysis. However, the image predictions reveal a 
clear saw-tooth behavior in the concentration that is 
not evident only from the lab data, even during this 
fast sampling program. This unexpected result was 
explained by the coating hopper refilling operations 
in the process. The lower plot in Figure 5 shows the 
signal of the motor of the hopper refilling system. As 
the level of the coating powder in the feed hopper 
falls to a certain level, the motor is activated to refill 
the hopper. The level of coating inside hopper then 
increases rapidly. Clearly Figure 5 shows that the 
discharge of rate of coating from the hopper to the 
coating operation (tumbler) is a strong function of 
the coating level in the hopper. 
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Figure 5 Detection of hopper effect 
 

Figure 6 shows a 4 hour on-line monitoring period 
for the product. Shown are the predicted coating 
level (1), the uncoated product weight (2), the 
coating feeder speed (3) and the signal of the dump 
gate (4). During this period, at about time 19:35, the 
feed rate of the non-coated product to the tumbler 
suddenly increased and, as the result of ratio control, 
the coating feeder speed also increased. However, the 
coating feeder speed was limited by its maximum 
capacity and could not feed coating fast enough to 
keep the desired ratio to the uncoated product. 
Therefore, the coating level on product decreased 
from the desired value. A second problem also 
occurred starting at about time 20:40 where the 
coating level suddenly started to continuously 
decrease. This occurred because the coating hopper 
was not set to automatic refilling mode and was 
therefore being depleted of coating. The result was 
that eventually no coating was being fed to the 
tumbler the dump gate had to open to remove the 
uncoated products from the belt. It should be pointed 
out that by looking only at process data (uncoated 
product weight and coating feeder speed) this fault 
was not detectable.  

 
 

 
Time 

1  Predicted coating level 
2  Uncoated product weight 
3  Coating feeder speed 
4  Dump gate open signal 

 
Figure 6 On-line monitoring example 

 
In Figure 7, operating data under closed-loop control 
covering a period of 24 hours is shown. Shown are 
the coating level set point and the predicted coating 
level (1), the uncoated product weight (2), the 
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coating feeder speed and the coating level bias 
change (4). In the employed control scheme, coating 
feeder speed is the manipulated variable and 
computed as the summation of the outputs of two 
controllers: a ratio controller for compensating 
variation of the uncoated product weight, and a 
feedback controller. The coating level bias is the 
output of the feedback controller. From Figure 7, we 
can see that the coating level successfully tracked the 
set point. Another point to note from this figure is 
that we can no longer see the saw-tooth effect of the 
coating feeder system that was apparent in Figures 5 
and 6. This is because an operational change was 
introduced to eliminate this effect.  

 
 

 
1  Predicted coating level (the lighter grey line 
shown in the middle is the coating level set point 
2  Uncoated product weight    
3  Coating feeder speed    
4  Coating level bias 

 
Figure 7 Closed-loop control 

 
 

4. MONTITORING THE COMBUSTION 
PROCESS IN A BOILER SYSTEM 

 
 

4.1 Process description 
 

The steam boiler studied in this research uses both 
the waste liquid streams from other processes and 
natural gas as fuels. Therefore the overall 
composition of the fuel then often changes 
dramatically. One of the problems we studied in this 
application is then to predict the heat of combustion 
of the liquid waste fuel. An analog color camera has 
been installed in the boiler and is connected with a 
monitor for displaying the live images. In this 
research, the analog signals were recorded by a 
normal VCR and then a video card converted the 
signals on the video tapes into the digital images. 
The resulting images are RGB color images, with the 
size of 120×160 pixels. Considering the processing 
time, the imaging sample time is set as 1 frame per 
second. 

 
Two case studies are presented in this paper. Case I 
covers a 114 minute period (see Figure 8). In this 
period of time, only liquid fuel is used. In the first 
half of this period of time, the liquid fuel flow rate 
decreases from 1.5 to 0.75 kg/s; then in the second 
half of the period, it increases back to 1.5 kg/s. The 
steam generated followed the same trend as the fuel 
flow. Case study I mainly used to illustrate that 
stable information can be obtained in the PCA t1-t2 

score space even in image space the flame images are 
always bouncing around. 
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Figure 8 Flow rates of liquid fuel and steam for Case 
study  I 

 
Case II consists 12 video tapes collected during 2 
month period of time. On each video tape a half an 
hour of flame images were recorded. The average 
process variables during the time when the video 
tapes were recorded were also collected. Both liquid 
fuel and natural gas flow rates, as well as the 
composition of liquid fuel were changing 
dramatically during that period of time. The 
objective is to predict the heat of combustion of 
liquid fuel and the NOx and SO2 concentration in the 
off-gas generated from the boiler system. 

 
 

4.2 Case study I 
 

A total of 6840 frame images are obtained for Case 
study I. In Figure 9, some sample images are shown 
corresponding to the points (A, B and C) marked in 
Figure 8. For each point, two consecutive images 
with 1 second time difference are shown. It is 
reasonable to assume that during this one second, the 
feed and composition conditions in the combustion 
process did not change. It can be observed that the 
flames in the boiler appeared highly turbulent, with 
the images changing significantly over every 1 
second interval. This poses considerable difficulty in 
trying to extract stable information about the 
combustion process. 

 

Table 1 Sample flame images taken one second apart 
at different conditions 

 
A B C 

   

   
 

100 images are used in this study to compute the 
loading matrix and score scaling range. The first two 
components explained 99% of the total variance. 

 
Table 2 shows the corresponding t1-t2 score plots for 
the sample images shown in Table 1. We can see 

1

3 
4 

2 



 

from Table 2 that for images captured at the same 
combustion condition (i.e. in the same columns in 
Table 1), the score plot histograms of pixel 
intensities are very similar. However, as the 
combustion conditions change (i.e. along rows), the 
locations of pixels in the score plots change 
noticeably. This is the key result that enables one to 
use flame images to analyze and monitor the process 
for changing conditions. For any given process 
condition, even though the flame images are 
bouncing around, the PCA score space of that image 
is very stable, and it only changes shape and location 
with changing process conditions.  

 

Table 2 Score plots for the sample images shown in 
Table 1 (order is the same) 

 
A B C 

   

   
 

However, directly monitoring the process based on 
the appearance of the score plot is not practical. This 
is because it is hard for people to monitor a time 
series process by watching changes in a two 
dimensional matrix, and even if people were able to 
detect some changes happening in the score plot, it is 
hard to interpret such changes. Therefore, we need to 
extract features from the score plot that have more 
physical meaning and to further relate those features 
with the process variables to help us understand more 
about the combustion process and use these 
information to monitor the operating performance 
and emissions from these combustion processes.  

 
 

4.3 Case study II 
 

In Case study II, nine feature variables are extracted 
from the t1-t2 score plots of the flame images. These 
feature variables include four luminous features: 
flame luminous region area, flame brightness, 
uniformity of flame brightness and the average 
brightness of non-luminous area; and five color 
features: average t1 and t2 values of the whole image, 
average t1 and t2 values of the flame luminous 
region and the number of colors appearing in the 
flame region. 

 
The flame luminous region is extracted from the 
image by choosing a mask in the score plot. The 
boundary of the mask is easily obtained by a trial and 
error process, whereby one selects a mask area in the 
score plot, selects the pixels lying under it and 
highlights them in the image space, and iterates until 
one obtains a mask that segments the feature of 

interest. The final mask selected for extracting the 
flame luminous region is shown as the green area in 
Figure 9a. To illustrate the segmentation ability of 
the mask a sample flame image is shown in Figure 
9b. If we set all pixels falling outside this mask to 
have a gray color, the image shown in Figure 9c is 
obtained. We can see that the luminous flame region 
is separated from the other part of the image.  

 

 
(a) flame luminous region mask 

 

  
(b) one frame image (c) separated flame 

 
Figure 9 An illustration of flame luminous region 
mask 

  
The detailed computation of the feature variables can 
be found in Yu and MacGregor (2003b). An average 
feature vector is used to represent the image data of 
each tape. PLS is used for regressing image feature 
variables against the property variables. 

 
A PLS model is built to predict the product of heat of 
combustion and the liquid fuel flow rate. The heat of 
combustion can then be obtained by dividing the PLS 
model prediction by the liquid fuel flow rate. Other 
than the feature variables, the flow rates of liquid 
fuel and natural gas are used as the predictors This is 
shown in equation: 

 

[ ] γv ˆˆ ⋅= nglf FFQ , where 
LfLf FHQ ⋅=  

lflf FQH /ˆˆ =  
 

where v is the feature vector extracted from the 
image data, 

ngF  is the natural gas flow rate, lfF  is the 
flow rate of liquid fuel, γ̂  is the model regression 
coefficient vector and 

LfH  is the heat of combustion. 
 
10 samples are used as a training set and 2 samples 
are used as a test set. 6 latent variables and 8 latent 
variables are selected by cross validation. Figure 10 
shows the prediction vs. observation plots for both 
models. We can see that the model has good 
prediction performance. 
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Figure 10 Prediction vs. observation plot for 
prediction of the heat of combustion of the liquid fuel 

 
Two PLS models are developed to predict the 
emissive concentrations of NOx and SO2 respectively. 
For predicting each of the concentrations, three types 
of predictors are considered: i) using only process 
variables; ii) using only feature variables extracted 
from image data; and iii) using both types of 
variables. The process variables used here include 
temperature of the feed oxygen, and the flow rates of 
liquid fuel, natural gas, oxygen and steam. These 
models (6 in total) are listed in Table 3. For each 
model, 10 samples are used as a training set while 2 
samples are used for evaluation (test set).  

 

Table 3 Six models for predictions of NOx and SO2 
concentration in off-gas generated 

 
Responses Predictors NOx SO2 

 
Process variables 
 

 
M_NOx_1 

 

 
M_SO2_1 

 
Feature variables from 
image data 
 

M_NOx_2 M_SO2_2 

Both process variables 
and feature variables 
from image data 

M_NOx_3 M_SO2_3 

 
 

Table 4 Summary for the six models for prediction of 
emission NOx and SO2 concentration 

 
 Number 

of LV’s 
RMSEP for 
training set 

RMSEP for 
test set 

M_NOx_1 5 18.97 19.96 
M_NOx_2 6 9.10 15.47 
M_NOx_3 7 13.12 25.83 
M_SO2_1 1 3.94 3.11 
M_SO2_2 7 0.41 0.27 
M_SO2_3 8 0.29 2.72 

 
The number of latent variables (determined by cross 
validation) and RMSEP for both training set and test 
set of each of the six models are listed in Table 4. We 
can see that the best models are obtained by using 
only the feature variables extracted from the image 

data as predictors. By using process data, it seems 
that model predictions are not improved.  

 
The prediction vs. observation plot for M_NOx_2 
and M_SO2_2 (using only the feature variables 
extracted from the image data) are shown in Figure 
11. The results show good agreement between the 
predicted and the measured data. 
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(b) SO2 concentration 

 
Figure 11 Prediction vs. Observation for NOx and 
SO2 concentrations 

 
 

5. SUMMARY AND CONCLUSIONS 
 

Development of on-line digital imaging systems for 
process monitoring and control are illustrated using 
two industrial applications. 

 
The first application is to an industrial snack food 
production process. In this application, an inferential 
sensor based on RGB color images for measuring the 
coating content and distribution of the coating 
coverage of snack foods is developed and is 
implemented for on-line control of the industrial 
production line. Several plant tests show clearly that 
the coating concentration variations can be tracked 
by the image-based sensor, that process problems can 
be detected and that good results of closed-loop feed 
back control can be achieved.  

 
The second industrial application involves 
monitoring turbulent flames in an industrial boiler. It 
has been shown that in t1-t2 score plot space 
computed from PCA; fairly stable information can be 
obtained even though in the image space, the flame is 
always bouncing around. A mask is selected in t1-t2 



 

score plot to indicate the location of flame luminous 
area. Nine feature variables, including four luminous 
features and five color features, are extracted from 
each flame image. PLS models are built using these 
image feature variables to successfully predict the 
heat of combustion of the liquid waste fuel stream 
and the NOx and SO2 concentrations in the off-gas 
generated from the boiler system. This reveals the 
great potential for utilizing the flame images in 
combustion processes. 
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