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Abstract: In weighted fusion algorithm for multisensor, the weights are only determined 

by noise variance and the precision of the variance estimation will affect the performance 

of the fusion algorithm. An approach of variance estimation for multisensor is presented 

and proves unbiased in this paper. The recurrence formula for the algorithm is also 

proposed, and moreover, there is no need for initial values, for which the approach is 

adaptive and can be used in real-time estimation. A numerical example is given to show 

the usefulness of the approach.  Copyright © 2003 IFAC 
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1. INTRODUCTION 

 

Modern industry adopts a great variety of sensors to 

monitor and control production in order to obtain a 

satisfactory control performance of the industrial 

process (Yang and Yuzo, 2000), and thus some 

appropriate methods are required. Multisensor data 

fusion is defined as the process of integrating 

information from multiple sources to produce the 

most specific and comprehensive unified data about 

an entity, activity or event (Raol and Girija, 2002). 

The process is supposed to achieve improved 

accuracy and more specific inferences than could be 

achieved by the use of a single sensor alone. In the 

field of measurement, weighted fusion algorithm is 

widely used for multisensor fusion process. The 

weight of each sensor is determined only by its own 

variance (Ling, et al., 2000; Yifeng and Leung, 1997). 

The precision of the variance estimation will affect 

the performance of the fusion algorithm seriously 

and the accuracy of the fusing results as well. 

 

The variance of sensor is determined by both internal 

noise and environmental interference. Most of the 



variance estimation methods used in weighted fusion 

algorithm are based on experience or the sensor’s 

variance parameter and the environmental noise is 

not included in consideration, which results in the 

distortion of the variance and the imprecision of the 

fusing results (Zhong, et al., 2002). 

 

An algorithm of variance estimation for multisensor 

is presented and proves unbiased in this paper. No a 

priori information about each sensor and 

environment noise is needed in this algorithm and the 

real-time variance estimation can be achieved only 

by the observations of sensors. Simulated data given 

in this paper indicate the usefulness of the algorithm. 

 

 

2. WEIGHTED FUSION ALGORITHM FOR 

MULTISENSOR 

 

The observation of state can be modeled by using the 

linear system (Zhong, et al., 2002): 

  eHxY +=               (1) 

where Y  is the ( n , 1) observation vector with 

[ ]TnyyyY �
21= , x  is the (1, 1) state, 

H is a known ( n , 1) vector with 

[ ]TH 111 �= , and e is the ( n , 1) vector 

of measurement error (noise, including internal and 

environmental) with [ ]Tneeee �
21= , a 

zero-mean Gaussian white noise sequence and 

independent of each other. It is also assumed that the 

noise sequence is a stationary process with ergodic 

property. Therefore, 
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where )(⋅E is the expected value operator, 

and iR denotes the noise variance of sensor i . 

According to the result (Gao, et al., 1999; Yifeng and 

Leung, 1997), The estimate of the state is�  
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The state estimation variance (Ling, et al., 2000) is  
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From the foregoing, it can be seen that the weight of 

each sensor is determined only by its own variance. 

The accuracy of the results obtained from data fusion 

process will be determined by the precision of the 

variance estimation directly.  

 

 

3. VARIANCE ESTIMATION FOR 

MULTISENSOR 

 

The mean of measurements from n  sensors is: 
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where y  is the unbiased estimation of x  

obviously. From (3), the variance of sensor j  is: 
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where )(⋅D  is the variance operator. In fact, it is 

impossible to obtain the actual state x . Here let y , 

the unbiased estimation of x , replace x  in form, 

then the following form can be obtained: 

0)( =− yyE j                   (8) 

��
���	

−=−=′
=

n

k
kjjj y

n
yDyyDR

1

1
)(











�

�











�

�
−−

= ≠
=

n

yyn

D

n

jk
k

kj
1

)1(

 













�

�











�

�
−−

= ≠
=

n

een

D

n

jk
k

kj
1

)1(

 

≠
=

+−=
n

jk
k

kj R
n

R
n

n

1
22

2 1)1(
      

   nj ,,2,1 �=             (9) 

jR′  denotes the variance of the difference between 

the measurement from sensor j and the mean of the 

measurements from n  sensors. The relation 

between jR′  and kR � nk ,,2,1 �= � is given in 

� 9 � . Sum up jR′ � nj ,,2,1 �= � : 
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According to (9) and (10), the following form of the 

variance of sensor j  is obtained:  
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Considering the condition of measuring N  times 

by using nsensors, ijy  is the i -th measurement 

from sensor j  and ije  is the error. Based on the 

ergodic property of stochastic process� incorporation 

of (8) and (9) gives the estimation of jR′ : 
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By using (11), the variance estimation of sensor j  

is: 
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What should be given attention to is that the 

foregoing algorithm is invalid when measuring with 

only two sensors because of the lack of the redundant 

information. The method of variance estimation is 

applicable when the number of sensors is larger than 

2. 

 

 

4. THE UNBIAS OF VARIANCE ESTIMATION 

 

Based on the assumption of noise and (12), the 

following equation is obtained: 
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Considering (9) and (14), the conclusion that jR′ˆ  is 

the unbiased estimation of jR′  can be reached. By 

using (13), jR  also proves to be unbiased. 

 

 

 



5. IMPLEMENTATION OF ALGORITHM AND 

THE SIMULATED INSTANCE 

 

 

5.1 Implementation of algorithm 

 

Assume that ijR′ˆ  denotes the variance estimation of 

the i -th measurement from sensor j , then (12) can 

be described by the following recursion: 
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Using (15) in (13), the variance estimation of each 

sensor based on i  times sampling is obtained. 

However, a smaller number of sampling times than 

needed will lead to an inaccurate estimation and even 

results in the negative variance estimation. In order 

to ensure that the variance estimation is strictly 

positive, (13) is reformed as follows: 
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In practice, (15) and (16) are used to estimate the 

variance of each sensor. 

 

The algorithm of variance estimation presented in 

this paper can be used in real-time estimation 

because of its small amount of calculations by using 

recursive algorithm. In the mean time, it is also an 

adaptive algorithm and there is no need to set its 

initial value. With sample size increasing, the 

variance estimation of each sensor tends to be stable 

and approaches the true variance gradually. 

5.2 Simulated Instance 

 

Consider a system with 8 sensors. It is assumed the 

noise of each sensor is composed of internal noise 

and environmental noise and the noise is independent 

of each other. Suppose that the internal noise of each 

sensor is zero-mean white Gaussian noise with 

standard deviation 0.10, 0.20, 0.05, 0.40, 0.50, 0.30, 

0.24 and 0.10 respectively and environmental 

interference zero-mean white Gaussian noise with 

standard deviation 1.0, 0.8, 1.5, 2.0, 0.8, 2.5, 3.0 and 

1.3 respectively. In Table 1, algorithm 1 refers to the 

algorithm presented in this paper. The algorithm in 

which the weight is determined only by the sensor’s 

own variance is algorithm 2, and the algorithm of 

averaging measurement is algorithm 3. In algorithm 

4, each sensor’s weight is determined by its true 

variance. Based on the foregoing assumption, the 

state modeled by tty =)(  is sampled 2000 times, 

with the sampling interval T=1. The simulation 

results are shown in Figure 1, Table 1, and Table 2. 

 

As can be seen from Figure 1, the estimated variance 

of each sensor gradually approaches its true variance 

as the sampling times increasing in algorithm 1. Data 

given in Table 1 and Table 2 indicate that algorithm 1 

is better than algorithms 2 and algorithm 3. 

Algorithm 1 is a little inferior to algorithm 4 which is 

the optimal algorithm theoretically (see Table 1). 

Mean of estimation errors in each sampling range 

given in Table 2 can be regarded as the state 

estimation variance of each algorithm. According to 

(5), the optimal estimated variance is 0.1951. Data 

given in Table 2 show that mean of the square of 

state estimation errors approaches the true value as 

the sampling times increase. 

 

 

 

 

 

 

 

 

 

 

Fig. 1 The curve of sensors’ variance estimation. As can be seen from the figure, the estimates of the variance 

converge to the actual values gradually. 



 

Table 1 The absolute value distribution of estimation error 

 

 

 

 

 

 

 

 

 

Table 2 The mean square error of state estimation 

 

 

 

 

 

 

 

6. CONCLUSION 

  

The algorithm of variance estimation for multisensor 

is discussed in this paper and proves unbiased. The 

approach is adaptive and can be used in real-time 

estimation due to the presentation of the recurrence 

formula. A numerical example is given to illustrate 

the results and to show the usefulness of the 

approach. 
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>3 0 5 0 0 
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Abstract: A method is presented to monitor wastewater treatment processes by 
incorporating multivariable principal component analysis (PCA) with the knowledge of 
respirometry estimations. Respirometry is the measurement of an activated sludge 
respiration which reflects the oxygen rate consumed by biomass, and can be estimated 
from dissolved oxygen concentrations. Because dissolved oxygen concentrations which 
are available at most plants have the quick response time and easy maintenance, 
respirometry estimations based monitoring strategy has advantages for the fault 
detection. The improvement of some fault detection indexes are demonstrated through 
IWA’s Benchmark simulations. Copyright © 2003 IFAC 

 

Keywords: Waste treatment, Monitoring, Estimation, Water pollution, Environment 
engineering. 

 

 

 

 

1. INTRODUCTION 
 
Process monitoring is implemented to ensure that 
process outputs comply with requirements on product 
quality, operation safety and efficient use of resources. 
With the enforcement of even stricter rules on 
discharges and applications of computer 
data-collection systems, it is interested in operation 
monitoring of wastewater treatment plants (WWTP) 
in recent years. Difficulties such as variably operating 
conditions, correlation, non-linearity, multi-time scale 
are often encountered when engineers deal with these 

data of wastewater treatment plants. 
 
Process monitoring, that is fault detection, isolation 
and diagnosis, have gained successful applications in 
petrochemical industry (Kourti and MacGregor, 1996; 
Venkatasubramanian, 2001). Rosen (1998) and Rosen 
and Olsson (1998) summarized the data pretreatment 
methods, multivariable principal component analysis 
(PCA) and partial least squares (PLS) algorithm for 
monitoring of WWTP. Rosen and Lennox (2001) 
presented a methodology that is Bakshi’s (1998) 
wavelet multi-scale analysis in combination with 



multivariable principal component analysis. Lennox 
and Rosen (2002) worked further, which an adaptive 
PCA method is adopted for the changing mean and 
deviation of process variables or disturbances. 
Teppola et al (1998) focused on monitoring of 
paper’s wastewater treatment plants.  
 
Analysis instruments are often installed at the 
entrance and the exit of wastewater because of 
restriction of investments and operation costs, and the 
assay time interval of other variables is about 1-2 
hour(s). The insufficient of sampling data and the 
multi-scale sampling times is a challenge problem for 
WWTP monitoring. The practical usability of 
analysis instruments is not considered adequately 
(Lennox, 2002). So for on-line fault detection and 
diagnoses, more effective process monitoring 
methods are needed. On the other hand, it is noticed 
that dissolved oxygen sensors are used widely with 
sampling times in seconds. By measuring dissolved 
oxygen (DO) concentrations and further numerical 
computations, respirometry can be estimated. 
Respirometry can not only reflect the consumption 
rate of oxygen in activated sludge, but also is an 
indication of substrate degradation extent and the 
ability of microorganism metabolism. Because DO 
sensors have advantages in stability, quickness and 
low cost, hence on-line process monitoring based on 
respirometry (Spanjers, et al, 1998) or 
respirometric-titrimetric (Gernaey, et al, 2001) may 
be more practical. 
 
In this work, respirometry measure principles are 
introduced. Then by making a general of mass 
balance and numerical differential, respirometry is 
estimated and combined with conventional data 
matrix of PCA to form one kind of hybrid PCA model. 
More mechanism information is added to PCA model 
and it is helpful to establish economical and quick 
on-line process monitoring strategies. Finally the 
approach to monitoring Benchmark of biological 
wastewater treatment processes is given and the 
improvement of some fault detection indexes is 
demonstrated.  
 
 

2. RESPIROMETRY MEASUREMENT 
PRINCIPLES 

 
Respirometry is the measurement of the respiration 
and interpretation of the biological oxygen 
consumption rate under well-defined experimental 
conditions. Although the principle of the respirometry 
measurement is simple, the restriction of some 
uncertain factors, such as the phase where oxygen 
concentration is measured and whether or not there is 
input and output of liquid and gas must be take into 
account carefully. The respiration rate is calculated 
by making a general mass balance for oxygen over 
the liquid phase as follows. 

(1)    or)oS0
oa(SLK)oSino,(S

V
inQ

dt
odS

−−+−=

Where S0 is the dissolved oxygen concentration in 
liquid phase (mg/l), Qin is flow rate of liquid entering 
the system (l/min), So,in is dissolved oxygen 
concentration entered into the liquid phase, KLa is  

oxygen transfer coefficient (l/min), 0
OS  is saturated 

dissolved oxygen concentration, ro is oxygen uptake 
rate (OUR) (mg/l⋅min), V is liquid volume of the 
respirometer. There are many kinds of methods to 
calculate respirometry in literatures. 
 
 

3. RESPIROMETRY ESTIMATIONS 
 
Besides using a respirometer to measure respirometry, 
theoretically, in virtue of measuring dissolved oxygen 
concentrations in liquid, then Eq.1 based to calculate 
consuming rate of oxygen is an alternative approach. 
Here the differential estimation value of So needs to 
be constructed by the numerical differential based on 
the measured values of So. The simplest method is to 
calculate with backward differential. In this work, 
three point numerical differentiation formula is used 
to calculate the differential value of So 
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Noticed this numerical differential needs to be dealt 
with for on-line monitoring strategies. When a new 
measured point is added, together with the former 
two measured values, three differential values can be 
obtained according to Eq.2. Since every measured 
value has been cited three times during recursive 
computations, there are three corresponded 
differential estimation values at every interval time. 
Theoretically, it is difficult to select one from three. 
Since this research aims at fault diagnosis, selecting 
the minimum at every point is as estimations of the 
numerical differential. 
 
 

4. PCA INCORPORATING WITH EXTERNAL 
INFORMATION 

 
There are three approaches to fault detection and 
isolation based on a first principle model, a 
data-driven empirical modeling and the knowledge 
inference. In the aspect of fault detection, the 
multivariable statistical analysis approach is proved 
very valid.  For complicated processes, because of 
fault coupling and propagation, it is difficult to isolate 
the source of faults. Model based is the direct 
description of common-causal variations. When used 
in fault diagnosis, the main problem is that 
development of model, especially modeling the 
plant-wide needs large cost. Intuitively, combined 
partial relations such as mass balances and reaction 
dynamics with PCA model, though such knowledge 
may be not complete, it is possible to enhance some 
functions of FDI (Yoon and MacGregor, 2001). 
 
Given the data matrix X (n×m), the data obtained 
from other equations can be appended to some rows 
or some columns of X. 

(3)                    EGCTBHTGMHX +++=  

Here, G(n×p) represents observed information matrix, 
augmented p columns in data matrix; H (m×q) 
represents variable information matrix, augmented q 
rows in data matrix; E is error matrix, coefficient 
matrix M, B, C have corresponding dimensionality, 
and need to be estimated, the detailed derivation can 
refer to Yoon and MacGregor (2001). In this paper, it 
is based on mass balance relationship to predication 
new estimated variables that is augmenting column in 
the data matrix. For example, at some observation 
time, the measured data matrix Xm(n>m) has been 
obtained, for the data matrix Xe (n×m1, m1<m) gained 
by mechanism relationship estimation, it can be 
constructed as follows: 

(4)                ]|[ eXmXX =  

For the augmented matrix X, various PCA modeling 
can be carried through. Also the output data matrix Y 
can be augmented in PLS.  

(5)                     ]|[ eYmYY =  

If it is PCA model originally, that is there is no output 
data matrix Ym, when the output data matrix Ye is 
augmented, PCA problem is converted into PLS. A 
key step is if such data matrix X e or Y e can be found 
to improve some specific index of PCA or PLS. 
 
 

5. PCA MODEL OF BENCHMARK 
 
The Benchmark WWTP (Alex, et al, 1999) designed 
by IWA and COST 624 has proven very useful for the 
evaluation of control strategies developed for N 
removal wastewater treatment plants. Biological 
reactor with a total volume of 5999 m3 is subdivided 
into five well-mixed compartments in series with a 
10-layer secondary settling tank which volume is 
4000 m3. Denitrification takes place in former two 
anoxic reactors, while later three aerated reactors 
serve for carbon removal and nitrification. Tuning 
airflow can control dissolved oxygen concentrations 
of aerated tanks. IWA’s Activated Sludge Model No.1 
(ASM1) (Henze, et al, 1987) and the double 
exponential setting velocity function (Takács, et al, 
1991) are chosen as a representation of reactors and 
settling processes separately.  



 
The Benchmark contains 145 state variables. There 
are 13 component variables which are (1) readily 
biodegradable soluble substrate SS, (2) biodegradable 
particulate material XS, (3) slowly biodegradable 
soluble material SI, (4) slowly biodegradable 
particulate material Xp, (5) slowly biodegradable inert 
material XI, (6) heterotrophic biomass X BH , (7) 
autotrophic biomass X BA, (8)oxygen So, (9) 
NH4

++NH3 nitrogen SNH , (10) soluble biodegradable 
organic nitrogen SND, (11) particulate biodegradable 
organic nitrogen XND, (12) nitrate and nitrite nitrogen 
SNO, and (13) Alkalinity SALK. In these components, 
SNH, SNO, So, and SALK are measurable known at 
present. Others can not be measured directly. 
Although there are so many variables, that used for 
monitoring are a few. In the secondary settler, what 
can be considered are only those state variables 
physically measurable and relating with effluent. In 
Lennox’s (2002) study, the following variables were 
chosen to form PCA model: (1) NH4

+ concentration 
of influent, NH4i, (2) influent wastewater flow, Qi, (3) 
total solid suspended matter in reactor 3, TSS3, (4) 
effluent NH4

+ concentration, NH4e , (5) effluent nitrate 
concentration, NO3e, (6) total suspended solids of 
effluent, TSSe  (7) Alkalinity in effluent , SALKe ; (8) 
total suspended solids of return sludge, TSSu (9-12) 
oxygen in reactors 1-4, So1-4. When TSS3 and NO3e 
cannot be measured online, it is needed to develop 
the new monitoring methodology.  
 
As described in introduction, the consumption of 
oxygen is related to the degradation extent to the 
substrate. Using the oxygen concentration and 
respirometry estimation inside reactors as monitoring 
variables to form PCA model may have more 
advantages in quickness and applicability. 
Simulations given in next section verified such ideas. 
In this study, following practical measurable variables 
are chosen to form PCA model: (1-4) oxygen in 
reactors 1-4 So1-4, (5-8) respirometry estimations in 
reactors 1-4, ro1-4, (9) influent flow, Qi, (10) influent 
NH4

+ concentration, NH4i , (11) effluent NH4
+ 

concentration, NH4e. Three principal components are 
retained to represent about 90 percent data variances. 
 

6. SIMULATIONS 
 
Components of the influent are time-varied and 
various. It cost high to monitor by the online analysis 
and assay. After abnormal influent to the process, 
biological reacts are not only complicated in 
mechanism, but also the main biochemical index, 
such as biochemical oxygen demand (BOD), changed 
slowly. Once the living environment suitable for 
biomass is disturbed, the effluent quality will be 
affected in a long time. So, to monitor and discover 
various abnormalities come from inlet looks very 
important. Here two abnormal states are evaluated, 
that is: (1) the normal operation is impacted by 
violent variations in influent flow Q0 caused by rain 
event; (2) Metabolism of autotrophic biomass in 
activated sludge reactors is impacted by the toxin 
pulse in influent. It can be described by amendment 
to Aµ  in ASM1: 
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(1) Monitoring the abnormal of influent flow Q0. 
Thought the storm event do not emerge constantly, 
great influences on WWTP operations are observed. 
Storm will directly force influent flow and 
components to vary drastically. Thought the control 
system can give corresponding action, or the operator 
can take some measures to keep away, however when 
attack is serious and the duration is long, it is needed 
to predict automatically as soon as possible, so as to 
maintain stationary operating. Results are shown in 
Fig.1. PI controller at reactor 5 controls DO 
concentration at the set-point, So, sp=2.0g/m3. 
 (2) Monitoring toxin pulses of influent 
Toxin pulse lasts 6 hours. The variation of Aµ  

would affect the activity of autotrophic biomass 
directly. Because of the control action and mass cycle, 
states variations observed practically were not so 
remarkable. From figures (Lennox, 2002), only SNO 
varied evidently. So, when nitrate-measuring device 
is not installed in the outlet, it is not easy to diagnose 
the latent influence of toxin pulse using process 
monitoring strategies based on common PCA. It will 
be valid to combined PCA approach with other 
process knowledge. The results of diagnosing toxin 



pulse emergence using the PCA model proposed in 
this paper are shown in Fig.2. 48 minutes after toxin 
pulse emerged, the predicted error square index SPE 
and Hotelling T2 statistics performance were all 
exceed their confidence interval, bar chart showed the 
predicted errors of 11 variables in PCA model at this 
time. It not only need nitrate-measuring device by 
means of conventional approach, but the toxin pulse 
emergence can be diagnosed only after 4.5 hours.  
 
 

7. CONCLUSION 
 
On-line monitoring strategy incorporated 
respirometry estimation knowledge with 
multivariable principal component model is presented 
for WWTP. Respirometry estimations only need to 
measure dissolved oxygen concentrations inside 
activated sludge reactors and some related flow 
signals. Because DO consumption is related to the 
activity of biomass and the extent of substrate 
degradation, moreover it is universal to install 
dissolved oxygen concentration devices and flow 
meters which have quick response, stable operation, 
and easy maintenance at wastewater treatment plants, 
so it has advantages in the efficiency of fault 
detection and practicability to form the process 
monitoring strategy based on respirometry 
estimations. Using this new strategy for monitoring 
benchmark of IWA, some statistics index varied 
significantly and diagnosis could be given timely 
when two typical abnormal conditions on flow 
variation caused by rain event and toxin pulse of 
influent. It is the further work to estimate 
respirometry and oxygen transfer coefficients at the 
same time.  
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Abstract: In order to avoid the difficulty of installing vibration sensors and extracting 
characteristic frequency vectors on the traditional vibration-based abrasion faults 
diagnosis of main bearing of diesel engine, this paper presents a new approach based 
on the noise signal of diesel engine and wavelet packet images processing. Based on 
that, the standard time-frequency distribution images of all fault conditions, including 
the gap abrasion information of main bearing, can be defined. Correspondingly, a gap 
abrasion fault diagnosis model of main bearing with images matching is set up. 
Through comparing the Euclid Distance values between standard fault images and the 
test image, the model can recognize the gap abrasion condition. The result shows that 
this method is simple and effective, and makes the best use of fault information. 
Copyright © 2002 IFAC 
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1. INTRODUCTION 
 
Nowadays, there are many diesel engines used in 
chemical process industry. The fault diagnosis & 
monitoring of diesel engine is very difficult due to 
its complex structure. The main bearing is the 
important part of reciprocating engine, and its 

extreme abrasion can affect the normal operation of 
diesel engine. The gap measurements of main 
bearing are very significant. Faults diagnosis and 
conditions monitoring of most parts of a diesel 
engine (including piston, valve and so on) often 
base on the vibration signal. Vibration sensor is easy 
to approach those parts and sensitive to their 



abrasion faults. But the main bearing locates in the 
interior of diesel engine, so diesel engine has to be 
disassembled for installing a vibration sensor near 
main bearing; but it will result in a lot of troubles. If 
using noise measurements in the exterior of diesel 
engine to realize the faults diagnosis and monitoring 
of main bearing, it will bring very important 
meanings. In addition, the variety of gap condition 
of main bearing does not cause the obvious variety 
of vibration & noise signals; the work processing of 
diesel engine is a non-stationary shock processing, 
its energy has a wide distribution in frequency 
domain, and from the ordinary spectrum figure, it is 
very difficult to find its fault characteristics similar 
to those of rotating machinery. In references (Liu 
Shiyuan, et al., 1999; Geng Zhongxing, Qu 
Liangsheng, 1994; Xu Min, 1998), wavelet packet 
and wavelet analysis are used to extract signal 
characteristics from time domain and some special 
frequency domain of vibration signal, and these 
methods all have a satisfactory result. However, all 
above methods does not make the best use of 
time-frequency information included in vibration 
signal; in addition, those methods are based on 
vibration signal, and not use the noise-based 
approach that is more easier and effective for fault 
monitoring of main bearing. Based on that, this 
paper presents a new fault diagnosis method based 
on wavelet packet images processing and noise 
signal. 
 
 
2.EXPERIMENT AND EXPERIMENT 
CONDITION 
 
In order to research the relationship between noise 
signals and the gap abrasion conditions of main 
bearing, the test equipment is set up specially, as 
shown in Fig.1. This test diesel engine is a 2100 
diesel engine, connected with a waterpower 
loadometer that can adjust the output power. A ND2 
acoustic detector is used to sample the noise signals 
of diesel, the capacitor microphone of it should be 
located on the same horizontal level with the main 
bearing of diesel, so its distance to the engine is 
0.8m, its height to the ground is 0.75m. The noise of 

diesel is usually relatively stronger in some 
directions and weaker in other directions. So the 
first step is to scan the surface of diesel for a best 
measuring position, which can assure the best 
radiation direction of sound energy, see (Xu Min, 
1998; Lu Chen, 2002). 
 

 
 

Fig.1. Sketch map of test equipment 
 

In order to obtain measurement result exactly, it is 
necessary to simulate four conditions of gap 
abrasion of the main bearing (0.12mm, 0.20mm, 
0.26mm, 0.30mm). The limited maximum gap 
abrasion of the test main bearing is 0.25mm, so the 
above four conditions of testing gap include 
basically all work conditions from normal gap to 
serious abrasion. In addition, rotating speed: 
1200r/min, output power: 80%, sample rate: 
10.8KHz, sample length: 8192 points. 
 
In order to obtain a highest precision, it is also 
necessary to mark the noise signal sample. Firstly, 
need to measure the pressure signal in the interior of 
cylinder by installing a pulse sensor near the 
camshaft. The angle range is from -360о to 360о 
during a work cycle of diesel. During the course of 
test, record each maximum pressure value while 
breaking off oils and regard it as 0о. Through the 
above method, it can be assured that the length of 
noise signal is integral multiple of a work cycle of 
diesel. 
 
 
3.WAVELET ANALYSIS OF NOISE SIGNAL 
 
In our previous research, wavelet analysis was 
applied to the fault diagnosis of gap abrasion. This 
method uses wavelet analysis to extract the high 



frequency band of noise signal, and then uses 
Hilbert transform to extract the envelope of the high 
frequency band. Finally, FFT spectrum of the 
envelope can be obtained.  As a result, it is found 
that the amplitude values of 0.5× rotating speed and 
2× rotating speed frequency are very sensitive to 
gap abrasion of main bearing, and increase along 
with the increment of gap abrasion, see (Lu Chen, 
2002). 
 
Wavelet analysis can judge the gap abrasion 
conditions of main bearing, but it does not make the 
best of the information included in noise signals. 
Wavelet packet analysis has no redundant results 
and does not damage the any information of signal. 
It can also process a detailed decomposition for 
both low frequency band and high frequency band. 
Therefore, it is very fit for the analysis of 
non-stationary random signal, like the vibration & 
noise signal of diesel engine. 
 
 
4. WAVELET PACKET ANALYSIS OF NOISE 
SIGNAL AND IMAGES PROCESSING 
 
 
4.1 The Principle Of Wavelet Packet 
 
The basic idea of wavelet analysis is to use a cluster 
of wavelet functions to express a signal. It has a 
high time-frequency resolution in low frequency 
bands, a high time resolution and low frequency 
resolution in high frequency bands. The main 
information of discrete wavelet transform locates in 
low frequency domain. The above characteristic is 
just the shortcomings of discrete orthogonal wavelet. 
However, the theory of wavelet packet imports a 
best-basis rule on the base of wavelet theory. It can 
reflect the characteristic of signal more effectively, 
and process a more detailed decomposition for high 
frequency bands. As a result, the decomposition 
sequence has a high time-frequency resolution and 
same bandwidth in the whole time-frequency 
domain. Due to the limit of pages, more detailed 
theory about wavelet packet, please see the relevant 
reference, see (Hu Changhua, and Zhang Junbo, 

1999; Mallat S.A, 1989; Coifman R.R and 
Wickerhauser M V., 1992; Geng Zhongxing, Qu 
Liangsheng, 1994).  
 
4.2 Time-Frequency Phase Plane Express Of Noise 
Signal And Images Processing 
 
Phase plane is a two-dimension plane composed by 
time axis and frequency axis. It is not a function 
relationship, but a state expression and a real 
expression of signal. If sample length of signal is N, 
then the result of wavelet decomposition can be 
expressed by N adjacent rectangles ( the area of 
each rectangle is ∆t×∆f). ∆t and ∆f represent the 
resolution of time axis and frequency axis 
respectively. The different gray color value in each 
rectangle just represents the amplitude value. So the 
time-frequency characteristics of signal can be 
clearly expressed on time-frequency phase plane. 
The different gap conditions of main bearing will 
lead to the change of time-frequency distribution of 
noise signal, see (Geng Zhongxing and Qu 
Liangsheng, 1994).  

 

(a) (b) 
 

Fig.2 Time-frequency distribution images of two 
gap conditions (a: 0.30mm; b: 0.20mm) 

 
The gray values of image can be decided by the 
following method: firstly, normalize each level of 
coefficients after wavelet packet decomposition; 
then get corresponding gray values from these 
coefficients multiplied by 255, and the level length 
of decomposition is 5. Through our analysis, it can 
be found that each different gap of main bearing 
corresponds to one different time-frequency 
distribution figure. Even the time-frequency 
distribution figures of noise signals under the same 
gap condition from different starting time of sample 
are also little different from each other. It shows that 
the wavy behavior always exists in different work 



cycles of diesel; in other words, time domain noise 
waveforms of different work cycles are little 
different from each other. Simultaneously, on the 
time-frequency distribution images of different 
work cycles under the same gap condition, the gray 
values of some pixels at those corresponding 
frequency bands are also different from each other. 
Therefore, the time-frequency distribution image 
can include all information reflecting the work 
condition of diesel and give the extent of amplitude 
value of any time point and frequency band. In 
order to restrain the disturbance of noise and stand 
out fault characteristics, the method of images 
average processing is presented in this paper. It is 
consistent with the method of parameters average. 
 
The image is formed by software method: firstly, 
processing wavelet packet decomposition for noise 
signal, then its time-frequency distribution image 
will be displayed on computer screen. Through 
programming, the position coordinates and gray 
values of all pixel points can be obtained, then save 
these data as an image file format. Finally, the 
time-frequency distribution images under different 
gap conditions can also be obtained. In our 
experiment, the size of image is 481×386, the 
range of gray value is 0~255. Certainly, the wider 
range of gray value can enhance the resolution of 
image, and reflect more details of wavelet packet 
decomposition. 
 
 
5. FAULT DIAGNOSIS MODEL OF INTERNAL 
COMBUSTION ENGINE BASED ON IMAGES 
MATCHING 
 
 
5.1 Images Average Processing 
 
From the above discussion, it is known that, there 
exists wavy phenomenon among different work 
cycles of diesel, and also in the interior of each 
work cycle, so the differences of time-frequency 
distribution of different cycles under the same work 
and gap condition should not be neglected. If only 
use one single noise signal sample as the base of the 

abrasion fault diagnosis of main bearing, it will lack 
of correctness. Therefore, it is necessary to process 
an average for all time-frequency distribution 
images of one work and gap condition, so as to 
lessen the wavy effect and stand out the fault 
information. In our experiment, select respectively 
10 time-frequency distribution images to average 
for 4 types of gap conditions of main bearing, then 
get four “standard” images representing 4 types of 
gap conditions. In order to verify the validity, it 
needs to use 10 images to average for obtaining 
“standard” images, and five images to average for 
processing fault diagnosis of main bearing, see 
(Cheng Guiming and Zhang Mingzhao, 2000). 
Certainly, the number of images to be averaged can 
also be larger than 10 or 5. Moreover, the larger 
number can improve the precision of fault 
diagnosis. 
 
If, an images cluster Ak(i,j),k=0,1,2,…N. The gray 
value of the (i, j) pixel unit in Ak(i,j) is Gk(i,j). (i is 
row, j is column), then after the average processing, 
the gray value of the (i, j) pixel unit in the standard 
image (averaged) of any gap condition of main 
bearing is below: 
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In equation (1): m=1,2,3,4; i=1,2,…,NL, j=1, 
2,…,NS; NL is the row count of image pixels. NS is 
the column count of image pixels. Let N in equation 
(1) be 10 as computing each “standard image”, and 
be 5 as processing fault diagnosis (computing “test 
image”). The Euclid Distance between two images 
is defined as equation (2). 
 
In equation (2): N=NL×NS, it is just the total count 
of image pixels; A(i,j) is the gray value of the (i, j) 
pixel in test image, SGm(i,j) is the gray value of the 
(i, j) pixel in m-th “standard image”. The length of 
noise signal used to produce each standard/test 
image is integral multiple of a work cycle of diesel. 
Certainly, for any gap condition, 10 noise signal 
samples of standard image are all from the same 



time series, and the same to 5 noise signal samples 
of test image. 
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5.2 The Decision Of Threshold Value 
 
During the process of fault diagnosis, for any image 
A(i,j) (test image) after the average of 5 images, 
according to equation (2), compute each Euclid 
Distance value Dm between four “standard” images 
and test image (m=1,2,3,4). Dmin=min{Dm}, define 
the difference between any one of four Euclid 
Distance values and Dmin as below: 
 

Cm=|Dm－Dmin|  (3) 
 

 

 
Fig.3 Process of diagnosis 

 
Through test analysis, a diagnosis threshold value 
can be set Vd=5. For any test image, if there is only 
one Cm<Vd, then the gap abrasion condition of main 
bearing is just the one which this Cm corresponds to. 
Whereas, if there are more than one Cm<Vd, then it 
is no way to judge.  

 
6. DIAGNOSTIC EXAMPLE 
 
In Fig.4, each on the left side is the standard image, 
which represents one of four gap conditions of main 
bearing, and the right ones are test images. From 
top to bottom, it is 0.12mm, 0.20mm, 0.26mm and 

0.30mm respectively.  
 

 

 
 

Fig.4 Standard images and test images 
 

In Fig.4, it shows that, there are differences among 
the four “standard” images. Simultaneously, each 
“standard” image is quite similar to its 
corresponding diagnosed image under the same gap 
condition; it is because the processing of images 
average can extract the characteristics of images 
and restrain the noises. According to the steps 
shown in Fig.3, for each gap condition, selecting 
two averaged images to diagnose. The result is 
shown in Table 1. 
 
In Tab.1, SI represents standard image, S1~S8 are 
test images, D1~D4 are the Euclid Distance values 
between the standard images and the test images, R 
represents result, and Gap1~Gap4 represent the 
diagnostic results of gap conditions. 
 
In our experiment, 30 test images are analyzed by 
the above method in our experiment, only one 
image can be not classified, and all the others can 
be classified correctly. The rate of recognition can 
reach to 95%. 
 



Tab.1 Euclid distance between standard images and 
test images 

 

 

 
 
7.CONCLUSIONS 
 
From Tab.1, a conclusion can be deduced that, if 
using images matching model based on Euclid 
Distance to diagnose the gap condition, then the 
differences of Dm between the test image sample 
and each of “standard” images are very 
distinguished. The essence of this method is, on the 
time-frequency phase plane, the similar extent of 
positions and amplitude values of all frequency 
bands is expressed by Euclid Distance between two 
time-frequency images. The average method can be 
used to reduce the wavy effect and noise 
disturbance, but not solve this problem radically. 
Certainly, the number of images to be averaged can 
also affect Dm.  
 
Through wavelet packet analysis, the detailed 
information of each time domain and frequency 
band can be obtained. The noise signal of diesel has 
the characteristic of non-stationary and includes 
abundant condition information of diesel, so 
wavelet packet is suitable for analyzing it. Through 
the test result, it shows that the abrasion fault 
diagnosis model based on images matching has a 
strong practicability and feasibility, and the noise 
signal based method is also feasible. In addition, the 
threshold value is mainly decided by experience, so 
far, there is not a quantitive analysis method, it need 
to be improved in future research. 
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Abstract： In the operation and control of chemical process, automatic data logging 
systems produce large volumes of data. It is important for supervising daily operation that 
how to exploit the valuable information about normal and abnormal operation, significant 
disturbance and changes in operational and control strategies. In this paper, principal 
component analysis (PCA) is clarified its essence from the view of space, and every 
different subspace represents different operational mode and process performance. Based 
on that, distance between two subspaces is calculated to evaluate the difference between 
them. The method is illustrated by a case study of a fluid catalytic cracking unit (FCCU) 
reactor-regenerator system. Copyright © 2003 IFAC 
 

Keywords： Principal component analysis, statistical process control, space distance, 
process performance monitoring, FCCU. 

 

 

 

 

1. INTRODUCTION 
 

Advances in computer technology and application of 
advanced control theory have resulted in routine 
collection and storage of large volumes of data in 
chemical plant. Massive amounts of stored data can 
be used for analysis of the process operation and 
previous occurrences of abnormal situation. Principal 
component analysis (PCA) can extract valuable 
information from large historical database. Notable 
applications of PCA in chemical engineering have 
been in process monitoring (Nomikos and 
MacGregor, 1995; Kresta, et al., 1991), disturbance 
detection (Ku and Storer, 1995), sensor fault 
diagnosis (Wang and Song, 2002) and process fault 
diagnosis (Kano, et al.,2001; Dunia and Qin,1998; 

Zhang, et al.,1996).  
 

As far as process fault diagnosis is concerned, 
statistical process monitoring via PCA involves the 
use of Hotelling T2 and Q (also known as Square 
Prediction Error or SPE) charts. Fault is identified 
with contributions of process variables to SPE. It is 
only valid for simple fault situation, and difficult to 
identify the root causes. Zhang and Martin (1996) 
proposed fault direction to identify different fault. 
Fault diagnosis is achieved by comparing the 
direction of the current on-line measurements with 
those of a database of known trajectories of identified 
faults. This method based on angle measurement 
does not make full use of principal component 
information of faults, and only the first loading 



 
vector is used. Dunia and Qin (1998) analyze the 
detectability, identifiability and reconstructability of 
faults using subspace approach. But they assume that 
the fault effect is not propagated into the other 
variables, which restricts its application. Kano, et al. 
(2001) proposed a novel statistical process 
monitoring method based on changes in the subspace 
which is spanned by several principal components. 
The method makes use of principal component 
information sufficiently, and has better monitoring 
performance than conventional PCA based on 
Hotelling T2 and Q charts. In essence, the method 
proposed in this paper is similar to the one proposed 
by Kano, et al.. Their work is not dealt with fault 
identification, while our approach goes beyond the 
fault detection task. Once a fault is detected, we have 
proposed a method based on subspace distance to 
identity the type of fault.   
 

The paper is structured as follows: the second section 
gives a more strict procedure of deduction for PCA 
based on subspace distance, and proposes a method 
of fault identification according to historical database. 
The third section presents an application of the 
approach to FCCU reactor-regenerator system. The 
final section summarizes the approach. 
 

 

2.  PCA BASED SUBSPACE 
 

2.1 Spacial Signification of PCA 
 

PCA decomposes a normalized sample vector into 
two portions, 
            xx ~ˆ +=x ,                  (1) 

where mℜ∈x is the sample vector normalized to 

zero mean and unit variance. The vector x̂ is the 
projection on the principal component subspace S: 

ˆ T= =x PP x Cx                 (2) 

where km×ℜ∈P is the PCA loading matrix, and k≥

1 is the number of PCs retained in the PCA model. 

The matrix TPPC = is projection operator on the 

principal component subspace S, mS ℜ⊆∈x̂ , with 

dim(S)=k. The columns of the loading matrix P are 

the eigenvectors of the correlation matrix associated 

with the k largest eigenvalues. 

Similarly, the residual x~ satisfies 
mS ℜ⊂∈=−=

~~)(~ xCxCIx ,         (3)  

where C~ is projection operator on the residual 

subspace S~ , with kmS −=)~dim( . From the view 
of space, PCA divides the measurement space Sm 
(dim(Sm)=m) into two orthogonal subspaces, a 
principal component subspace and a residual 
subspace. That is, 

SSSm
~

⊕=                  (4) 

Principal component subspace primarily 

characterizes the measurement subspace. When a 

change in variable correlation occurs, that is, space  

Sm has a change, the bases of principal component 

subspace also produce corresponding changes. We 

call principal component subspace S as characteristic 

subspace.  

 

For a certain chemical process, we can define fault 

set n
iiF 1}{ =  according to the data recorded in 

historical database and technologic information. We 
denote Si, Sj as the characteristic subspace of fault Fi, 
Fj respectively. They are spanned by the 
corresponding loading vectors, respectively, that is, 

      1 2( , , , )i rS span= u u uL         (5) 

          1 2( , , , )j sS span= v v vL        (6)                                                                            

where dim(Si)=r, dim(Sj)=s. Without loss of 
generality, suppose s r≤ . The dimensions of 
subspace Si, Sj can be determined by the percent of 
contribution to the accumulative variances. The 
difference between Fi and Fj can be reflected by the 
difference of bases of their characteristic subspace. In 
order to identify different fault, the distance between 
two subspaces is used to measure the difference. Let 
matrix 

 1 2[ , , ]r=U u u uL , 1 2[ , , ]s=V v v vL , with 

IUU =T , IVV =T .The  projection operator 
from subspace Sj onto subspace Si can be represented 
as   

             TUUC =                  (7) 

For any unit vector jS∈y ,that is ,
2

1=y , its 

projection on subspace Si is written as Cyy =ˆ . Now, 

the distance between two subspaces is defined as 



 

2, ˆmax yy
y

−=jid              (8) 

subject to      1
2

=y                   (9) 

Since y is a unit vector in Sj , it can be represented as  

Vty =                   (10) 

where t is the coordinate coefficients vector 

correspond to bases v1,v2,…, vs , with 1
2

=t . 

According to Lagrange’s method, we have  

)1(ˆ),( 2

2

2

2
−+−= yyyt λλL        (11) 

Let 0/ =∂∂ tL  and 0/ =∂∂ λL , with substitution 
of Eq.10 in Eq.11, we get the following expression,  

              tAt λ=                (12) 

where VUUVA TT= .  The coordinate coefficients 

vector t is an eigenvector of the matrix A, and λ  is 
the corresponding eigenvalue. The distance between 
two subspaces is obtained by the substitution of 
Eq.12 into Eq.8, 

)(1 min Aλ−=d              (13) 

Now, we prove the distance ].1,0[∈d  

Proof. ∵ VUVUVUUVA TTTTT )(== ,  

∴ A  is nonnegative definite , that is ,  0≥A , 

min ( ) 0λ ≥A . 

Suppose the bases of residual subspace of fault Fi is 

1 2[ , , , ]r r m+ +=U u u u% % % %L .  Let ]~,[ UUE = , then E is 

the bases of the measurement space Sm ,  with 

IEEEE == TT . T T T= + =EE UU UU I% %∵ ,  

and 0T ≥UU% %∵ , T∴ ≤UU I .   Thus, 

IVUUVA ≤= TT , that is,  min ( ) 1λ ≤A  

Therefore, 10 ≤≤ d ,  End. 
  

Thus, we have the following three special cases: 

(i) if the subspace Si = Sj , that is , the two subspace   
are identical, then U=VQ, where Q is nonsingular 
orthogonal matrix. With Eq.13, we can get 

1)(min =Aλ , that is, d=0. In the case of this, the 

fault Fi, Fj can be considered as the same fault.  

(ii) If the subspace i jS S⊂ , that is, the subspace 

spanned by the model for the fault Fj  contains the 
subspace spanned by the model for fault Fi , we can 
also get d=0. It means that the fault Fi is masked by 
fault Fj , and they can not be distinguished from each 
other. In fact, they are mistaken for the same fault.  

(iii) If the subspace ⊥= ji SS , that is, they are 

orthogonal, then 0=VUT . Thus, we can get 

min ( ) 0λ =A , that is , d=1. It means that the fault Fi, 

Fj can be distinguished from each other to the most 
extent. 
 

2.2 Fault Diagnosis Based on Distance 
 

From above description, the distance between 
subspaces can be used to identify the different faults. 
We define a match function as follows, 

%100)1( ,, ×−= jiji dp  

min ,1 1 ( ) 100%i jλ= − − ×A           (14) 

When a fault occurs, the loading vectors of the fault 
data are calculated through PCA and used to 
represent the bases of characteristic subspace of the 
fault. On the basis of that, the library of characteristic 
subspace of faults can be formed and represented as 
follows, 
          SF =[S1, S2, …,Sn]              (15) 
Where Si is the characteristic subspace corresponding 
to the fault Fi, and SF the subspace set, and n the 
number of faults. 

The currently monitored process measurements can 
then be analyzed using PCA. The calculated loading 
vectors form the bases of the subspace corresponding 
to the current observations. Denoting the current 
characteristic subspace by Scur, the matching degree 
between Scur and the every subspace in SF can be 
measured by Eq.14 respectively after a fault is 
detected. If the matching degree between Scur and 
some subspace (for example, Si ) is very close to 
100%, then the current abnormal occurrence may be 
probably ascribed to fault Fi. On the contrary, if the 
matching degree is close to zero, it may be least 
ascribed to fault Fi. Thus, fault identification can be 
performed by calculating the matching degree 



 
between the characteristic subspace of the current 
data and the library of subspace of known faults. As 
already discussed, some faults may be masked, so 
domain knowledge is further needed in that case to 
analyze the results and determine which fault has 
occurred on earth. 

In practical application, a diagnostic threshold is 
required to be defined in advance. The maximum of 
matching degree between the current data and the 
faults in the library should be larger than the 
diagnostic threshold. Otherwise, if the maximum of 
matching degree is less than the diagnostic threshold, 
that is, the current data subspace is not well matched 
with any fault characteristic subspace in the library, 
then it is likely that a novel fault has occurred. Once 
the occurrence of a novel fault is confirmed, the 
bases of the current data subspace can be stored in 
the library. Through this method, diagnostic 
knowledge about novel faults is progressively learnt 
and the library updated.    
 

 

3. CASE STUDY 

3.1 Process Description  

Fluid catalytic cracking unit (FCCU) is considered as 
one of the most important unit in the refinery. A 
simplified flow diagram is shown in Fig.1. Briefly, 
the fresh feed and recycle sludge oil are preheated, 
mixed, and then enter into the riser reactor where 
they contact regenerated catalyst and start the 
cracking reactions. The spent catalyst passes to the 
steam stripping section and enters the regenerator 
where the coke on the catalyst is burnt off with air. 
The heat released by the combustion of coke is 
supplied to the endothermic cracking reactions. The 
extra heat than what is required by cracking reactions 
is taken away by the heat exchanger outside the 
regenerator. The FCCU reactor–regenerator model 
which is used in this paper can be referred to the 
work done by Yang, et al. (1997). 

To generate an instance, the simulation is running at 
normal mode. When all parameters become stable, a 
disturbance or fault is introduced and at the same 
time, data recording is started. Fourteen variables are 
chosen to be recorded, including temperature of feed 
preheated, flow rate of recycle oil, sludge oil, slurry 

oil, distillate oil and assembled feed, flow rate of air 
of the first regenerator and the second regenerator, 
outlet temperature of riser, the heat of exchanger, 
carbon dioxide content in the flue gas from the first 
regenerator, oxygen content in the flue gas from the 
second regenerator, the temperature in the high 
density bed of the first and the second regenerator. 
During the simulation, random noise was added to 
the measurement and controller outputs.  Altogether 
ten data instances have been generated and 
summarized in Table 1. Sample time is 4 minutes. 
Each instance is simulated for 1000 minutes, and the 
database is a 250╳14╳10 matrix.  
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1：deaerator  2: 2nd regenerator  3: 1st regenerator    
4:  settler    5: heat exchanger  6: riser  
7: 2nd regenerator flue gas   8: 1st regenerator flue 
gas   9: product    10: feed    11: air 

 Fig.1 FCCU Reactor-regenerator Flow Sheet 

3.2 Data Analysis and Fault Identification 

When the measurement data are obtained, data 
reconciliation is performed to validate the sensor data. 
Then they are normalized to zero mean and unit 
variance before the data of each instance is analyzed 
by PCA. The distance between two corresponding 
subspaces is calculated with Eq.13.  Table 2 is the 
calculated results. From Table 2, it can be seen that 
the distance between subspaces of case 2, 3, 4 is 
relatively small compared with other distance, which 
indicates that their difference between them is 
relatively small. This is because they are all the flow 
disturbance of fresh feed, only different in the 
magnitude, and they have similar effect on the 
correlation of data. The distance between case 2,3,4 
and case 5 is relatively large compared with the one 



 
between case 2,3,4. That is because case 5 has an 
adverse disturbance direction. The distance between 
other cases is large. So we can use the distance to 
identify different fault or disturbance.  

For online monitoring, the data matrix representing 
the current operating conditions is updated by 
moving the time-window step by step as proposed by 
Kano et al (2001). PCA is applied to the data matrix, 
and the distance between the subspace of current data 
and the one of normal operation data is calculated 
with Eq.13 at each step. If the distance goes beyond 
the given control limit, the process is judged to be 
out of normal operation condition. And then, the 
distances between the subspace of current data and 
the one of known faults in the library are calculated 
respectively, and the match degrees between them are 
also obtained with Eq.14. If the maximum of 
matching degree is larger than the diagnostic 
threshold, then the fault in the library corresponding 
to the maximum has probably occurred. 

In order to verify the method for fault identification, 
the preheated temperature of fresh feed decreased 6K 
at 100 minute in the simulation. The monitoring 
results are shown in Fig.2, and the 95% warning limit 
which can be determined by statistical method is also 
shown.   

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250

t/min

Di
st
an
ce

 
Fig 2   Monitoring results for FCCU reactor- 

regenerator system 

When the distance is out of the control limit, the 
matching degrees between the current data and the 
faults in the historical database are calculated, and 
the results are shown in Fig.3. The diagnostic 
threshold is predefined as 0.80. It can be seen that the 
current case matches well with case 8 at 86.32% 
matching degree which is above the diagnostic 
threshold, and the fault is successfully identified.  
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Fig 3  Matching degree of the current case with 
the cases in the historical database 

 

 

4. CONCLUSIONS 
 

The diagnosis of abnormal operation can be greatly 
facilitated if similar system performance has been 
recorded in the historical database. Principal 
component analysis is among the most popular 
methods for extracting information from data. 
Through PCA, features associated with different 
faults can be identified and used in fault diagnosis. 
The features are the characteristic subspace spanned 
by several loading vectors. Fault diagnosis can then 
be performed by calculating the distance between the 
subspace of current data matrix and the one of known 
faults in the library. It can also deal with novel faults 
and learn diagnosis knowledge about novel faults. 
This method is applied to monitoring the FCCU 
reactor-regenerator system. The results have shown 
that the method can successfully identify different 
faults, because it makes full use of information about 
several principal components. It is important to note 
that although the approach is well founded, there are 
problems to be solved in real industrial application. It 
is advisable to combine domain knowledge with data 
mining method to diagnosis fault. 
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Table 1 Summary of the 10 simulated cases 

Cases Description of cases 
1 normal operation 
2 a step increase of 10% in fresh feed flow rate  
3 a step increase of 20% in fresh feed flow rate 
4 a step increase of 40% in fresh feed flow rate 
5 a step decrease of 30% in fresh feed flow rate 
6 a step increase of 10% in air flow rate of 1st regenerator 
7 a step increase of 10% in heat of heat removal system 
8 decrease of 3K in  preheated temperature of fresh feed    
9 increase of 3K in outlet temperature of riser reactor 
10 increase of 3K in high density bed temperature of 1st regenerator 

 
Table 2 The distance between ten different cases

d case 1 case 2 case 3 case 4 case5 case 6 case 7 case 8 case 9 case 10 

case 1 0 0.3896 0.5799 0.6619 0.5953 0.3406 0.4191 0.7596 0.5754 0.5355 

case 2 0.3896 0 0.0678 0.2054 0.6251 0.9915 0.9427 0.9454 0.9998 0.9881 

case 3 0.5799 0.0678 0 0.1300 0.6535 0.9991 0.9622 0.9227 0.9527 0.9555 

case 4 0.6619 0.2054 0.1300 0 0.6990 0.9998 0.9653 0.9469 0.9360 0.9609 

case 5 0.5953 0.6251 0.6535 0.6990 0 0.9769 0.9958 0.9359 0.9566 0.9510 

case 6 0.3406 0.9915 0.9991 0.9998 0.9769 0 0.8441 0.9960 0.8684 0.9926 

case 7 0.4191 0.9427 0.9622 0.9653 0.9958 0.8441 0 0.9991 0.9618 0.9998 

case 8 0.7596 0.9454 0.9227 0.9469 0.9359 0.9960 0.9991 0 0.9747 0.6478 

case 9 0.5754 0.9998 0.9527 0.9360 0.9566 0.8684 0.9618 0.9747 0 0.9230 

case 10 0.5355 0.9881 0.9555 0.9609 0.9510 0.9926 0.9998 0.6478 0.9230 0 
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Abstract: Measurements of temperatures and flows and pressures are used to 
estimate the dry point of the product for the distillation column. The Problem is 
characterized by the model complication and the strong colinearity between the 
measurements. In this article, the distributed RBF neural network (DRBFN) and 
principal component analysis (PCA) are used to develop the soft sensor 
(PCA-DRBFN model), and PCA is also used for data compressing and validation. 
Another two models are used to compare the performance with the proposed soft 
sensor. 
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1. INTRODUCTION 
A major problem in the control of product quality in 
chemical process is the uneasy measuring of the 
quality variables on-line. Although related product 
quality parameters (such as product composition) 
can be obtained by laboratory analysis off-line, this 
brings large measurement delays. This paper 
addresses the development of a soft sensor model to 
achieve the estimation of the uneasy measured 
quality parameter. The application chosen here is 
the use of temperature, flow and pressure 
parameters to estimate the product dry point. 
 

There are many methods of developing soft sensor 
models and neural network is one of them being 

used widely because of its excellent properties 
(Bhat and McAvoy 1990). RBF neural network is 
the often-used net. 
 

Usually, it is necessary to collect large amount of 
process data in order to accurately developing the 
soft sensor model. In this case, using one network to 
build model will bring a problem of long learning 
time. Distributed RBF network (DRBFN), which 
learns all the initial data using multi-nets can deal 
with this problem properly. However, there is 
usually strong colinearity among the 
multi-dimension variables in chemical process, and 
this will lead to ill-condition model, long learning 
time and huge model structure. Principal 
components analysis (PCA) technology can 



compress the multidimensional collinear variables 
into lower dimension and guarantee the least loss of 
data information, so principal component regression 
(PCR) can be used to develop the estimation model 
and avoid the shortcoming from colinearity 
variables. However, PCR are only fit to linear 
regression, so this method will bring bad estimation 
result for the complicated nonlinear chemical 
process (such as distillation column).  
 

This article proposed a new soft sensor model 
using PCA and DRBFN technoledges. The 
proposed model is of the specialties of better 
estimation quality and simplified structure 
compared with the PCR and DRBFN model. 
Although it is based on a particular distillation 
column example, the treatment in this article is 
rather general. 
 

2. DRBFN SOFT SENSOR 
The objective is to obtain the best prediction ŷ of 
the primary variable (product dry point in our 
application) using all available information. The 
estimation model (soft sensor model) may be 
written 

)(ˆ Xfy =              (1) 

where, X includes all measured secondary 
variables. 
 

The structure of DRBFN soft sensor is shown in 
Figure 1 (Wang and Shao, 1998).  
 

In Figure 1, RBFi (i=1,2…n) is the sub RBF 
network. The fuzzy classifying unit is used to 
classify the initial learning data into n classes using 
Rival Penalized Compete Learning algorithm, and 
the RBFi net matches the data relation of the ith 
class. The combination of all the RBF subnet is 
realized by the membership degree 

],,,[ 21 nµµµµ L= . iµ  is achieved by the 
fuzzy classifying unit in Figure 1, it can be written 
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where, 
2

ii XXd −=  is the Eurlar distance 
between the input data X  and the initial sample 
data ),,2,1( NiXi L= , N and iN are the total 

number of the sample data and the number of ith 
class sample data respectively. 
 

The output of DRBFN can be expressed 

∑=
=

n

i
ii XfY

1
)(µ            (4) 

Where, if is the output of ith RBF subnet, n  is 
the number of all the RBF subnets. 
 

The advantages of DRBFN soft sensor are that it 
can approximate any continuous nonlinear functions 
and avoid the long learning time from the large 
number of the sample data. However, if X is the 
multidimensional variable and has significant 
collinearity, the input of each RBF subnet will be of 
serious redundancy, and this will lead to 
ill-conditioned model, long learning time and 
complicated subnet structure.  

Fuzzy Classifying Unit

RBF2RBF1 RBFn

Ŷ

X   
Fig.1. Soft Sensor Structure Based on the DRBF 
network 
 

3. PCA-DRBFN SOFT SENSOR 
3.1 DATA COMPRESSION AND VALIDATION 

PCA is an extremely powerful method for data 
compression, and has been successfully used to a 
wide variety of different applications. It is at its best 
when applied to problems featuring both high 
dimensionality and a large degree of collinearity. 
PCA breaks data matrices )( mN ×X down into a 
series of abstract latent variables or principal 
components. Its model is given by 

EETPX T +=+= ∑
=

l

i

T
ll pt

1
      (5) 

where, =T lNlttt ×],[ 21 L  is the score vectors, 
=P lmlppp ×],[ 21 L is the loading vectors and 

E  is the residuals of the X blocks. In this paper, 
the PCA approach is adopted to compression the 



original process data. Based on the above PCA 
method, the PCR model can be given by 

XKY PCR=ˆ  

and      TTT
PCRK PTTTY 1)( −=  

where, YY ˆand are the measurement and 
prediction of the primary variable respectively. 
 

In Figure 2, the PCA demapping unit is used to 
regress the original variables X̂ by the score vectors 
and loading vectors. This model can be expressed as 

TTPX =ˆ             (6) 

The squared prediction error (SPE) for jx is 
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where, ],[ 21
j

m
jjj xxx L=x  is the sample value 

of the jth sample period, and m is the dimension of 
original variables. If one sensor fails which breaks 
the normal correlation, the SPE will increase 
significantly. Jackson and Mudholkar developed a 
test for SPE known as the Q-statistic. This test 
suggests the existence of an failure sensor when 

αQSPE >              (8) 
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and αC  is the confidence limit for the 
α−1 percentile in a normally distributed. 

Defines the SPE contribution iβ  as 

miSPESPEii L2,1/ ==β    (12) 

The data j
ix  is fault when 

δβ >i              (13) 

where, δ is a given value. From (6), we have 

TT XPPTPX ==ˆ        (14) 

and 

][ 21 mww,wPP L=T        (15) 

The validation of fault data j
ix can be expressed as 

i
jj

ix wx=ˆ             (16) 

In this paper, the above PCA method will be used to 
realize the data compression and validation. 
 

3.2 PCA-DRBFN SOFT SENSOR 
The structure of the soft sensor model based on 
PCA-DRBFN is shown in Figure 2, where, 
X and Ŷ are the secondary variable vector and 

primary variable vector respectively. 
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Fig. 2. Soft Sensor Structure Based on the 
PCA-DRBFN 
 

In Figure 2, the Data compression and validation 
unit is used to compress the original higher 
dimensional secondary variables X  into principal 
component variablesT , and to validate the fault 
process data so that the process information used by 
soft sensor is compact and available. The 
relationship of T  and X can be expressed by 
equation 5. In PCA-DRBFN model, the input of 
each subnet is T instead of X. By this means, the 
input of each subnet will be decreased from m to l 
(m>>l) if the secondary variables are collinear. So 
the RBF subnet structure of PCA-DRBFN can be 
significantly simplified by PCA method, and the 
learning speed of the net can also be improved. 



 

The output of the PCA-DRBFN can be written as 
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where, iµ and if are designed in Section 2.  

 

4. DRY POINT PREDICTION SIMULATION 
In this paper, a benzene-distilled process is adopted 
as a simulation sample to test the validation of the 
proposed model. This column consists of 35 trays 
and its diameter is 1.6m. A reboiler is used to heat 
the raw material. A water-cooled condenser is 
placed in the top of the column and a small 
accumulator tank is used to deposit the condensate. 
The structure of distillation column is shown in 
Figure 3, and the main process variables have been 
marked on the sides.  
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Fig.3. The Flow Chart of the Distillation Column of 
the Benzene 

Tabel 1. Secondary variables 
Index  Name of the variables 

1 P1 tower top pressure (atm) 
2 T1 tower top temperature(℃) 
3 T2 tray 28 temperature(℃) 
4 T3 tray 4 temperature(℃) 
5 T4 tower bottom temperature(℃) 
6 P2 steam pressure (atm) 
7 T5 steam temperature(℃) 
8 Q1 inlet flux(m3/hour) 
9 Q2 reflux(m3/hour) 

 
The top product of this column is pure benzene. The 
dry point, which is achieved by sample analysis 
offline with a long measuring delay, is used to 
evaluate the quality of the product. The soft sensor 
based on the PCA-DRBFN is used to obtain the 
prediction of product dry point. 

 

The variables that affect the dry point of the product 
are listed in table 1. The soft sensor model of the 
dry point y  can be expressed as 

),,,,,,,,( 215243211 QQTPTTTTPfy =  (18) 

 
4.1 MODEL PREDICTION 

Two hundred data points were collected from a 
distillation process. The variable to be predicted is 
the product dry point sampled by laboratory 
analysis. The data were collected so as to achieve 
the soft sensor based on the process information. In 
the simulation, 150 data points are used for building 
the PCA-DRBFN soft sensor and 50 points are used 
to test the generalization property of the model. 
After the principal component analysis for the 150 
data, the contribution percent of each PC is shown 
in Table 2. 
 
From Table 2, the former 4 PCs’ cumulative 
contribution is 87.23%, so these 4 PCs can describe 
the information of process and filter the redundancy 
(Dunteman, 1989). The variables dimension is 
decreased from 9 to 4 after PCA. It means the net 
structure will be simplified significantly and the 
learning time of each RBFi will also be decreased. 
After principal component analysis, let the 
compressed data input into the distributed RBF to 
obtain the soft sensor model. At the same time, we 
use the same initial sample data to develop the 
DRBF network soft sensor and PCR soft sensor. 
 

50 test data are used to test the above two soft 
sensor. Figure 4 shows prediction results of the 
PCA-DRBFN soft sensor. It shows that the 
proposed soft sensor model can achieve the 
prediction value of the product dry point with a 
considerable precision. The estimation errors of the 
above three models are showed in Figure 5. 
 
From Figure 5, we can see that the estimation 
quality of the DRBFN and the PCA-DRBFN is 
similar, but the estimation result of the PCR is 
deteriorated because of the higher nonlinearity of 
the process. Although the estimation quality of the 
DRBFN and the PCA-DRBFN is similar, the 
structure size of them is different. The biggest 
subnet size of DRBFN is 9×21×1(that means it has 
9 nodes in input layer, 21 nodes in hider layer and 1 
node in output layer), the smallest one is 9×15×1, 
and the biggest subnet size of PCA-DRBFN is 



4×11×1, the smallest one is 4×7×1, so the structure 
of PCA-DRBFN is simplified. By simulation, we 

also find that the learning time of PCA-DRBFN is 
shorter than that of DRBFN. 

Table 2 PC contribution percent 
Principal Component 

 
t1 t2 t3 t4 t5 t6 t7 t8 t9 

Latent root 2.71 2.40 1.58 0.66 0.45 0.26 0.19 0.13 0.05
Contribution percent (%) 32.2 28.5 18.7 7.83 5.33 3.08 2.24 1.54 0.58
Cumulative Contribution 

percent (%) 
32.2 60.7 79.4 87.23 92.56 95.64 97.88 99.42 100 
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Fig.4. The Prediction of the Dry Point Based on the 
PCA-DRBF Soft Sensor 
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Fig.5. The Estimation Error of the Soft Sensor 
Model 

 

4.2 DATA VALIDATION 
Two hundred data points were collected with a bias 
fault introduced in the inlet flux so as to test the 
property of the data validation model. Based on the 
obtained PCA model, the SPE value of the testing 
data can be calculated on-line. Figure 6 shows the 
SPE of the data is out of the control limit after 90th 
sample, and Figure 7 shows the SPE contribution of 
the 95th sample point. From Figure 7, inlet flux 

1Q  need to be reconstructed, and the SPE after 
data validation is shown in Figure 8. The result 
shows SPE returns to the normal range after the 
faulty data being reconstructed. 
 

5. CONCLUSIONS 
In this paper, a method of building a soft sensor 
model is proposed, and PCA method is used to 
compress the higher dimensional secondary 
variables, so that the soft sensor has a compact 
model structure. The simulation shows that the 
proposed soft sensor based on PCA-DRBFN can 
predict the uneasy measured quality variable 
accurately. 

Fig.6 SPE test for faulty data 
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Fig.8 SPE test after data reconstruction 
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Abstract: Process fault diagnosis requires the on-line information on process state 
variables that are often inaccessible in real-time for the processes like a fermentation 
process. A composite model is proposed, combining a kinetic model of the first 
principles and a neural network model that models the kinetic model parameters 
changes, to estimate on line the states. This composite model can retain and enhance 
the process knowledge, at the same time, avoid the complexity of modeling the 
entire process by kinetics. The estimated process states from the composite model 
are then fed to a wavelet network for fault detection and diagnosis. The proposed 
system is successfully applied to a glutamic acid fermentation process, 
demonstrating the feasibility and effectiveness of the proposed system. 
 
Keywords: fault diagnosis, RBF neural network, wavelet network, parameters 

estimation, ferment process 
 
 
 
 
 

1. INTRODUCTION 
 
Fault detection and diagnosis have become important 
tools to ensure quality, safety, and efficiency for 
many process industries. The detection and diagnosis 
reply on the analysis and identification of differences 
of features (or patterns) of the process, reflected by 
the process states. Measurement of proper process 
status, typically represented by as the process states, 
is a prerequisite for the success of a proper fault 
detection and diagnosis. For a fermentation process, 
however, there lacks proper sensors for on-line real-
time measurement of key state variables. In such 
cases, methods have to be developed to estimate key 
process states for process diagnosis. 
 
Generally, two types of models have been developed 
for state estimation: first-principle based model and 
black-box based model such as a neural network. For 

fermentation process, many kinetic models have been 
developed, based on the principles of physics, 
chemistry, and biology, to reflect the generation and 
growing courses of the process (Liu et al., 1997). 
One of challenge in this type of models is to obtain 
proper parameters used in the model, many of which 
are in fact changing with time and process conditions. 
For example, in the growing stage of a fermentation 
process, process perturbations can lead to significant 
changes in the kinetic model parameters. However, 
modeling of these changes in the model parameters 
can be a challenging task. For this reason, model 
parameters are often assumed to be “constants” in 
many cases. This, obviously, can result in deviations 
of the estimated states from their true values, leading 
to improper diagnosis. The black-box modeling 
approach can map an input-output relation, without 
using any process knowledge. Neural networks are 
often used to model this input-output type of black-



     

box relations (Zhao et al., 1999; Maki et al., 1997). 
Artificial neural networks (ANNs) have also been 
used for fault diagnosis for fermentation process 
(Zhang et al., 2001; Wang et al., 1997; Abhinandan 
et al., 2002). A black-box model relies on process 
input-output information only; this type of models 
typically can not be extended beyond to the cases 
where the operating conditions are not covered by 
the training data.  Compared to a kinetic model, a 
black-box model can only promote limited 
enhancement of process knowledge.  
 
This paper proposes a composite modeling strategy 
that combines a kinetic model with a neural network 
model to estimate on-line process states, the 
estimated states are fed to a wavelet network for 
fault detection and diagnosis. The kinetic model used 
can represent the true process mechanism, retaining 
and enhancing the process knowledge. While the 
complex modeling of the changes of the kinetic 
model parameters with the process conditions is 
carried with an RBF neural network. The wavelet 
network is developed to analyze and recognize fault 
patterns, based on on-line estimation of the process 
states from the composite model. Finally, the 
proposed system, consisting of the composite model 
for the state estimation and the wavelet network for 
the diagnosis, is applied to a glutamic acid 
fermentation process, to demonstrate the 
effectiveness of the proposed method.  
 
 

2. THE DESIGN OF COMPOSITE MODEL 
 
To illustrate the method proposed in this work, a 
fermentation process is used with the following 
kinetic model. 
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where )(1 tx , )(2 tx , and )(3 tx , representing the 
concentrations of biomass, substrate, product 
respectively, can not be measured on-line for process 
diagnosis. µ is the growth rate of biomass, mx is the 

maximum biomass concentration, b is the maximum 
production rate of the  acid, sK  is the saturation 
constant of substrate, GY is the yield coefficient of 
biomass, pY is the yield coefficient of product, m is 

the maintenance coefficient of the biomass. pY and 
µ  change with the degree and the conditions of the 
fermentation of the process. 
 
Fermentation is a complex process, any 
contamination, improper medium formulation, and 
improper addition of the trace element can upset the 
normal production, leading to process faults. In 

correspondence, the process states, which are 
represented by the concentrations of biomass, 
substrate, product, will change differently from a 
normal product to reflect the process abnormality. 
The kinetic model parameters, such as pY  and µ ,  
will change as well. To predict process states 
correctly, these kinetic model parameters need to be 
updated. It is a very complex task to model the 
changes of the kinetic parameters, based on the first-
principles. A RBF neural network is proposed to 
correlate the parameter changes with the process 
conditions, resulting in a composite model for the 
state estimation. The over-all scheme for the 
fermentation process diagnosis is illustrated as Figure 
1. 
 
Although the kinetic parameters pY and µ  can not 
be measured directly either, they may be related to 
some measurable process variables, such as pH, 
dissolved oxygen (DO), and temperature (T). In other 
words, these kinetic parameters may be predicted 
from these directly measurable variables, if their 
relations to these variables can be established. Using 
the history data collected off-line, this kind of 
relations may be modelled via a neural network 
between the measurable variables and the kinetic 
parameters assayed. The neural network can be used 
online to estimate the kinetic parameters, after it is 
well-trained offline.  
 

kinetic model

RBF neural
network

Wavelet
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,Yp

DO,PH,T
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Fig. 1 Schematic of fault diagnosis strategy 
 
 
Radial basis function (RBF) network, a feed forward 
network, is adopted for such a propose, as it has good 
ability of approximation and modeling (Wang , 1997; 
Chen, 1991). A nonlinear mapping can be realized 
between the input and the output of a nonlinear 
process as following: 

||)(||)(
1

0 i

n

i
i cXWWXf −∗+= ∑

=

φ        (2) 

where nRX ∈ is the vector of input, )(⋅φ is radial 

basis function of RR →+ , iW is the weights of 
network, ic is the center of data, and n is the number 
of the center. We choose )(⋅φ as Gauss function. 
Here, RBF is used to supply the estimated values of 
kinetic parameters for the kinetic model. 
 



     

The RBF network is trained with history data 
consisting of  pH, DO, T, the assayed values, etc. 
After the training, the mapping relationship has built. 
The composite model, composing of the trained RBF 
network for estimating the kinetic parameter changes  
and the kinetic model for estimating the states, can 
be used to provide state information on-line to the 
wavelet network for fault diagnosis as described 
below. 
 
 

3. FAULT DIAGNOSIS 
 
Wavelet analysis has found many applications, due 
its strength in analyzing transient behaviours and 
signal compression. It is selected here to recognize 
the patterns of the faults associated with the 
fermentation process. An evolving wavelet network 
(Huang et al., 2002) is chosen to capture the 
relationships of process states to the corresponding 
fault types.   
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Fig. 2 Wavelet networks 
 
 
The proposed wavelet networks for the fault 
diagnosis has a three-layer structure with a wavelet 
layer (input layer), weighting layer (intermediate 
layer), and summing layer (output layer). Each layer 
has one or more nodes. Figure 2 gives a schematic 
representation of the three-layer wavelet networks. 
The input data vector x , as shown in Figure 2, is the 
input nodes of the networks, expressed as: 

T
nxxxx ],,[ 21 L=  ,                    (3) 

where the input variables are the outputs of the 
composite model designed above. The activation 
functions of the wavelet nodes in the wavelet layer 
are derived from a mother wavelet )(xψ . Then, the 
function of )(xψ  can become the mother wavelet 
with dilation of d and translation of t  

Ztdtxx dd
td ∈−= ,,)2(2)( 2/
, ψψ     (4) 

where Z indicates the integers. Via the operation of 
dilation and translation, the wavelets of (4) possess 
superior localization performance in both time and 
frequency. Since the Laplacian of the Gaussian 
function family meets the isotropic admissibility 
condition, the function of 2)2/1()( xxex −−=ψ  is 
selected as the mother wavelet herein. Therefore, the 

activation function of the jth wavelet node 
Jj ,,2,1 L= has the following form: 
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Each output of the weighting nodes in the weighting 
layer is multiplied by an appropriate weight value 
determined by the weighting node. In Figure 2, the 
weights jkw , that connect the jth weighting node and 
the kth output node, are indicated by the weighting 
vectors ],,,,[ 21 jKjkjjj wwwww LL= for 

Jj ,2,1 L=  and Kk ,,2,1 L= , and K is the 
number of the output nodes. The weighted sum of the 
output of J weighting nodes in the weighting layer 
produces the final output of the summing layer 

∑
=

=
J

j
jjkk xwxy

1
)()( ψ                           (6) 

where )(xyk is the kth final computed output value 
of the networks. Note that the output )(xyk in (6) 
contains, implicitly, the adjustable parameters of the 
networks: the connection weights )( jkw and the 

parameters, dilation )( jd , and translation )( jt in each 
wavelet node.  
 
The training algorithm for the wavelet network is as 
follows. The assayed data with the normal as well 
fault process operations are presented as the training 
data to the network as described above. Any output 
of value 1 indicates the occurrence of the fault 
specified by its fault type.  The wavelet parameters of 
dilation, translation, and weighting values of the 
networks are determined by the evolutionary 
algorithm of Fogel (1994), a global-optimal approach.   
 
 

4. APPLICATION EXAMPLE 
 

The proposed diagnosis system consisting of a 
wavelet network for diagnosis and a composite 
model of on-line state estimation is put into tests with 
a glutamic acid fermentation process (Zhao, et al., 
1999). The kinetic model of the process is described 
as Equation (1), where the process states of )(1 tx , 

)(2 tx , and )(3 tx are concentrations (g / l ) of biomass, 
glutamic acid, and glucose, respectively. They can 
not be measured on-line in real-time. 

)/1( 11 mm xxx −= µµ , here, 1767.0 −= hmµ is the 
maximum specific growth rate, )/(43.6 lgxm = is 

the maximum biomass concentration. 1358.0 −= hb , 
)/(04.12 lgKs = , 436.0=GY , 645.0=PY , and 

1105.0 −= hm . 
 

The sampling time is 45 minutes. The designed RBF 
network has the structure of 6-4-2. The wavelet 
network has three inputs and six outputs describing 
different process operation status (faults), the details 
of the wavelet outputs are described in Table 1. 
These outputs indicate the different fault types of the 



     

process. During the operation, any output besides y1 
with a value greater than 0.5, the corresponding 
process fault is assumed to have occurred.  

 
 

Table 1 Definition of the output of wavelet network 
 

output Fault type 

y1 normal 

y2 poor growth 

y3 thallus degradation 

y4 abnormal consumption of 
substrate 

y5 concentration abnormity 

y6 contamination 
 
 

The system is put into tests with a normal process 
operation. Figure 3 compares the estimates of the 
states by the composite model with the actual values 
obtained from the assayed data. Figure 4 is another 
comparison of the process states obtained by the on-
line composite model with the assayed data for a 
poor growth operation case. In both cases, the on-line 
composite model can estimate the state variables 
well, demonstrating the application potentials of the 
proposed composite state estimation scheme. The 
fault diagnosis ability of the proposed system is also 
tested with these two cases. For the normal operation, 
the only output with a value greater than 0.5 is y1, 
indicating a normal operation. For the poor growth 
case, the only wavelet output with a value greater 
than 0.5 is y2, indicate the correct fault type. The 
time variations of the two operation cases are plotted 
in a single graph as Figure 5, to save the space. A 
comparison of the diagnoses of these two cases 
indicates that the proposed system can detect and 
make a proper diagnosis of the faults in the 
fermentation process.  
 
 

5 CONCLUTION 
 
A composite model combining of a neural-network 
model and a kinetic model has been proposed to 
provide on-line estimation of process states. Based 
on the estimation of the process states, a wavelet 
model has been developed for process fault detection 
and diagnosis. The use of the proposed composite 
models can avoid the complexity introduced by 
building a pure kinetic model for the process. At the 
same time, unlike a black-box model, the proposed 
composite model can retain the key process features 
as reflected by the process kinetics, this can enhance 
process understanding.  The estimates of the process 
states from the composite model are fed to a wavelet 
network for process fault detection and diagnosis. 
This allows an on-line diagnosis possible, without 
the need of measuring on-line inaccessible state 
variables. The applications of the proposed system to 
a glutamic acid fermentation process indicate that the 
system can successfully recognize and discriminate 
faults of the process. 
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Fig. 3. Comparison of state estimates and assayed 
values for a normal operation.  
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Fig. 4. Comparison of state estimates with the 

assayed values for a faulty operation. 
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Abstract:  Multivariate statistical approaches have been proved effective for 
reducing the dimension of highly correlated process variables and subsequently 
simplifying the tasks of process monitoring and fault diagnosis. However, for the 
process with distinctive stages, a single statistical model is not sufficient or even 
incapable to map the substantive process information. In this paper, multi-PCA 
models are proposed for promptly detecting faults and improving the exactness of 
the diagnosis as well. The effectiveness of the approach is demonstrated on a 
complicated fermentation process. 
 
Keywords: process monitoring; multi-PCA models; clustering technology; fault 

diagnosis 
 
 
 

1. INTRODUCTION 
 
With the ever-increasing demand of control precision, 
modern industrial plants become more and more 
complicated. As a result, the tasks of prompt 
detection of any abnormal process behaviour, which 
is caused by breakdowns or malfunctions of plant 
instruments or grievous working conditions, is more 
challenging nowadays. Traditional model-based 
approaches based on the assumption that the 
occurrence of any unexpected faults will change the 
physical parameters or states, are no longer 
applicable in most cases because of the difficulty to 
get the theoretical models from the control theory to 
setup any precise parameter estimators or state 
estimators (J.Zhang, et al, 1996). The knowledge-
based approach known as expert system demands a 
deep and comprehensive understanding of the whole 
process (J.Zhang, et al, 1996). To setup a reasonable 
rule set is rather difficult and time consuming. 

Fortunately, with the application of modern process 
computers, thousands of variables can be collected 
and processed within a few seconds. The 
distributions of and correlations among these 
variables encapsulate precious knowledge of the 
plant (Theodora Kourti, et al, 1996). Thus, by 
analyzing the variance of the historical operating data, 
the characters of the plants can be learnt through 
multivariate statistical techniques. In recent years, 
data based multivariate statistical techniques, such as 
principal component analysis (PCA) and projection 
to latent structure (PLS), have received much 
attentions for the simplicity and practicality. Their 
excellent abilities in extracting the chief information 
of the process and casting away the noises have been 
fully demonstrated on many applications. By 
projecting the highly correlated process data onto a 
lower dimensional variable space without discarding 
any useful process information, these methods can 



     

greatly simplify the task of process monitoring and 
make it easier for fault diagnosis as well 
(P.R.Goulding, et al ,2000). The main advantage of 
multivariate statistical approaches is that they are 
largely dependent on the historical operating data 
and need not have a comprehensive knowledge of the 
complicated process. 
 
However, when the plant works through several 
different phases during a batch process, the 
relationships of the variables will be quite different 
(Svante Wold, et al, 1996). In other words, the plant 
will exhibit different collinear behavior in each phase. 
From this point, a single PCA or PLS model is not 
sufficient to map the whole process information. 
When taking different stages into consideration, the 
multivariate statistic confidence bounds will be 
inappropriately set and are always larger than needed. 
Consequently, the probability of failure to report the 
abnormal sample will be greatly increased. 
 
The aim of this work is to overcome these annoying 
problems and thus improve the precision of the PCA 
models for prompt fault detection and diagnosis. A 
practical approach based on the sub-PCA models is 
proposed. Hyper-ellipsoid based clustering procedure 
is designed to categorize data. Then, supervised 
training approach of SOFM network is described for 
clustering faults features. This approach is fully 
demonstrated by the experiments on the fermentation 
process. The results show the feasibility and 
effectiveness of the proposed method. 
 
 

2. PROCESS MONITORING AND FAULT 
DIAGNOSIS SCHEME 

 
Principal components analysis was first proposed by 
Hotelling to analyze the correlated structures of the 
multi-variables. It has become one of the most 
popular multivariate statistical techniques and has 
received wide application in industrial processes. By 
projecting the original information onto a lower 
dimensional space, the principal components can 
summarize the chief information about the variance 
in the original data set (Parthasarathy Kesavan, et al, 
2000). Suppose X is the original data set which is 
composed by m variables and k principal 
components are enough for summarizing the main 
information, X can be decomposed as the following 
equation:  

EptX T
i

k

i
i +×= ∑

=1
                          (1)  

The number of proper principal components can be 
determined by the accumulated contributions of the 
principal components or cross validation. Process 
monitoring is based on the two statistics called 

2T and SPE  (E.B.Martin, et al, 1996), which 
conform to F-distribution and normal distribution 
respectively.  

kk TTT 12 −Λ=                                      (2) 

where Λ is the diagonal matrix composed of the first 
k eigenvalues of XX T .  

)( TRRtraceSPE ×=                        (3) 

R is the residual matrix; 
TPPXXXXR ××−=−= ˆ . 

)( TPPIX ×−×=                                (4) 
As has been discussed in Section 1，multi-PCA 
models are necessary for the process with distinctive 
stages to improve the promptness of fault detection 
and to ease the following fault diagnosis as well. To 
perform the task of the process monitoring using 
multi-PCA models, the data sampled from which 
phase should be identified first, that is, the fitness of 
the data to each cluster should be determined. Then 
the data are projected onto the related single PCA 
model or the combination of several PCA models and 
corresponding control limits are set to monitor the 
performance of the process. The diagram of the 
whole procedure is illustrated in Figure 1. This 
scheme is composed of three steps. At first, sampled 
data is classified based on hyper ellipsoid clustering 
technique. Then, analysing the assorted result, 
process monitoring is realized. If the fault is detected 
in this phase, the last fault diagnosis will be 
accomplished by SOFM network with these samples. 

Fig1. The sketch map of the fault diagnosis 
 
 

3. DESIGN OF MULTI-PCA MODELS 
 
The core of building multi-PCA models is how to 
classify sampling data currently. A proper clustering 
technique is fundamental for reasonable decision-
making. Former researches have investigated various 
clustering techniques ranging from simple identical 
sphere windows with fixed centres to intelligent 
approaches using neural networks, such as RBFN 
and SOFMN. In practical, the distribution of each 
group is not necessary of the same size, so the 
identical sphere windows will not work in most cases. 
Though clustering techniques using NN are powerful 
at processing nonlinear information and some have 
excellent self-learning ability in determining the 
numbers of the clusters, to assign the proper neurons 
and to train the weights of the NN are rather tough 
work. For example, when training the RBFN, to 
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select the centres of the radial basis functions of 
hidden neurons and to determine their widths are 
indeed demanding jobs (Gao Daqi, et al, 2001). 
Further more, the more the input variables, the more 
complicated of the NN structure; clustering the 
newly sampled data would be time-consuming 
because of the over-burden computing procedure. 
 
K-means clustering approach is a well-developed 
technique. Currently the trial-and-error method is 
adopted to determine the number of the clusters. 
However, it is based on the Euclid distance and the 
data of the same cluster are confined within a hyper-
sphere. Since the variance of each variable is not 
necessary of the same size, the bounds of the clusters 
should be hyper-ellipsoid rather than hyper-sphere. 
The traditional K-means clustering approach based 
on the hyper-sphere bound, improper classification 
of the data often happens (Johnston, et al, 1994). 
 
To reduce the probability of the misclassification, a 
set of clustering rules are suggested in this paper. 
First, suppose the number of the clusters is known 
according to the knowledge of the character of the 
process, use K-means clustering algorithm to grossly 
divide the data set into several clusters. (If the 
number of the clusters is not known, adopt the trial-
and-error method to determine the number of the 
clusters.) Then analyze the variance of each cluster 
and adjust its bound. The following procedures are 
detailed as follows: 
 
Find out the direction, along which the variance is 
the largest, and then the next. Those directions are 
orthogonal to each other. Project the original data 
onto each direction and find the centre of the 
projection. In fact, the first direction contains the 
largest amount of the information of the process and 
the main information of the process can be expressed 
by the first few projections. The information 
contained in the last few projections can often be 
explained as noise. When there are many variables 
and the variances along the last few directions are 
small, those projections can be neglected. The whole 
process is similar to the procedure of subtracting 
principal components. The bounds of the clusters are 
hyper-ellipsoids whose axes are overlapped with the 
principal variance directions. The size of the hyper-
ellipsoid can be determined according to statistical 
confidence level. 
 
After finding out the directions, the fitness µ of the 
data X to each cluster is measured by following 
equation: 

21 T
S

×=
α

µ                                 (5) 

 where 2T is Hotelling’s statistic: 

kk TTTT 122 : −Λ=                              (6) 

where Λ  is the diagonal matrix composed of the first 

k eigenvalues of XX T . kT is the first k principal 

components, kRT ×∈ 12 . 2T obeys F distribution. 

Define  αS based on αF as follows: 

),(
)(

)1( knkF
knn

knkS −×
−

+−
= αα               (7) 

where n is the size of the cluster, k is the dimension 
of the original data or the number of the principal 
components and α is the confidential level , here, 

0.95α = . 1=µ represents the hyper-elliptic bound. 
If 1<µ , it means the data is in the inner of the 
bound. Any samples falling into the clustering bound 
can be regarded as the same type. Then reclassify the 
data set and adjust the chief variance directions and 
centres, repeat the former steps until the 
classification of each data will not change. 
 
The advantages of the clustering technique based on 
hyper-elliptic bound are illustrated by a simple two-
dimensional clustering problem in Figure1. Figure1a) 
demonstrates the clustering results by pure K-means 
and Figure1b) shows the clustering results based on 
elliptic bound. From the distribution of the samples, 
sample 125 is far away from the other samples in 
cluster B and it is more reasonably be classified as 
singularity as sample 117 and 115 etc. Sample 85 
should be classified to cluster B though its Euclid 
distance from the centre of B is farther than that from 
the centre of A. From the above, the clustering based 
on the hyper-elliptic bound can overcome the 
shortcoming of the traditional K-means clustering 
approach. 
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Fig 2 Comparison of the two clustering techniques 
 
Thus, using the clustering method proposed above, 
multi-PCA models for process monitoring and fault 
diagnosis are built as follows: 
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Where k presents the kth sub-PCA model. These sub 
models make up the multi-PCA models. 
 
 
4. PROCESS MONITORING USING MULTI-PCA 

MODEL 
 
When a new sample comes during process 
monitoring, the data samples from which phase 
should be identified first, that is, the fitness of the 
data to each sub-PCA model should be determined. 
Then the data are projected onto the related single 
PCA model or the combination of several PCA 
models and corresponding control limits are set to 
monitor the performance of the process. 
 
The smaller the 2T  to the cluster, the better of the 
fitness to that cluster. Certainly, most of the data 
sampled during each phase can be clearly classified. 
However, since the process is continuous, the 
transitory data are likely to contain both characters of 
the neighbor clusters. When the cluster bounds are 
rigidly set, some transitory data will be likely 
classified as singularities. On the other hand, the 
probability of misclassification will be increased. To 
solve this problem, fuzzy-clustering rules are 
proposed (Yang Yinghua, et al 2002). Two bounds of 
a cluster are suggested and their sizes are determined 
by two radius, namely, kernel radius and class radius. 
Here, we can also set two hyper-elliptic clustering 
bounds based on different confidence levels: 

Class bound: 11 2

99.0
=×T

S
.                       (9) 

Kernel bound: 11 2

90.0
=×T

S
                       (10) 

The fitness of the samples to each cluster can be 
computed by the following rules: 
1) If 2T  statistic of the new sample falls into one of 

the kernel bounds, that is, 11 2

90.0
≤×T

S
, the fitness 

of the sample to the cluster can be assigned to 1; 

2) If 2

90.0

11 T
S

×< and 11 2

99.0
≤×T

S
, and 2T is 

beyond any other class bound, the fitness of the 
sample to the cluster can also be assigned to 1. 
3) If 2T falls into the overlapped area of several class 
bounds, suppose the new 2T  statistic falls into m 
clusters, define 

2
1

99.0
1

1 T
S

L ×= , …, 2

99.0

1
mm T

S
L ×=             (11) 

obviously 1,...,1 <mLL , the smaller the kL , the 
closer of the new sample to the kernel of the cluster. 
The fitness of the new sample to each related cluster 
can be defined as follows: 

∑
=

= m

k
k

i
i

L

Lf

1
/1

/1
                                        (12) 

4) If 2T  statistic falls into neither class bounds, it 
can be regarded as a singularity. 

 

If the new sample is regarded as totally subjected to 
one classification, the procedure of the monitoring is 
the same as that based on a single PCA models. 
When the new comer falls into the common region of 
several regions, the fitness to each cluster is 
computed according to equation (12) first. Then 
adjust the directions of the principal components 
based on its fitness to each clusters (Yang Yinghua, 
et al 2002): 

∑
=

×=
m

i
ii pfP

1
                               (13) 

here ∑
=

=
m

i
if

1
1 and ip is the principal components 

directions of each sub-PCA models. The principal 
components can be achieved by projecting the 
original data on subspace explained by P. The SPE 
control limit is computed as follows: 

∑
=

×=
m

i
SPEiiSPE UfU

1
                       (14) 

 
 
5. FAULT DIADNOSIS USING SOFM NETWORK 

 
When a fault is detected by previous step, SOFM is 
used to diagnose the fault, dealing with the current 
sample data as inputs. SOFM neural network was 
originally developed by a Finland scientist Kohonen. 
It is similar to the memory mode of the human beings. 
Different to other kinds of neural network, the 
information of one pattern is not memorized by one 
cell in SOFM neural network, but by a set of neurons 
in certain region. The excited region in the network is 
like a Mexican Hat, with the central neuron cell 
being most excited when stimulated by the 
corresponding pattern. The excitement of the neuron 
nearby reduces and the neurons outside this region 
are restrained. Further more, the distribution of the 
weight vectors reflect the statistical characters of the 
input mode. When reminiscing, pattern classification 
is mainly based on the most excited neuron. 

 
The chief advantage of the SOFM is its self-learning 
ability. It can automatically categorize the input 
mode without supervision. When the former 
knowledge of the clusters is not sufficient, SOFMNN 
is adept at extracting the character of each cluster 
through self-organized learning. The structure of the 
network is composed of two layers, input layer and 
output layer. The output layer is a competing layer in 
the form of two-dimensional array. The structure of 
the network is shown in Figure 3. 
 
The training algorithm can be found in many 
literatures. The adjustment of the connection weights 
is based on the following equation: 
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where kN  is the neighbor field, )(kη  is the 

learning factor. kN begins with a large area and 
contains all the neurons from the origin, and then 
shrinks to only contain one to two neurons from the 
centre (C.W.Chan, et al, 2001): 


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The learning speed also reduces with the increase of 
k. It can be adjusted according to the following 
equation: 






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Fig 3. The structure of SOFM network 
 
 
6. CASE STUDY ON FERMENTATION PROCESS 

 
The fermentation plant for producing glutamic-acid 
is introduced to evaluate the approach proposed in 
this paper. It experiences three distinct phases, 
namely, the growing phase, fermenting phases and 
perishing phase. The acidity and the amount of 
dissolved oxygen have different characters in three 
phases. In the growing phase, the acidity increase 
slowly with the production of glutamic-acid. The 
demand for dissolved oxygen increase too. In the 
following fermenting phase, with a large number of 
glutamic-acid being produced, the PH value decrease 
quickly and the demand for dissolved oxygen 
increase markedly. When the production peak passes 
away, the acidity falls slightly. So in this experience, 
the PH value and the amount of the dissolved oxygen 
as well as their tendencies are used for pattern 
classifications(Xu Ling, et al, 1999). Three hyper-
ellipsoids are defined for classification on the 
historical normal operating data. In this experiment, 
the class hyper-elliptic bound is set based on 0.99 
confidence level and the kernel bound based on 0.90 
confidence level. The distribution of the historical 
normal operating data and the clustering bounds for 
each clusters are illustrated in Figure4. 

 
Based on the classification, three PCA models are 
developed for monitoring. Seven variables are used 
while analyzing the fermenting process. They are PH 
value, dissolved oxygen density (DO), the changing 
rate of DO, temperature of the fermenting 
environment, the inflow of the atmosphere, the 
position of the outlet valve and the pressure of the 

fermenting environment. Figure 5 and Figure 6 show 
the performance of the PCA models when 
monitoring a normal process and detecting the 
occurrence of the fault1 and fault2 using single PCA 
model and multi-PCA models respectively. Fault1 
represents the failure of outlet valve. The solid line in 
the figures represents the control limits based on 0.99 
confidence level and the dash based on 0.90 
confidence level. The plus signs represent the 
abnormal samples identified during clustering. The 
diamond signs represent the samples falling into the 
overlapped regions of the clusters’ class bounds. 
 

 
Fig. 4 Clustering illustration of fermentation plant 
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Fig.5 Process monitoring using single PCA model 

 
When the pressure inside the fermentation is out of 
control, there is a contamination. As a result, the PH 
value will be affected too. Fault2 simulated a sensor 
failure, that is, the PH instrument doesn’t work. 
When the faults occur, the correlated structure of the 
data will be changed, the two 2T and SPE  statistics 
will be out of control theoretically. However, since 
the fermentation plant contains three distinct phases, 
whose correlated variable structures are quite 
different, the bound of the control is difficult to be 
adjusted. It is obviously that the SPE control limit is 
lager than needed during the fermenting phases and 
perishing phases, which leads to the failure to report 
the Fault2 illustrated in the C1 sub-chart. The 
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2T control limit is also inappropriately set for the 
growing phase. From Figure6, the precision of the 
monitoring models is greatly improved when using 
multi-PCA models and consequently the promptness 
of detecting faults is improved too. 
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Fig.6 Process monitoring using multi-PCA models 
 
Figure 7 shows the results of fault classification. 
Choose a 8 × 8 array of neurons to compose a 
competing layer and select the tendency of the PH 
value and DO, temperature, pressure etc. as the input 
of the SOFM network. After training, three regions 
of neurons are stimulated corresponding to three 
pattern inputs. When the Fault1 is detected and the 
current sampled data is input to the SOFM network, 
the 18th neuron or the neurons nearby will be the 
most excited according to the reminiscence. The 
Fault2 data will stimulate the neurons with the centre 
of 13th neuron. The results of Figure 7 show that the 
corresponding faults can be diagnosed exactly. 

Fig.7 Illustration of faults classification on 
SOFMN’s competing layer 
 
 

6. CONCLUSIONS 
 
Multivariate statistical approaches have received 
widely application for the processes rich in 

measurement data. However, for those the data 
structures are quite different in different stages, 
setting proper control limits is difficult. In this paper, 
multi-PCA models are suggested. Process monitoring 
is based on the combinations of related sub-PCA 
models and the weigh of each sub-PCA model is 
assigned according to the weighted clustering 
technique. Fault classification is realized by SOFM 
network. The feature of the fault can be stored in the 
weights of the network through self-organize 
learning. The effectiveness of the proposed approach 
is demonstrated by the experiment on fermentation 
process. 
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Abstract: An active fault accommodation control law is developed for a class 
of nonlinear processes to guarantee the closed-loop stability in the presence of 
a fault, based on a neural network representation of the dynamics due to faults. 
Applications of the proposed design indicate that the fault accommodation 
control law is effective for a typical nonlinear fermentation process.  
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1. INTRODUCTION  

The study of fault diagnosis and fault-tolerant 
control has attracted much attention recently [1-8], 
due to the industrial demands for safety and 
efficiency. For certain processes, it is important 
not only to detect (and identify) but also to 
accommodate any faults quickly. Fault-tolerant 
controls have been developed to keep such 
processes in control, in spite of the occurrence 
of a fault. Based on the nature of its design, a 
fault-tolerant control can be categorized into the 
passive or active two types. A passive 
fault-tolerant control uses the same control 
scheme before and after fault, without specific 
accommodating parameters, typically by 
introducing a conservative law. For an active 
fault-tolerant control, a control reconfiguration 
takes place, following the diagnosis of a fault, to 
counteract any dynamic changes caused by this 
fault.  

Within the category of the passive 
fault-tolerant controls, reliable control is widely 
used. Results and scheme details can be found in 
references [3-5]. Robust control design is often 
adopted for reliable control to have the 
guaranteed closed-loop stability and ∞H  
performance. This type control is typically 
conservative, without controller adjustment after 
detection of a fault; the tolerance comes at the 
cost to the control performance. 

In an active fault-tolerant control, faults are 
accommodated, typically by a reconfiguration of 
the feedback control law.  An excellent 
overview on the subject has been given by 
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Patton [6]. Faults are typically associated with 
sensors and actuators failures; in 
correspondence, respective accommodation 
strategies can be so designed. For examples, 
sensor fault accommodations for MIMO systems 
have been discussed by Tortora [7]; actuator 
fault accommodations are given by Michael [8]. 
Adaptive approaches have also been used in 
fault tolerant controls. For examples, an 
adaptive compensation method for actuator fault 
with known plant dynamics has been formulated 
by Boskovic [9]; and a nonlinear adaptive fault 
accommodation controller has been designed by 
Idan [10] to make use of redundancy.   

  In this paper, a new fault accommodation 
control design is presented for a class of 
uncertain nonlinear processes. The dynamic 
changes due to faults are represented by a neural 
network, based on which an adaptive corrective 
control law is formulated to ensure the system 
stability.  
  The remainder of the paper is organized as 
follows. The problem statement and its 
assumptions are given in section 2, followed by 
the formulation of our controller and its relevant 
proofs in section 3. An illustrative example is 
given in section 4 to demonstrate the 
effectiveness of the proposed method. Finally, 
conclusions are drawn in section 5. 
 
2. PROBLEM STATEMENTS  

Consider a system described as: 
)()()]()[()()( xfTtxguxGxxx −+∆++∆+= βζζ&   (1) 

where mn RuRx ∈∈ , are the state and input of 
the system, respectively, )(xζ∆  and )(xg∆ are 
the  model uncertainty in the normal operation, 
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f  characterizes the changes in the dynamics 
due to a failure. The normal system, in the 
absence of any faults, is described by    
 )]()[()()( xguxGxxx ∆++∆+= ζζ&          (2) 
  The nonlinear fault function f  is multiplied 
by a switching function )( Tt −β , 

))(,),(),(()( 21 TtTtTtdiagTt n −−−=− ββββ L  
                                    (3) 
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where T  is the fault occurrence time. The 
problem considered is as follows: 
Fault accommodation (FA) problem: Given 
system (1), design a control Nu  for the normal 
system, and an additional control Fu  for fault 
compensation, so that  as the new 
control after the occurrence of a fault can 
guarantee the resulted closed-loop nonlinear 
system to be stable.  
 
The following assumptions are used.  
Assumption 1: There exists  and 
Lyapunov function )(xV , such that 
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2

2
1 xkxVxk ≤≤                  (4) 

( )
2

3
)()()()()(

x
xVkxuxGx

x
xV a

∂
∂

−≤+
∂

∂ ζ      (5) 
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where 4321 ,,, kandkkk  are positive 
constants.  
Assumption 2:  For system (1) 
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Remark 1: From assumption 2, we have 0)( =xρ , 
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3. FAULT ACCOMMODATION 

Firstly, let’s use a neural network to represent 
fault function )(xf . Where, x  is the input 
vector to the neural network. It can be shown 
that there exists an optimized matrix *W such 

that ε≤− )()( * xSWxf  is satisfied for any 

given 0>ε . )(xS  is the sigmoid function.    

)(* xSW  can approximate )(xf  to any degree of 

accuracy, with bounded *W , WMW ≤* . With 

the above, system (1) can be rewritten as: 
)()()]()[()()( * xxSWxguxGxxx εζζ ++∆++∆+=&  (7) 

where, εε ≤−= )()()( * xSWxfx  is the estimation  

error. If we denote W  as the estimate of the 
uncertain weight matrix *W , then 

)()(
)(~)]()[()()(

xxWS
xSWxguxGxxx

ε
ζζ
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−∆++∆+=&                

                                    ( 8 ) 
where *~ WWW −=  and it has the appropriate 
dimension.. 
Theorem 1: Under assumptions 1 and 2, we can 
design a controller in the form of the following: 

FN uuu +=                  (9 ) 
cba

N uuuu ++=   

where au  is given by assumption 1, and let   
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Where LnR ×∈Θ  and T]0,,0,[ Lθ=Θ . Then, 

the state x  is ultimately consistently bounded 
by the set: 
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                                   ( 1 3 ) 
with the following adaptive weight update law  
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                            (15) 
The parameters of µαλλ andkk ,,,,, 211  can 

FN uuu +=

)(xuu a=
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be determined as in the proof. The proof of the 
above theorem is divided into the following two 
steps: step 1, we prove that there exist a nominal 
controller cba

N uuuu ++=  and a Lyapunov 
function )(0 xv  for the normal system described 
by )]()[()()( xguxGxxx ∆++∆+= ζζ& , such that the 
closed-loop of the normal system is stable; step 
2, we prove that the state x  is ultimately 
consistently bounded, using the control law 
stated in the theorem.  
 
Proof: step 1  

Substituting the controller equations of 
(9-12) into system （1） , we have: 

)]()[()()( xguuuxGxxx cba ∆++++∆+= ζζ&  

Define a positive function )()(0 xVxv = , then 

we have: 
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Thus, we obtain the results 
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From (19), the stability of the normal system is 
proven. 
 
Proof: step 2:  
Define a Lyapunov function for system 1 of the 
following form: 

 ( ) ( ) { } 2
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~
2
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2
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where WI  is the indicator function of W , and 
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By substituting Fu ( ), 1λλ  into (23), from 
Assumption 1, the derivatives of V  satisfies 
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Integrating both sides of (36) yields 
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  ( ) ( ) 0,0 ≥∀




 −+≤ − teVtV tα

α
µ

α
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Due to (37), it can be deduced that ( ) ( )xxWx θ,,  
are bounded consistently. From (20), we have 
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Therefore,  
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The above completes the proof that x  is 
ultimately consistently bounded by the set D . 
4. ILLUSTRATION EXAMPLE 

This section takes a fermentation process as a 
nonlinear process example to show that the 
control design of section 3 can result in a stable 
closed-loop to ensure the system states to 
converge to zero in the presence of a fault. 

The fermentation process is assumed to 
operate at a constant volume V , with the 
dynamics of biomass X , substrate S , and toxin 
concentration tC , described by the follows: 

DXX
dt
dX

−= µ                      (40) 

sy
XDS

dt
dS µ−−=                     (41) 

t
t DCqX

dt
dC

−= 3/1                    (42) 

Where, the dilution rate, D , and the yield 
coefficient, sy , are given by 

µ
µ
+

==
My

yy
V
FD s, , 

and the nonlinear inhibited specific growth rate 

is   ]][
/

[ 23
tt

t

is
m

CK
K

KSSK
S

+++
= µµ . 

The parameters of MKKKqy tism ,,,,,, µ  are given 
in Table 1 for the process. 

Table 1: Fermentation model parameters 
 

Volume                        V           200[l] 
Constant                       y           0.417 
Constant                       M         0.0196 
Toxin production constant         q    0.0296[l/h(g/l)2/3 

Maximum specific growth rate     mµ      0.0135[l/h] 

Monod constant                 sK        0.05[g/l] 

Substrate inhibition constant       iK       2150[l2/g2] 

Toxin inhibition constant          tK       5.5[g2/l2] 

Defining the state as T
tCSXx ][= , and 

the input VFu /= , the equations (40-42) become: 

u
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Using the data in Table 1, we can find:  
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)2,2(1 −∈θ  and )1,1(, 32 −∈θθ  are the 
uncertainty parameters. In this example, a radial 
basis function (RBF) network is chosen to 
represent the dynamic changes after the fault 
occurrence, with 10 hidden nodes and 10 centers 
that are distributed uniformly in region [-1,1].  
Choose xexx 22)( =ξ , 2

12)( xx =ρ , 2
0 xxxv T == . 

Then the control input is:  
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 the unknown fault function is assumed to be 
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the weight adaptive law: 

)(2 0
0 xS

x
vkW T

∂
∂

=& ,  

x
vk

∂
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+−= 0
00025.0 θθ& , and  

the set ( )






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≤≤≤∈= 15.0,6.1: 0
0

0 k
k

xvRxD n  

We choose 6.00 =k , the fault is introduced 
at sT 1= , the control results are shown in Figures 
1-6.  

Figures 1, 3, and 5 depict the control 
responses of the three states without using of the 
proposed accommodation strategy. Obviously, 
the states diverge from the set-point after the 
occurrence of the fault at T=1. Converse to the 
above, the results of using the proposed 
accommodation control law show that all states 
converge despite of the fault, as shown in 
Figures 2,4, and 6. This suggest that the 
proposed control is effective. 
5. CONCLUSION 
  An active fault-accommodation control law has 
been developed to ensure the closed-loop stability 
for a class of nonlinear systems, using a neural 
network approach. The application of the proposed 
design has been shown to be effective for a 
fermentation process. 
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Fig.6: Control response of state )(3 tx  with 
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A NOVEL DETECTION OF VESSEL LIQUID LEVEL BASED ON ECHO IDENTIFICATION1 
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Abstract:  A novel non-invasive level detection is developed in the paper for applications to 
processes where high pressure, high temperature, high viscosity, strong corrosion liquid may be 
involved. The theoretical analysis and experiment suggest that the proposed echo method can 
measure level well. The key to the success of this detection is the proper extraction of the echo 
information from noisy waves by using a proper Wavelet Transform.  
Copyright ©2003ADCHEM. 
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1. INTRODUCTION 
 

In situations, where high pressure, high temperature, 
high viscosity, or corrosive liquid or vapors are 
involved, the liquid level measurement can be 
difficult, as it is not allowed for a sensor invasion. 
Ultrasonic and radar level meters, which can avoid 
any direct contact with liquid, have to be installed 
inside of the vessel. They aren’t adoptable for 
applications where high pressure or for corrosive 
vapors involved. Radioactive meter, which is 
non-invasion in nature, can not be conveniently used, 
as it needs special protection, storage, and 
encapsulation.  A novel non-invasion measurement 
method is proposed by this paper based on proper 
processing of echoes for level detection.  
 
 

2. PRINCIPLE OF LEVEL DETECTION 
 

Three parts of different waves can be resulted from 
the striking of a vibrator against the metallic shell of 
the vessel. The significant part, a surface wave, 
propagates along the external surface of the vessel. 
The second part, echo, penetrates the shell and then is 
reflected on the internal surface, i.e, the interface of 
metal/liquid or metal/atmosphere. The third part, 
transmission wave, penetrates the shell and then is 
absorbed by the liquid or atmosphere. Both surface 
wave and echo can be sensed at a properly placed 
receiver, as illustrated by Fig.1. 
 
As the thickness of the shell is much smaller than the 
radius of the vessel, the area around the receiver can 
be regarded as a plate. This helps to assess the 
inherent frequency to the selection of the receiver 
(Zhang and Huang,1999). 
  
Now we focus on the echo. For simplification, 
suppose the echo is of one dimension. The 

impedance of wave conductor is defined as 
(Brekhovskih, 1980): 
             Z=cρ                     (1)   
Where ρ is the density and c is the sound velocity in 
the conductor. At the interface of conductor 1 and 
conductor 2, reflection coefficient is 

         Cr = Z Z
Z Z

2 1

2 1

1
1

/
/

−
+

                (2)  

And the transmission coefficient is 

         Ct = 2
1

2 1

2 1

* /
/
Z Z

Z Z +
                (3) 

 
As an example, consider a steel vessel filled with 
water. The impedances of steel, water and 
atmosphere are    
  Zs=cLρ= 5790m/s*7910Kg/m3=4.58*107Kg/m2s 
  Zw=1483m/s*1000Kg/m3=1.48*106 Kg/m2s 
  Za=331.45m/s*1.2250Kg/m3=4.06*102 Kg/m2s 
Thereby reflection and transmission coefficients at 
the interface of steel and water are 

         Cr
s/w = Zw Zs

Zw Zs
/
/

−
+

1
1
＝-0.9374 

         Ct
s/w = 2

1
* /

/
Zw Zs

Zw Zs +
＝0.0626 

At the interface of steel and atmosphere (empty 
segment), the coefficients are  

interface 

metallic 
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  liquid/ 
atmosphere 

surface wave 

Vibrator
(impact)

Receiver 
(echo +surface wave)

incident 

echo 

transmission 

Fig.1. Vibrato rand receiver 
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         Cr
s/a = Za Zs

Za Zs
/
/

−
+

1
1
＝-0.99998 

         Ct
s/a = 2

1
* /

/
Za Zs

Za Zs +
＝0.00002 

  
It can be seen that Ct

s/w >>Ct
s/a and Cr

s/w < Cr
s/a in 

their absolute values. Generally, the liquid impedance 
is close to that of the metallic shell, whereas the 
atmosphere impedance is much smaller than that of 
the metallic shell, i.e, Cr

s/l < Cr
s/a. Hence, echo exists 

only above the liquid level, little exists beneath the 
level due to attenuation. This conclusion is 
independent of the vessel construction, size, shell 
materials, and liquid types.  
 
By moving the vibrator and receiver up or down 
along the vessel surface, the level can be found via 
echo identification.  
 
 

3. SIGNAL PROCESS 
 

The receiver signal includes two parts, surface wave 
and echo. It’s difficult to recognize echo from the 
original received signals. A signal process technique 
is developed, next, to distinguish echo from the 
significant surface waves. Both signals, which are 
time-varying, attenuate rapidly during propagation 
(Breining, 1999). Therefore, Wavelet Transform is 
applied for their processing. 
   
Wavelet Transform is a linear transformation that 
operates in time-frequency joint domains (Cohen, 
1995). Its Mallat fast algorithms are 
      n,j

Zn
k2nk,1j ChC ∑

∈

−+ =             (4) 

      ∑
∈

−+ =
Zn

n,jk2nk,1j CgD             (5) 

where hn and gn are constant coefficients for a 
specific wavelet function. For discrete signal C0,k (k 
integer), series of coefficients Cj,k represent the 
jth-order approximations, i.e, the components below  
frequency  (ω c-Δ )2-j, where ω c  and Δ  are 
center frequency and window width determined by 
wavelet function. And Dj,k represent the jth-order 
details.  
 
Take the discrete receiver signal f(k) (k=1,2,…,N) as 
initial conditions   
           C0,k = f(k)                    (6) 
 
A simplest wavelet function, Harr, is adopted with 
coefficients h0=0.707107, h1=0.707107, g0= 
-0.707107, g1=0.707107. Harr is compactly 
supported (hk , gk =0 if k >1) so that a good 
computation efficiency would be achieved. 
 
The approximations C3,k and details Dj,k (j=1,2,3) can 
be worked out via algorithms (4) and (5) iteratively. 
Refer to Fig 2. The 3rd-order approximations C3,k are 

components below the frequency (ωc-Δ)2-3. All 
wave crests appear periodically in C3,k, whereas a 
special crest appears at a phase-shift. This suggests 
that the special waveform segment is the echo that 
we are interested to identify.  

 
 

4. EXPERIMENT 
 
Consider a steel vessel with 1m diameter and 1m 
height and being filled with 80% water. Exert a pulse 
strike to the shell of vessel so that a wide frequency 
range is excited. Touch the receiver to the shell with 
a little press. Move the detection point down step by 
step.  
 
The 3rd-order approximations C3,k of the receiver 
signals are presented in Fig.3. Echo can be found 
right above the level, and disappears beneath the 
level.  

 
Fig.2. Receiver signal and its wavelet transforms
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D1,k D2,k 

D3,k

C2,k

C3,

echo 

                Time/23*0.01ms 
Fig.3. The 3rd–order approximations at 6 

detect points 
Where, the number above the line in
all the four graphs  represents the
distance between the detect point and
vessel top, the actual distance from
the vessel top to the liquid surface is
20.00cm.
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The level detection resolution error is less than one 
step, independent of the measurement span. This 
simple device can have high precision, particularly 
for large vessels.  
 
 

5. CONCLUSIONS 
 
Based on the identification of echo, a non-invasion 
liquid level detection system has been developed. 
The application of wavelet transform is the key for 
distinguishing the weak echo from the noisy surface 
waves. The authors believe such a method can be 
easily extended for the detection of the powder 
surface in vessel.  
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Abstract: A challenge facing the pharmaceutical and chemical industries is how to 
understand and identify differences in process behaviour where a product is manufactured 
at two different sites.  Three approaches based on multi-group principal component analysis 
are investigated and benchmarked against single site models. The multi-group approach is 
shown to remove differences between sites such as operational scale thereby enabling the 
analysis to focus on identifying differences in variation between the two sites that are not a 
consequence of process configurations. From the analysis it is observed that the multi-
group approach can assist in the understanding of manufacturing performance. Copyright © 
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1. INTRODUCTION 
 
Manufacturing challenges facing the chemical and 
pharmaceutical industries include the need to reduce 
the time between product development and full-scale 
production, the achievement of right-first-time 
manufacture and the manufacture of consistently high 
quality product with minimal environmental impact. 
The second and third challenges are compounded by 
the need to transfer the manufacture of a product to 
different sites around the world in a robust manner.  A 
contribution to these challenges is to utilise the data 
collected from the process and to convert it into 
information and ultimately knowledge, thereby 
enabling an enhanced understanding of the process to 
be achieved. This approach has resulted in process 
performance monitoring and its associated techniques 
becoming an integral part of process operation.  
 
For many industrial processes, performance monitoring 
systems are developed for individual process units, as 
opposed to the complete process.  The complexity of 
this problem is compounded when the product is 
manufactured at two or more sites, where independent 
monitoring systems can be developed. A major 

disadvantage of this situation is that the sources of the 
differences in process operation and product variation, 
between the sites, cannot readily be identified.  
Previously it has been conjectured that process 
operation and scale differences are responsible for 
variability, and cannot be removed through modelling. 
In this paper the multi-group methodology of Lane et al. 
(2001) helps address this situation in terms of multi-site 
process performance monitoring.  It is shown that scale 
and processing differences can be removed thereby 
enabling the real differences between sites to be 
identified.  The paper focuses on empirical, i.e. data 
based, approaches. However alternative techniques are 
possible including the use of hybrid modelling, i.e. the 
conjunction of a reduced complexity mechanistic model 
and an empirical model (McPherson et al., 2001). 
 
One of the characteristics of batch operations is the 
variation in duration as a consequence of the process 
itself, down-stream processing, etc.  To apply the 
techniques described in the paper, it is necessary to 
perform batch length equalisation.  Multivariate 
Dynamic Time Warping (DTW) and the cutting of the 
batch process data to a minimum length are considered.   



     

A number of approaches are considered in the paper for 
the development of a multi-site monitoring scheme for 
a drug intermediate. The benchmark approach was 
based on the development of an individual model for 
each site. The data matrices comprising the common 
variables from the two sites were then combined and 
different scaling procedures applied.  The first resulted 
in the removal of the global mean and standard 
deviation of each variable (calculated from the data for 
the two sites) whilst for the second approach, the local 
mean and standard deviation for each individual 
variable for each site was removed. Finally a multi-
group model based on the pooled sample variance-
covariance matrix was developed using all the variables 
monitored at both sites. Fig. 1 provides an overview of 
the different approaches. 

 
Fig. 1. Summary of different monitoring approaches. 
 
 

2. PROCESS DESCRIPTION 
 
The process interrogated is a single stage within a 
multi-stage synthetic route for the production of an 
active pharmaceutical ingredient (API). The process is 
carried out at two manufacturing sites by a regulated 
batch procedure. The process data have been acquired 
at both sites from reactor probes that are linked to data 
historians and that have been subsequently extracted 
for analysis. The chemistry step involves an exothermic 
addition that is controlled by reactant addition rate and 
the reactor temperature and has a duration period of 
approximately 4 hours. Although different plant 
configurations have been employed at the two sites, 
similar process variables are monitored, alongside 
coincident quality control measures. The process data 
variables include reactant addition rate (maturity), 
reactor temperature, reactor pressure, agitation rate and 
vapour temperature. The quality variables include input 
and output material activity, process yield and various 

impurity levels.  Data from 57 batches from Site A and 
152 batches from Site B were included in the analysis. 
 
 

3. DATA PRE-PROCESSING 
 
The raw data collected were initially pre-screened for 
missing observations, outliers, small signal to noise 
ratios, etc. Once data anomalies were identified, an 
appropriate in-filling algorithm was applied such as 
data deletion or linear interpolation. The next stage was 
to examine the resulting time series plots of the 
individual variables to attain good process operation 
understanding.  It is essential that this stage is 
undertaken in collaboration with process personnel. 
 
Batch process data collected on a number of batches is 
typically arranged in a three-way matrix, batch (I) x 
variables (J) x time (K). After equalisation of batch 
lengths, multi-way principal component analysis 
(MPCA) (Nomikos and MacGregor, 1994) was applied. 
The data matrix is first unfolded to give a two-
dimensional array as shown in Fig. 2 and PCA is 
applied to the unfolded data matrix.   

Fig. 2.  Schematic representation of the unfolding of a 
three-way matrix. 

 
To apply the bi-linear technique of multi-way principal 
component analysis illustrated in Fig. 2 batch lengths 
are required to be of equal duration. Two methods 
proposed to standardise batch length are cutting to a 
minimum length and multivariate Dynamic Time 
Warping (DTW) (Gollmer and Posten, 1996; Kassidas 
et al., 1998). DTW is a method that matches features in 
a data pattern, or profile, to a reference profile. An 
optimal batch profile is first identified and the other 
batches are aligned against this reference batch. Fig. 3 
illustrates the resulting synchronisation for the variables, 
reactor temperature and pressure for all batches at site 
A.  Of particular note is the extraction of the underlying 
structure in the pressure variable that was masked prior 
to the application of DTW. 
 
The second step was to remove data during periods of 
operation that were not deemed to be important in the 
subsequent analysis.  For this specific application, the 
most important period with respect to product quality, 
is during the reactant addition period and hence this 
period defined the time period over which the data was 
analysed.   

Process or 
quality Data 

Site B Site A 

Data Pre-processing 

Principal Component Analysis (PCA) using 
variance-covariance matrix (XTX) 

Principal Component 
Analysis (PCA) using pooled 
variance-covariance matrix 

(S) 

Multi-group 
Model 

Different 
Variables 

Combined 
Model 

Combined 
group scaling 

Individual 
group scaling 

Different 
Variables 

Individual 
Model 

Same Variables 

Global 
Mean 

Local 
Mean 

Individual group scaling 

Batches (I)

Time (K)

Variables (J) 

Batches V(1)

Time 

V(2) V(J)



     

 
Fig. 3.  Synchronisation of the time trajectories by 

DTW for reactor temperature and pressure for all 
batches at site A.   

 
 

4. STATISTICAL DATA ANALYSIS 
 
Both process and quality data were investigated but the 
results reported are for the process data only. A total of 
five process variables are monitored at site A and four 
at site B with three variables common to the two sites. 
 
4.1 Individual PCA Model 
 
Having pre-screened and equalised the duration of the 
batch data, the next step was to build individual multi-
way PCA models for each site. By extracting the 
principal component score vectors, batch behaviour 
could be investigated.  The leverage plot for the 
individual batches for the first two principal 
components, Fig. 4, clearly illustrates the impact of 
batch 15. 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Leverage for scores of principal component 1 

and principal component 2.  
 
By interrogating the data, it was observed that there had 
been an agitator failure during this batch run. 
Consequently to develop an appropriate monitoring 
model, it was necessary to remove batch 15 from the 
data matrix. From Fig. 4 it is not apparent that any 
other batches will have a major impact on the analysis, 
thus multi-way PCA was applied to the remaining 56 
batches, Fig. 5. Ten principal components were 
retained in the subsequent analysis explaining 68% of 
the underlying variability. From Fig. 5 it can be 
observed that the scatter of the batches is random with 
a number lying out with the action limits. These 

batches were interrogated and issues relating to the data 
acquisition system were identified. 
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 15. 
 
From the loadings plot, process behaviour over time for 
different variables can be examined. Fig. 6 and 7 show 
the univariate loadings plot for principal component 1 
and principal component 3, respectively. The dotted 
line is used to differentiate between the five variables 
through a batch run (reactor temperature, pressure, level, 
agitator speed and reactant addition rate). Variable 
three is observed to have a high loading throughout the 
duration of the batch for principal component one.  It is 
interesting to observe from the loadings how the 
influence of variable changes over batch duration. This 
is particularly evident from principal component 3, Fig. 
7. 
 
 
 
 
 
 
 
 
 
Fig. 6.  Univariate loadings plot of principal component 

1 for 5 process variables. 
 
 
 
 
 
 
 
 
 
 
Fig. 7.  Univariate loadings plot of principal component 

3 for 5 process variables. 
 
The same analysis was undertaken for site B. From 
examination of the leverage plot (not shown) two 
batches, 34 and 47, were identified as having high 
leverage.  After the removal of these batches, a 
randomly scattered scores plot was obtained (Fig. 8). 
Retention of 10 principal components in this case 
resulted in 86% of the underlying variation in the data 
being explained.  Examining the contribution plot of 
batch 127 (Fig. 9) for principal component one and the 
time series plots of the process variables it was noted 
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that there was an abnormal reactant addition rate for 
this batch. This information can be used by process 
personnel who can either take corrective action or else 
ensure that subsequent batches are not affected by a 
similar problem. 
 
 
 
 
 
 
 
 
 
Fig. 8.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 34 and 47. 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Contribution plot for batch 127.  
 
4.2 Combined PCA Model - Removal of Global Mean 
 
The first combined model was constructed by applying 
multi-way PCA to the standardised data matrix based 
on the batch process data from the two sites. Only 
identical variables were selected to be included for 
analysis (reactor temperature, pressure and reactant 
addition rate). Examining Hotelling’s T2,   three non-
conforming batches were identified, batch 15 at site A 
and batches 17 and 125 at site B (not shown).  It is 
interesting to observe that the batches from site B 
differed to those identified in the individual site 
analysis, demonstrating the potential limitation of this 
approach in terms of it providing conflicting 
information to the previous analysis. Following the 
removal of these batches, multi-way principal 
component analysis was applied to the remaining data, 
Fig. 10.  
 
 
 
 
 
 
 
 
 
Fig. 10.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 15 at site A and batch 
17 and 125 at site B. Site A, ‘o’, Site B, ‘x’. 

 
From the figure, two clusters can be observed. More 
specifically, principal component 1 identifies the 
variation about the global mean for the two sites (Fig. 

11) and thus both “within” and “between” group 
variation is captured.   
 
 
 
 
 
 
 
 
 
Fig. 11.  Variation for one variable. 
 
The lower order components do not exhibit this 
behaviour and display a more random scatter. Fig. 12 
shows the bivariate scores plot of principal component 
3 and principal component 4.  A total of 77% of the 
variation was explained by the ten retained principal 
components. 
 
 
 
 
 
 
 
 
 
 
Fig. 12.  Bivariate scores plot of principal component 3 

and principal component 4. 
 
 
 
 
 
 
 
 
 
Fig. 13.  Differential contribution plot between the two 

clusters.  
 
Fig. 13 shows the differential contribution plot for the 
first principal component. The differential contribution 
plot calculates the difference between the contribution 
for a group of points from site A and a group of points 
from site B. From the resulting representation, it was 
observed that the differences were mainly related to the 
reactant addition rate. The rates and the total amounts 
of addition differ between the two sites due to 
operational differences, i.e. different reactor sizes and 
configurations. Thus it was conjectured that by 
removing the scale effect, a single model could 
realistically be developed for the two sites. 
 
4.3 Combined PCA Model -Removal of the Local Mean 
 
A second combined multi-way PCA model was built 
from the same data sets as in Section 4.2. However, the 
data was standardised specifically for each site. By 
standardising the data matrix in this way, the variation 
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of each variable from its mean value relative to the 
individual site, Fig. 14, is considered.  
 
 
 
 
 
 
 
 
 
 
Fig. 14.  Local variation for one variable. 
 
From the bivariate scores plot of principal component 1 
and principal component 2, batch 15 at site A and batch 
34 and 47 at site B were again observed to have a 
strong influence on the process representation.  
Removing these batches, the subsequent analysis 
resulted in 75% of the underlying variation being 
explained following the inclusion of ten principal 
components.  
 
 
 
 
 
 
 
 
 
Fig. 15.  Bivariate scores plot of principal component 1 

and 2 after removal of batch 15 at site A and batch 
34 and 47 at site B. 

 
Examining the loadings plot, it can be observed that the 
key variable in terms of defining the main source of 
variation associated with principal component one is 
that of the reactant addition rate.  
 
 
 
 
 
 
 
 
 
Fig. 15.  Univariate Loadings plot of principal 

component 1. 
 
4.4 Multi-group PCA Model 
 
An extension to traditional multi-way PCA, multi-
group multi-way PCA, was then investigated for the 
simultaneous monitoring of different manufacturing 
sites. Multi-group modelling is based on the 
assumption that a common eigenvector subspace exists 
for the sample variance-covariance matrix of individual 
sites. Through the pooled sample variance-covariance 
matrix, the principal component loadings are calculated. 
The pooled sample variance-covariance matrix (S), 

which forms the basis of the multi-group model is 
defined as a weighted sum of the g individual variance-
covariance matrices gs,,s,s …21 :  
 

1 1 2 2( 1) ( 1) ... ( 1)
( )

g gn s n s n s
S

N g
− + − + + −

=
−

 (1)

 
for i = 1, …, g. N is the total number of observations 
(batches), g is the number of groups and ni is the 
number of observations within group i. Consider the 
data set for site A, containing variables 1 to 5 and data 
set for site B comprising variables 1, 2, 3 and 6 in 
which variables 1, 2 and 3 are identical. The individual 
variance-covariance matrices for site A and B are given 
in Table 1 and the pooled variance-covariance matrix is 
defined in Table 2.  
 
Table 1  Variance-covariance matrix for site A and B. 

 
Variance-covariance matrix for Site A 

Variable 1 2 3 4 5 
1 A11 A12 A13 A14 A15 
2 A12 A22 A23 A24 A25 
3 A13 A23 A33 A34 A35 
4 A14 A24 A34 A44 A45 
5 A15 A25 A34 A45 A55 

 
Variance-covariance matrix for Site B 

Variable 1 2 3 6 
1 B11 B12 B13 B16 
2 B12 B22 B23 B26 
3 B13 B23 B33 B36 
6 B16 B26 B36 B66 

 
Table 2  Pooled variance-covariance matrix. 

 
Pooled variance-covariance matrix  

Variable 1 2 3 4 5 6 
1 C11 C12 C13 C14 C15 C16 
2 C12 C22 C23 C24 C25 C26 
3 C13 C23 C33 C34 C35 C36 
4 C14 C24 C34 C44 C45 C46 
5 C15 C25 C35 C45 C55 C56 
6 C16 C26 C36 C46 C56 C66 

 
where 
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Multi-group PCA was then applied to the pooled 
variance-covariance matrix. Batch 15 from site A and 
batch 34 and 47 from site B were removed from the 
analysis as they have a major influence on the model. 
Reapplying multi-group multi-way PCA resulted in 
63% of the variation being explained by ten principal 
components, Fig. 16.  
 
 
 
 
 
 
 
 
 
Fig. 16.  Bivariate scores plot of principal component 1 

and 2 of multi-group model after removal of batch 
15 at site A and batch 34 and 47 at site B. 

 
From the loadings plot, Fig. 17, variable three, reactant 
addition rate, was identified as the most important 
variable in terms of defining the main source of 
variation for principal component one.  This variable 
was one of the three common to the two sites along 
with variable one and two, reactor temperature and 
pressure.  Variable four and five related to those 
monitored only at site A, level and agitator speed, and 
variable six related to vapour temperature that was only 
monitored at site B. 
 
 
 
 
 
 
 
 
 
 
Fig. 17.  Univariate loadings plot of principal 

component 1. 
 
The advantage of being able to develop a single model 
for two, or more, sites is that it enables an enhanced 
understanding of the subtle differences in performance 
between the two manufacturing processes.  In addition 
it can help facilitate the transfer of a process to a new 
site by providing a baseline monitoring model with the 
model being updated as new batches are manufactured. 
The scores plot clearly detects those batches which 
move outside the statistical control region for the two 
sites on one chart and the corresponding scores 
contribution plots identifies the combination of 
variables responsible for the out of control signal. Thus, 
the application has demonstrated that the multi-group 
model has acceptable detection and diagnostic 
properties though the overall sensitivity may be 
affected compared with those of the corresponding 
individual plant models.  
 
 

5. CONCLUSION 
 
The capabilities of multi-group models, to model 
different process configurations on two sites, based on 
the pooled sample variance-covariance matrix has been 
demonstrated by its application to data from a drug 
intermediate batch process. Pre-screening of the data 
was initially performed to remove any abnormal 
variability. Batch length equalisation was achieved 
through the application of multivariate DTW to the 
process data. The DTW batch data was further reduced 
to ensure that the analysis focused on the main area of 
interest. Multi-way principal component analysis was 
then applied to the pre-processed data. The first 
approach used analysed the data from each plant 
individually. Two combined models where the data was 
scaled differently were also studied. The multi-group 
models developed not only eliminates between cluster 
variations but also allows the process monitoring of two 
different plants by a single model.  This development 
provides a powerful monitoring tool for understanding 
and hence minimising the differences in product quality 
and process operation across different manufacturing 
plants.  In addition based on the proposed approach, it 
is possible to utilise the approach to assist in the 
transfer of a process to a new site.  
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PROCESS MONITORING OF AN ELECTRO-PNEUMATIC VALVE ACTUATOR USING KERNEL 
PRINCIPAL COMPONENT ANALYSIS

Sang-Oak Song, Gibaek Lee, En Sup Yoon

School of Chemical Engineering, Seoul National University

Abstract:. In this paper, an approach for process monitoring using a multivariate statistical 
technique, namely kernel principal component analysis is studied. Kernel principal 
analysis has recently been proposed as a new method for performing a nonlinear form of 
principal component analysis (PCA). The basic idea of kernel PCA is to first map the 
input space into a feature space via a nonlinear map and then compute the principal 
components in that feature space. For the process monitoring application, reconstructed 
input patterns can be obtained by approximating the pre-image of scores in feature space. 
An application study of an electro-pneumatic valve actuator in a sugar factory is 
described. The results show that the kernel PCA approach can detect several actuator 
faults earlier than linear PCA This study indicates the great potential of Kernel PCA for 
process monitoring. Copyright © 2002 IFAC

Keywords: Kernel PCA, fault detection, actuators, control valves, process monitoring

1. INTRODUCTION

In recent process industry, on-line monitoring of 
process performance is extremely important for plant 
safety, production efficiency and product quality. As 
industrial systems becoming more heavily 
instrumented, resulting in larger quantities of data 
available for use in process monitoring, and modern 
computers are becoming more powerful, empirical 
modelling approaches that are basically data-driven 
multivariate statistical methods have attracted much 
interest by process engineers. These approaches are 
based on the theory of statistical process control 
(SPC), under which the behaviour of a process is 
modelled using data obtained when the process is 
operating well and in a state of control. Future 
unusual events are detected by referencing the 
measured process behaviour against this model.

Principal component analysis (PCA) is the most 
widely used data-driven technique for process 
monitoring which has been heavily studied and 
applied to industrial systems over the past decade. 
PCA is an optimal dimensionality reduction 
technique in terms of capturing the variance of the 
data, and it accounts for correlations among variables. 

The lower-dimensional representations of the data 
produced by PCA can improve the proficiency of 
detecting and diagnosing faults using multivariate 
statistics. The principal components span a low 
dimensional subspace used for analysis. The details 
of linear PCA can be found elsewhere (Jolliffe, 1986).

However, PCA is a linear technique, which ignores 
the nonlinearities in the process data. Industrial 
processes are inherently nonlinear; therefore, it may 
be necessary to use nonlinear methods. Kramer 
(1991) has generalized PCA to the nonlinear case by 
using autoassociative neural networks. Dong and 
McAvoy (1996) have developed a nonlinear PCA 
approach based on principal curves and neural 
networks that produce independent principal 
components (Song, 2001).

Recently, the conceptual idea of generalizing an 
existing linear technique to a nonlinear version by 
applying the kernel trick has become an area of 
active research. One important result in this direction 
is the extension of linear PCA to kernel PCA, as 
shown by Schölkopf, et al. (1998). In Kernel PCA
they were not interested in principal components in 
input space, but rather in principal components of 



variables, or features, which are nonlinearly related 
to the input variables. Among these are for instance 
variables obtained by taking higher-order 
correlations between input variables. To this end, the 
method of expressing dot products in feature space in 
terms of kernel functions in input space is used. 
Given any algorithm which can be expressed solely 
in terms of dot products, i.e. without explicit usage of 
the variables themselves, this kernel method enables 
to construct different nonlinear versions of it (Vapnik, 
1995).

The present work studies a nonlinear version of PCA 
using kernel technique and an application for process 
monitoring of an electro-pneumatic valve actuator. 
We first introduce the concept of Kernel PCA and 
reconstruction. And then Kernel PCA based process 
monitoring has been illustrated on the electro-
pneumatic valve actuator benchmark system and its 
simulation results are discussed.

2. KERNEL PRINCIPAL COMPONENT 
ANALYSIS

1.1 Principal Component Analysis in Feature 
Spaces

Given a set of N centered observations kx , 1, ,k � �

1
, , 0

M
N

k k
k

M
�

� �

�

x R x  , PCA diagonalizes the 

covariance matrix

1

1 M
T

j j
j

C
M

�

�

�

x x (1)

To do this, one has to solve the Eigenvalue equation
C� �v v (2)

for Eigenvalues 0� � and \{0}N
�v R .  As 

1

1 ( )
M

j j
J

C
M

�

� �

�

v x v x , all solutions v  must lie in the 

span of 1 Nx x� , hence (2) is equivalent to
( ) ( )k k C� � � �x v x v  for all 1, ,k M� � . (3)

Next, let us consider this computation in another 
feature space F , which is related to the input space 
by a possibly nonlinear map

: N
� �

�

R F
x X

(4)

Note that F , the feature space could have an 
arbitrarily large, possibly infinite, dimensionality. 
Here and in the following upper case characters are 
used for elements of F , while lower case characters 
denote elements of NR . It is assumed that we are 

dealing with centered data, i.e.
1

( ) 0
M

k
k�

� �

�

x . To 

perform PCA in feature space, we need to find 
Eigenvalue 0� � and Eigenvectors \{0}�V F with  
the covariance matrix in F ,

1

1 ( ) ( )
M

T
j jC

M
� � �

�

x x (5)

Substituting  C  into the Eigenvector equation, we 
note that all solutions V  must lie in the span of � -
images of the training data. This implies that we can 
consider the equivalent system

( ( ) ) ( ( ) )k k C� � � � � �x V x V  for all 1, ,k M� � (6) 

and that there exist coefficients 
� �

1, ,i i M� � �

such that

1
( )

M

i i
i

�

�

� �

�

V x (7) 

 
Combining (7) and (8), we get

1
( ( ) ( ))

M

i k i
i

��

�

� �� �

�

x x

1 1
( ( ) ( )( ( ) ( ))1 M M

i k j j i
i jM �

� �

� � � � ��

� �

x x x x (8) 

for all 1, ,k M� �

Defining an M M�  matrix K  by
: ( ( ) ( ))ij i jK � � ��x x , (9) 

this leads to
2M K K� � �� (10) 

where � denotes the column vector with entries
1, M� �� . As K is symmetric, it has a set of 

Eigenvectors which spans the whole space, thus
M K�� �� (11) 

gives us all solutions � of Eq. (10). Note that K  is 
positive semi definite, which can be seen by noticing 
that it equals

1 1( ( ), , ( )) ( ( ), , ( ))T
M M� � � � �x x x x� � (12) 

which implies that for all �X F ,
2

1( ) ( ( ), , ( )) 0MK� � � � �X X x x X� (13) 
 

Consequently, K’s Eigenvalues will be nonnegative, 
and will exactly give the solutions M�  of Eq. (10). 
We therefore only need to diagonalizes K. Let 

1 2 M� � �� � ��  denote the Eigenvalues, and 
1, , M

� ��  the corresponding complete set of 
Eigenvectors, with p�  being the first nonzero 

Eigenvalue. We normalize , ,p N
� ��  by requiring

that the corresponding vectors in F be normalized, i.e.
( ) 1k k

� �V V  for all , ,k p M� � (14) 
By virtue of (7) and (11), this translates into a 
normalization condition for , ,p M

� �� :

, 1

, 1
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(15) 

 
For the purpose of principal component extraction, 
we need to compute projections on the Eigenvectors 

kV  in F ( , ,k p M� � ). Let x be a test point with 
an image ( )� x  in F, then



1
( ( )) ( ( ) ( ))

M
k k

i i
i

�

�

�� � � ��

�

V x x x (16) 

may be called its nonlinear principal components 
corresponding to � .

1.2 The Algorithm of Kernel PCA

To perform kernel PCA, the following steps have to 
be carried out: first, we compute the dot product 
matrix.

( ( , ))ij i j ijK k� x x (17) 
Next, solve (11) by diagonalizing K, and normalize 
the Eigenvector expansion coefficients k

�  by 
requiring Eq. (15),

1 ( )k k
k� � �� � (18) 

To extract the principal components (corresponding 
to the kernel k) of a test point x, we then compute 
projections onto the Eigenvectors by

1
( ( )) ( , )

M
k k

k i i
i

k� �

�

� �� �

�

V x x x (19)

3. RECONSTRUCTION ORIGINAL PATTERNS
BY APPROXIMATE PREIMAGE

When Kernel PCA can be considered as a natural 
generalization of linear PCA, this can be used for 
data compression, reconstruction, and de-nosing 
applications common in linear PCA. However this is 
a nontrivial task, as the results provided by kernel 
PCA live in some high dimensional feature space and 
need not have pre-images in input space. Schölkopf,
et al. (1999) presented some ideas for finding 
approximate pre-images.

Being just a basis transformation, standard PCA 
allows the reconstruction of the original patterns 
from a complete set of extracted principal 
components by expansion in the Eigenvector basis.
In Kernel PCA, this is no longer possible, the reason 
being that it may happen that a vector V in F does 
not have a pre-image in NR . We can, however, find 
a vector z in NR  which maps to a vector that 
optimally approximates V.

To reconstruct the � -image of a vector x from its 
projections onto the first n principal components in F
(assuming that the Eigenvectors are ordered by 
decreasing Eigenvalues size), we define a projection 
operator nP  by

1
( )

n
k

n k
k

P �

�

� �

�

x V (20)

If n is large enough to take into account all directions 
belongs to Eigenvectors with non-zero Eigenvalue, 
we have ( ) ( )n i iP � � �x x . Otherwise Kernel PCA 
still satisfies that the overall squared reconstruction 

error 2( ) ( )n i ii P � ��

�

x x  is minimal and the 
retained variance is maximal among all projections
onto orthogonal directions in F. In common 
applications, however, we are interested in a 

reconstruction in input space rather than in F. To 
achieve this we compute a vector z by minimizing 

� �

2( ) ( )nP� � � � �z z x (21)
The hope is that for the kernel used, such a z will be 
a good approximation of x in input space.
In (21), replacing terms independent of z by Ω, we 
obtain

� � � �

2( ) 2 ( ) ( )nP� � � � � � ��z z z x� (21)
Substituting (20) and (7) into (21), we arrive at an 
expression which is written in terms of dot products. 
Consequently, we can introduce a kernel to obtain a 
formula for ρ which does not rely on carrying out Φ
explicitly.
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1 1
, 2 ,

n M
k

k i i
k i

k k� � �

� �
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� �

z z z z x (22)

4. CASE STUDY: ELECTRO-PNEUMATIC 
VALVE ACTUATOR BENCHMARK PROBLEM

To verify and illustrate the usefulness of Kernel PCA 
for process monitoring, data generated from the 
control valve actuator benchmark system were used.

The actuator benchmark problem was built by 
Development and Application of Methods for 
Actuator Diagnosis in industrial Control Systems 
(DAMADICS) research training network for 
comparing the properties of fault detection and 
isolation methods based on the real sugar factory 
(DAMADICS RNT Information Website). The 
benchmark actuator selected is a final control 
element or simply named actuator, which interacts 
with the controlled process. The input of actuator is 
the output of the process controller (flow or level 
controller) and the actuator modifies the position of 
the valve allowing a direct effect on the primary 
variable in order to follow the flow or level set point.

Figure I shows the actuator scheme. The actuator 
consists in three main components: control valve, 
spring-and-diaphragm pneumatic servo-motor and 
positioner. Control valve is the mean used to prevent 
and/or limit the flow of fluids. Changing the state of 
the control valve is accomplished by a servomotor. A 
spring-and diaphragm pneumatic servomotor can be 
defined as a compressible (air) fluid powered device 

Figure. I. The actuator scheme



in which the fluid acts upon the flexible diaphragm, 
to provide linear motion of the servomotor system. 
Positioner is a device applied to eliminate the 
control-valve-stem miss-positions produced by the 
external or internal sources such as friction, pressure 
unbalance, hydrodynamic forces etc. It consists in a 
inner loop with a P controller of a cascade control 
structure, including the output signal of the outer 
loop of the flow or level controller and the inner loop 
of the position controller. More details are in 
DAMADICS RNT Information Website.

The basic measured physical values are composed of 
six variables: external controller output (CV), flow 
sensor measurement (F), valve input pressure (P1), 
valve output pressure (P2), liquid temperature (T1) 
and rod displacement (X). The Simulink library
constructed by a non-linear mathematical model of 
the valve was used to generate faulty or fault-free 
data to evaluate Kernel PCA based process 
monitoring. All the measurement signals are 
normalized in the range of <0, 1> referring to the real 
measurement spans.

The training data for Kernel PCA model of the valve 
actuator system are generated without any fault for 
2400 seconds. Total 2100 data except set-up zone 
data for initial 300s are used for building a process 
monitoring model.

Four kind of fault scenarios are considered for 
actuator monitoring in this study.

- Scenario I: Control valve faults (Valve clogging/ 
small abrupt fault)
- Scenario II: Control valve faults (Increased of valve 
or bushing friction/ incipient fault)
- Scenario III: Pneumatic servo-motor faults (Servo-
motor’s spring fault/ big abrupt fault)
- Scenario IV: Positioner fault (Rod displacement 
sensor fault/ incipient fault)

All faults are introduced at 900s of simulation time. 
The initial set-up zone (300s) is not also considered 
to avoid taking into account false detections which 
can occur at the beginning. Therefore, the fault 
situations are introduced at 600s in effect.

5. RESULTS

Two models of linear PCA and Kernel PCA are 
compared for verifying the potential of Kernel PCA 
technique. For this comparison, we define some 
performance indexes.

- Detection time (Tdt): time of detecting fault in three 
successions.
-True detection rate (Rtd):

100d
the number of fault detectionR

faulty situation period
� �

We adopted the detection time for three successive 
detections in order to avoid taking into account false 
detection moments. One can consider false detection
rate as one of performance indexes. In this study, we 
use 99% control limits and then false detection rate is

���

���

��� ���

���

���

��� ���

Figure. II. The eigenvalues plot

(a) Linear PCA
(b) Kernel PCA (σ2=0.1)
(c) Kernel PCA (σ2=0.2)
(d) Kernel PCA (σ2=0.4)

very small (almost zero). Thus, this index is excluded 
for the comparison.

The number of principal components (PCs) to retain 
in the model should be determined for both of PCA 
and Kernel PCA before training. In the case of 
Kernel PCA, we should determine the Kernel type 
and corresponding parameters (e.g. bandwidth in the 
case of RBF Kernels). We used RBF Kernels in this 
work. Some research shows that RBF Kernels 
consistently yield good performance through an 
empirical assessment of Kernel type performance 
(Baesens, et. al., 2000). 

In general, the choice of the number of PCs in 
standard PCA is made by cross validation, a few 
rules of thumb and the user’s knowledge of the data. 
4 PCs (98.59 % variance captured) are selected from 
Figure. II. (a) in this work. It is generally useful to 
plot the eigenvalues. When looking at the plot of 
eigenvalues, one looks for a sudden jump in the 
values from the small ones. In the Kernel PCA, the 
problem how many principal components are used 
depends on the Kernel parameters determined (σ2). 
Figure. II. (b)-(d) shows that the lager parameter one 
use, the smaller PCs one should choose. We can 
understand this relation intuitively from the fact that 
RBF Kernels with larger bandwidth can capture more 
complex features. By cross validation, we determined 
the RBF Kernels with σ2=0.1 and 4 PCs (about 92% 
variance captured) to retain in the Kernel PCA model.

When using PCA, one uses primarily Q and T2 for 
detecting system faults. Q statistic is a measure of the 
variation in the data outside the PCA model. T2 

statistic, on the other hand, is a measure of the 
distance from the multivariate mean to the projection 
of the operating point onto the hyper plane defined 
by the PCs, that is, a measure of the variation within 
the PCA model. In practice, violations of the Q and 
T2 limits generally occur for different reasons. 
Assuming a normal value of Q, a T2 fault indicates 
that the process has gone outside the usual range of 
operation but in a direction of variation common to 



Table. 1 The comparison of performance indexes

Detection Time 
(s)

True Detection 
Rate (%)Scenarios Linear 

PCA
Kernel 
PCA

Linear 
PCA

Kernel 
PCA

I 617 611 62.73 51.60
II 2960 2959 19.60 13.79
III - - 3.40 0.13
IV 761 692 79.95 76.60

the process. A Q fault indicates that the process has 
gone in an entirely new direction-something entirely 
new has happened. Most process faults show up in Q. 
Very few faults are detected by T2 alone (Wise, B.M., 
et al., 1999). In this work we use only Q statistics 
and 99% control limit for monitoring measure 
because T2 statistics are under control limit about all 
fault scenarios.

Next Figures and Table 1 summarize the simulation 
results. They show that Kernel PCA outperforms 
linear PCA about all fault scenarios. In the case of
scenario III, servo-motor’s spring fault doesn’t affect 
measured variables much and both of two models 
can not detect this fault well. We can not obtain the 
performance index of detection time in this fault 
scenario. However, the true detection rate of Kernel 
PCA model is much larger than one of linear PCA in 
scenario III.

Figure. III. The PCA monitoring result of scenario I
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Figure. IV. The Kernel PCA monitoring result of 
scenario I

Figure. V. The PCA monitoring result of scenario IV
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Figure. VI. The Kernel PCA monitoring result of 
scenario IV

4 PCs of linear PCA can captures almost 99% of 
variance. Thus One can assert that this actuator 
system can be modelled using linear PCA 
sufficiently and nonlinear technique such as Kernel 
PCA does not have great advantage against linear 
PCA. However Figure. VII shows the small 
nonlinearity in the training data. This nonlinearity 
makes the performance differences between Kernel 
PCA and linear PCA. If we apply Kernel PCA to 
more complex and nonlinear systems (e.g. some 
polymerization processes or biochemical processes), 
the monitoring performance will be much better.
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Figure. VII. The nonlinearity of normal training data

6. CONCLUSION

Kernel PCA can be considered as a nonlinear version 
of PCA and extract more information in nonlinear 
systems. However, Kernel PCA dose not provide the
exact reconstructed input patterns due to implicit 

mapping procedure to high dimensional feature space 
and have some restriction on applying to process 
monitoring.

In this work, we reconstruct input patterns by 
approximating pre-images and apply to valve 
actuator fault monitoring. The simulation result 
shows that Kernel PCA based monitoring can detect 
several actuator faults better and earlier than 
conventional PCA based one. As real world 
industrial processes are not linear clearly, the process
monitoring approach using Kernel PCA has great 
potential to fault diagnosis of the industrial processes.
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1. SCHEDULING QUASI-MINMAX MODEL
PREDICTIVE CONTROL

Scheduling quasi-minmax MPC is an MPC algo-
rithm developed by (Lu and Arkun, 2000) ini-
tially for linear parameter varying (LPV) system,
then developed for nonlinear systems in (Lu and



Arkun, 2002). In this algorithm, the system is
expressed as a combination of a dynamic linear
model with a linear parameter varying model.
The linear dynamic model is used to express the
current dynamic behavior of the nonlinear system,
and the linear parameter varying (LPV) model
is used to approximate the future nonlinear be-
havior. Linear parameter varying model has been
successfully used to approximate nonlinear system
(see (Johansen and Foss, 1993) and (Banerjee et

al., 1997)). First of all, the plant operating space is
partitioned into several local descriptions by linear
models that are valid at some regimes. Then a
”global” model is interpolated between the regions
by using a parameter vector as interpolating or
model validity function. A linear parameter vary-
ing model can be written in the following form:

x(k + i + 1|k) = A(ρ(k + i|k))x(k + i|k)

+B(ρ(k + i|k))u(k + i|k), i≥1

y(k + i|k) = Cx(k + i|k) (1)

where

A(ρ(k + i|k)) =

N
∑

j=1

ρj(k + i|k)Aj

B(ρ(k + i|k)) =

N
∑

j=1

ρj(k + i|k)Bj (2)

[Aj , Bj ] are local models that can be obtained
around different operating points. Here N is the
number of the local models included in the LPV
model, and ρj(k+i|k) is the scheduling parameter
reflecting the validity of the local linear models.
More details of linear parameter varying model
can be found in (Lu and Arkun, 2000).

In LPV model, the scheduling parameter ρj(k +
i|k) for i≥1 are generally unknown. However, the
current time parameter ρ(k|k) may be measured
or estimated (see (Banerjee et al., 1997)). Then
the current nonlinear dynamics can be expressed
explicitly by a current linear model.

x(k + 1|k) = A(ρ(k|k))x(k|k) + B(ρ(k|k))u(k|k)

y(k|k) = Cx(k|k) (3)

The current linear model can also be obtained
from linearization of the nonlinear model:

˙̃x = f(x̃, ũ)

ỹ = Cx̃ (4)

where x̃ is the state variable, ũ is the control
variable, and ỹ is the output variable. By using
Taylor series expansion around current point k,
we will have

˙̃x≈ f(x̃(k|k), ũ(k − 1|k − 1))

+
∂f

∂x
|x̃(k|k),ũ(k−1|k−1)(x̃ − x̃(k|k))

+
∂f

∂u
|x̃(k|k),ũ(k−1|k−1)(ũ − ũ(k − 1|k − 1))(5)

where x̃(k|k) is the measured current state vari-
able and ũ(k − 1|k − 1) is the control action
calculated from the previous point. The discrete
state space model can be written as

x(k + 1|k)≈A(k|k)x(k|k) + B(k|k)u(k|k) + θ(k|k)

y(k|k) = Cx(k|k) (6)

The detail derivation can be found in (Lu and
Arkun, 2002).

Scheduling quasi-minmax MPC minimize an in-
finite horizon objective function based on the
combination of linear model and linear parameter
varying model. The formulation of the algorithm
can be expressed as:

min
U∞

0

J∞
0 =

∞
∑

i=0

[x(k + i|k)T Qx(k + i|k)

+u(k + i|k)T Ru(k + i|k)]

= xT (k|k)Qx(k|k) + uT (k|k)Ru(k|k)

+

∞
∑

i=1

[x(k + i|k)T Qx(k + i|k)

+uT (k + i|k)Ru(k + i|k)]

= J1
0 (k) + J∞

1 (k) (7)

where Q and R are appropriate weights, and U∞
0

stands for all the control actions from the current
time to the infinity.

U∞
0 = {u(k + i|k), i = 0, 1, 2, · · ·} (8)

The optimization is solved subject to the following
constraints:

• Constraints on the control action that will
be implemented to the plant u(k|k) and the
resulting output y(k + 1|k)

umin(k)≤u(k|k)≤umax(k)

ymin(k + 1)≤y(k + 1|k)≤ymax(k + 1)(9)

• Upper bound constraint which makes the
predicted state variables varying within an
invariant ellipsoid, and the objective function
starting from the next step J∞

1 (k) is upper
bounded by the worst case value.

J∞
1 (k)≤xT (k + 1|k)P (k)x(k + 1|k) (10)

where P (k) is a positive definite matrix that
will be decided from optimization.



• Lyapunov stability constraint which forces
the objective function of quasi-min-max de-
crease monotonically:

Φ(k)≤Φ(k − 1) (11)

where

Φ(k) = J1
0 (k) + xT (k + 1)P (k)x(k + 1|k)

Lyapunov stability is guaranteed when the
algorithm is implemented in a receding hori-
zon fashion.

The optimization can be solved by semi-definite
program. Details of the LMI formulation and
derivations can be found in (Lu and Arkun, 2000)
and (Lu and Arkun, 2002).

2. PH NEUTRALIZATION REACTOR AND
EXPERIMENTAL SETUP

The real time application of scheduling quasi-
minmax is conducted at UC Davis by using
a bench-scale pH neutralization experiment. An
acid stream (HCL solution) and an alkaline
stream (NaOH and NaHCO3 solution) are fed
to a well-mixed tank. The pH value is measured
through a sensor located in the tank. The goal of
the controller is to drive the system to different pH
conditions. More details about the experimental
apparatus can be found in (Gálan et al., 2000).

The first principle model can be written:

ż1 =
1

θ
(z1ini. − z1) −

1

θ
z1u

ż2 =−
1

θ
z2 +

1

θ
(z2ini. − z2)u

ż3 =−
1

θ
z3 +

1

θ
(z3ini. − z3)u (12)

where

θ =
V

qA

u =
qB

qA

(13)

z1 is the concentration of HCL, z2 is the con-
centration of NaOH , z3 is the concentration of
NaHCO3. In the experiment, these concentra-
tions are not measured. V is the volume of the
reactor, and qA is the flow rate of the acid, and
qB is the flow rate of the flow of base. In the ex-
periment, the acid flow is constant with variations.
The control variable is the alkaline flow while the
Acid flow is considered a measured disturbance.
The values of the parameters are as follows:

z1ini. = 0.0012molHCL`−1

z2ini. = 0.002molNaOH`−1

z3ini. = 0.0025molNaHCO3`
−1

qA = 1`min−1

V = 2.500`

The pH value is obtained through the following
nonlinear relationships:

h(z, y) = ξ + z2 + z3 − z1 −
Kw

ξ
−

z3

1 + Kxξ
Kw

= 0 (14)

and

ξ = 10−y (15)

where y is the pH value, and

Kx = 10−7mol`−1

Kw = 10−14mol2`−2

From the first principle model, it is observed that
the pH value is in a strong nonlinear relationship
with the input (u = qB

qA
). The steady state curve

is shown in figure 1.
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Fig. 1. Steady state curve of pH value versus the
input u = qB

qA

The first step is to build up a state space model
based on the nonlinear model. If we apply the first
order Taylor expansion onto equation 12, we will
have

A =













−
1

θ
(1 + uss) 0

0 −
1

θ
(1 + uss) 0

0 0 −
1

θ
(1 + uss)













(16)

and

B =













−
1

θ
z1ss

1

θ
(z2ini. − z2ss)

1

θ
(z3ini. − z3ss)













(17)

Notice that A is a diagonal matrix with all the
elements in diagonal are the same. From the



knowledge of h(z, y) = 0, we can have a certain
function of η that

y = η(z) (18)

and the first-order Taylor expansion can be used
again to linearize the function η

y − yss =

[

∂η

∂z1

∂η

∂z2

∂η

∂z3

]





z1 − z1ss

z2 − z2ss

z3 − z3ss



(19)

where

∂η

∂zi

=
∂h
∂zi

ξln(10)∂h
∂ξ

i = 1, 2, 3 (20)

then we have

ẏ =
∂η

∂z1
ż1 +

∂η

∂z2
ż2 +

∂η

∂z3
ż3

=
∂η

∂z1
[(−

1

θ
(1 + uss)z1 −

1

θ
z1ssu]

+
∂η

∂z2
[(−

1

θ
(1 + uss)z2 +

1

θ
(z2i − z2ss)u]

+
∂η

∂z3
[(−

1

θ
(1 + uss)z3 +

1

θ
(z3i − z3ss)u]

=−
1

θ
(1 + uss)[

∂η

∂z1
z1 +

∂η

∂z2
z2 +

∂η

∂z3
z3]

+

3
∑

i=1

Bi

∂η

∂zi

u

=−
1

θ
(1 + uss)y +

3
∑

i=1

Bi

∂η

∂zi

u

= apy + bpu (21)

where

ap = −
1

θ
(1 + uss) bp =

3
∑

i=1

Bi

∂η

∂zi

Equation (21) is a state space model, and the state
variable is the pH value itself. In summary, the
state space model can be written

ẋ = apx + bpu

y = x (22)

The state space model is time varying and de-
pends on the operating conditions. ap is the func-
tion of uss, and Bis in bp depends on z1ss, z2ss, z3ss

and z2i, z3i. These terms do not need to be up-
dated on line. The term that needs to be updated
is ∂η

∂zi
which is a function of concentrations z.

However, these variables are not measured from
the plant, more information needs to be obtained
from the first principle model.

In order to have the current linear model updated
in real time, the calculated control actions u is
submitted to the first principle nonlinear model
when it is sent to the plant. From the plant
measurement, we can get the actual pH value
which is yplant and then calculate the value of
ξplant based on equation (15). When the same
control action is submitted into the first principle
model (12), and calculate the state variables,
zmodel. These state variables are updated based
on the value of ξplant by using equation (14)
to cover any mismatches between the plant and
model and any measurement noises. Since we have
to calculate three variables from one equation,
it is assumed that two of the state variables
such as z2, z3 take the values from the model
(z2model, z3model), and only update one state value
such as z1update. Then the compensated state
variable would become

zupdate = {z1update, z2model, z3model} (23)

This updating strategy is also used to get local lin-
ear models around different operating conditions
and formulate the LPV model. The strategy is
shown in the following diagram.

controller

nonlinear model

plant

-

-

- Updated linear model
?

�
�

u y

[ap(k), bp(k), θ(k)]

3. EXPERIMENTAL RESULT ANALYSIS

In the experiments, three pH values are selected,
Ph = 5, Ph = 7, and Ph = 9. Local models are
obtained around these three points by using the
strategy discussed in section 2. From the locations
of these three points in figure 1, it is noticed that
these three conditions have very different dynamic
behaviors. The goal of the control is to track the
pH value changing which is shown in figures 2 and
3. The experiments may start at any initial pH
values while the setpoint is pH = 7. Then the
setpoint changes from pH = 7 to pH = 9, from
pH = 9 back to pH = 7, from pH = 7 to pH = 5,
and finally from pH = 5 to pH = 9. In addition
to the scheduling quasi-min-max MPC, another
two scheduling control algorithms are also tested.



These two controllers are scheduling IMC-PID
controller and multi-linear model based (schedul-
ing) MPC controller.

The algorithm of scheduling IMC-PID controller
can be written as

u = uss + K1(y − yss) + K2

∫

(y(ξ) − yss)dξ(24)

where

K1 =

L
∑

j=1

φjK1,j K2 =

L
∑

j=1

φjK2,j (25)

and K1,j , K2,j are obtained from the formulations
of IMC (Morari and Zafiriou, 1989). Around the
chosen three setpoints, state space model (22) can
be easily converted into the first order model

y(s) =
k

τs + 1
u(s) (26)

where k = −
bp

ap
and τ = − 1

ap
. Based on the tuning

rules of IMC, the gain and integral parameter can
be obtained

K1j =
τ

λk
K2j =

1

λk
(27)

where λ is the tuning parameter which stands
for the closed-loop dynamics. At high-sensitivity
regions, PH = 5, and Ph = 9, the best tuned
values of λ are 100 seconds, and at low-sensitivity
region, Ph = 7, the optimized value is found to be
10 seconds. φj is the normalized gaussian function
(see (Brown et al., 1997)) and can be calculated
from

φj =
exp[ − (

xj(k|k)−xmeasurement(k)
2σj

)2]
∑L

i=1 exp[ − (xi(k|k)−xmeasurement(k)
2σi

)2]

j = 1, 2, · · · , L (28)

σj are the covariance of the measured signals, and
they were 0.25 in the controller tuning. The multi-
linear model based MPC algorithm is modified
from the algorithm in (Kwon and Pearson, 1978).
It was based on one single linear model, and now
it is designed based on multi-linear model. The
formulation is as follows:

min
u(k+i|k)|N

i=1

J(k) =

N
∑

i=1

[x(k + i|k)T Qx(k + i|k)

+u(k + i|k)T Ru(k + i|k)](29)

subject to

umin(k)≤u(k + i|k)≤umax(k)

i = 1, 2, · · · , N (30)

and the terminal constraint

x(k + N |k) = 0 (31)

and

x(k + i + 1|k) =
L

∑

j=1

φj(k)[Ajx(k + i|k)

+Bju(k + i|k)], i = 1, 2, · · · , N (32)

where the normalized weights are also from equa-
tion (28). In the experimental test, the control
and prediction horizon was N = 10 which is
long enough for the system dynamics. The state
variable and input variable weights are the same
with the weights used in scheduling quasi-minmax
MPC algorithm.

Comparison of scheduling quasi-minmax MPC
versus scheduling IMC-PID is shown in figure 2.
The upper plot shows the setpoint tracking of the
pH value, and the lower plot shows the calculated
input variable which is the alkaline flow rate.
From the plots, it is clear to see that scheduling
quasi-minmax MPC has a much better control
performance – the pH value reaches the setpoint
in shorter time while the calculated control action
is larger and quicker. The response of scheduling
IMC-PID controller is slow, and more than that,
even though integral action is included in the
IMC-PID controller design, it fails to reach the
targeted pH values especially at pH = 5 and pH =
9 where the pH value is highly sensitive to the
input variable. Because of its intrinsic limitation,
the scheduling IMC-PID controller fails at these
high-sensitivity regions when the measurement is
noisy.

Comparison of scheduling quasi-minmax MPC
versus multi-linear model based MPC is shown in
figure 3. Faster response and better tracking of the
setpoint can be observed also for scheduling quasi-
minmax MPC. In multi-linear model based MPC
algorithm, even though multiple linear models are
considered and a model is obtained by interpolat-
ing among those models, this one model is used
to predict all the next N steps. The prediction
based on this linear time invariant model cannot
cover the future system dynamic changes even
with a very long prediction horizon. However,
in scheduling quasi-minmax MPC algorithm, the
model contains two parts, the current linear model
to express the current behavior, while the linear
parameter varying model covers the possible fu-
ture nonlinear behaviors. Because of the better
prediction and accurate expression of the current
behavior, the scheduling quasi-minmax MPC can
generate a quicker and larger movement. This can
be seen clearly when the pH changes from 7 to
5, the input variable of scheduling quasi-minmax
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Fig. 2. Comparison between scheduling IMC-
PID controller and scheduling quasi-minmax
MPC controller

MPC reaches the lower limit while the action of
multi-linear model based MPC never reaches the
limit.
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Fig. 3. Comparison between scheduling MPC con-
troller and scheduling quasi-minmax MPC
controller

4. CONCLUSION

In this paper, real-time application of scheduling
quasi-minmax MPC algorithm on a bench-scale
pH neutralization reactor is discussed. State space
model on the pH neutralization reaction is built
based on the first principle nonlinear model, and
an updated strategy of the state space model is
developed based on the plant measurement and

model calculations. Two other control algorithms
are also tested for comparison, one is schedul-
ing IMC-PID controller in which parameters are
obtained from IMC design, and the other one
is multi-linear model based MPC with terminal
constraint. From the experimental results analy-
sis, scheduling quasi-minmax MPC has a better
control performance due to its unique model han-
dling approach: a current linear model which is
updated on-line to capture the current dynamics
while a linear parameter varying model to cover
the possible future nonlinear behaviors. By having
this model structure, the current step prediction
can be made precisely while the future predictions
belong to a range. Therefore a quasi-worst-case of
infinite horizon objective function can be mini-
mized in the algorithm.
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FAULT-TOLERANT CONTROL OF PROCESS SYSTEMS:
INTEGRATING SUPERVISORY AND FEEDBACK CONTROL

OVER NETWORKS
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Abstract: This work proposes a methodology for the design of fault-tolerant control systems
for nonlinear processes with actuator constraints. The proposed approach is predicated
upon the idea of integrating supervisory and feedback control over networks. Initially, a
family of candidate control configurations, characterized by different manipulated inputs,
are identified. For each control configuration, a bounded nonlinear feedback controller, that
enforces asymptotic closed-loop stability in the presence of constraints, is designed, and the
constrained stability region associated with it is explicitly characterized. A switching policy
is then derived, on the basis of the stability regions, to orchestrate the activation/deactivation
of the constituent control configurations in a way that guarantees closed-loop stability in
the event of control system failures. The switching laws are implemented by a higher-
level supervisor that constantly monitors the process and communicates with the various
control configurations over a network. The effects of delays in fault-detection, network
communication and actuator activation are taken explicitly into account in executing the
switching logic. The efficacy and implementation of the proposed approach are demonstrated
through a chemical process example.

Keywords: Hybrid control, Switching laws, Constraints, Communication delays, Process
systems.

1. INTRODUCTION

One of the central problems in the design of any
practical process control system is the issue of fault-
tolerance. Present-day process control systems are
highly automated and therefore vulnerable to faults
such as defects in control actuators, defects in mea-
surement sensors, failures in the controllers or in
the control loops. Such failures can cause a host of
undesired reactions and consequences, if not appro-
priately accounted for in the control system design.
Examples include degradation of the control system
performance, instability, damage to technical parts of
the plant, jeopardizing personnel and environmental
safety, increasing downtime for process operation, in-
creasing raw material waste, and resulting in signif-
icant production losses. As efficient and profitable
process operation becomes more dependent on au-

tomated control systems, there is a greater need to
design and implement advanced fault-tolerant control
systems that can minimize the crippling effects of con-
trol system failures on process operation.

These considerations have consequently motivated
many research studies on the problem of fault-tolerant
control, particularly for linear and/or unconstrained
processes (e.g., see (Willsky, 1998; Yang et al., 1998;
Bao et al., 2002)). Many chemical processes, how-
ever, are inherently nonlinear and subject to hard con-
straints on the control actuators. In addition, the ability
of the process control system to deal with failure situ-
ations requires, inter alia, inherent structural flexibil-
ity that allows the control system to safely transition
from the failed control configuration to an alternative,
well-functioning configuration. To this end, classical
process control schemes, whereby a fixed controller



structure is used to achieve the desired control ob-
jectives, are in general not adequate for dealing with
the problem because they are not properly equipped
to cope with the discrete structural changes that these
failures induce in the closed-loop system.

The necessary flexibility of the control system in
dealing with failure situations requires consideration
of hybrid control instead. Hybrid control refers to
control structures that integrate lower-level continu-
ous controllers together with higher-level logic-based
supervisors that orchestrate switching between the
constituent controllers. These structures have pro-
vided a natural setting for addressing a wide range
of problems that cannot be addressed using classi-
cal control approaches, including fault-tolerant con-
trol of distributed systems (e.g., see (El-Farra and
Christofides, 2003b)) and control of hybrid processes
whose intrinsic dynamics exhibit switchings between
multiple modes of operation (e.g., see (Bemporad and
Morari, 1999; El-Farra and Christofides, 2002; El-
Farra and Christofides, 2003a)).

In this work, we propose a methodology for the de-
sign of fault-tolerant process control systems for non-
linear processes with actuator constraints. The basic
idea is that of integrating feedback control and logic-
based switching between multiple constrained con-
trol configurations, each characterized by a different
manipulated input and a different region of closed-
loop stability. The switching policy, which is based
on the stability regions, is implemented by a higher-
level supervisor, that receives and transmits informa-
tion to the feedback system over a network and ac-
tivates/deactivates the appropriate control configura-
tion accordingly in a way that ensures actuator fault-
tolerance. The effects of delays in fault-detection, de-
lays in network communication between the supervi-
sor and the control loops, and delays in actuator activa-
tion are handled explicitly in designing the switching
logic. Finally, the efficacy and implementation of the
proposed approach are demonstrated through a chem-
ical process example.

2. PRELIMINARIES

2.1 System description - problem formulation

We consider the class of continuous-time, single-input
nonlinear processes with constraints on the manipu-
lated input, represented by the following state-space
description:

ẋ(t) = fk(t)(x(t))+gk(t)(x(t))uk(t)

|uk(t)| · uk
max

k(t) ∈ K = {1, ¢ ¢ ¢ ,N}, N < ∞
(1)

where x(t) ∈ IRn denotes the vector of process state
variables and uk(t) ∈ [¡uk

max,u
k
max] ⊂ IR denotes the

constrained manipulated input associated with the k-
th control configuration. k(t), which takes values in
the finite index set K , represents a discrete state that

indexes the vector fields fk(¢), gk(¢) as well as the
manipulated input uk(¢). For each value that k assumes
in K , the process is controlled via a different ma-
nipulated input which defines a given control config-
uration. Switching between the available N control
configurations is controlled by a higher-level super-
visor that monitors the process and orchestrates, ac-
cordingly, the transition between the different control
configurations in the event of control system failure.
This in turn determines the temporal evolution of the
discrete state, k(t). The supervisor ensures that only
one control configuration is active at any given time,
and allows only a finite number of switches over any
finite interval of time.

It is assumed that the origin is the equilibrium point of
the nominal process (i.e. fk(0) = 0) and that the vector
functions fk(¢) and gk(¢) are sufficiently smooth, for
all k, on IRn. The control objective is to stabilize the
process of Eq.1 in the presence of actuator constraints
and faults in the control system. The basic problem
is how to coordinate switching between the different
control configurations (or manipulated inputs) in a
way that respects actuator constraints and guarantees
closed-loop stability in the event of faults. To simplify
the presentation of our results, we will focus only on
the state feedback problem where measurements of all
process states are available for all times.
2.2 Motivating example

To motivate our fault-tolerant control system design
methodology (presented in section 3), we introduce
in this section a benchmark chemical reactor example
that will be used throughout the paper to illustrate
the design and implementation of the fault-tolerant
control system. To this end, consider a well-mixed,
non-isothermal continuous stirred tank reactor where
three parallel irreversible elementary exothermic re-

actions of the form A
k1→ B, A

k2→ U and A
k3→ R take

place, where A is the reactant species, B is the desired
product and U, R are undesired byproducts. The feed
to the reactor consists of pure A at flow rate F , molar
concentration CA0 and temperature TA0. Due to the
non-isothermal nature of the reactions, a jacket is used
to remove/provide heat to the reactor. Under standard
modeling assumptions, a mathematical model of the
process can be derived from material and energy bal-
ances and takes the following form:

dT
dt

=
F
V

(TA0 ¡T )+
3

∑
i=1

Ri(CA,T )+
Q

ρcpV

dCA

dt
=

F
V

(CA0 ¡CA)¡
3

∑
i=1

ki0e
¡Ei

RT CA

dCB

dt
= ¡

F
V

CB + k10e
¡E1

RT CA

(2)

where Ri(CA,T ) = (−∆Hi)
ρcp

ki0e
−Ei
RT CA, CA and CB denote

the concentrations of the species A and B, T denotes
the temperature of the reactor, Q denotes rate of heat



input/removal from the reactor, V denotes the volume
of the reactor, ∆Hi, ki, Ei, i = 1,2,3, denote the en-
thalpies, pre-exponential constants and activation en-
ergies of the three reactions, respectively, cp and ρ
denote the heat capacity and density of the reactor. The
values of the process parameters and the correspond-
ing steady-state values can be found in (El-Farra and
Christofides, 2001). It was verified that under these
conditions, the process of Eq.2 has three steady-states
(two locally asymptotically stable and one unstable at
(Ts,CAs,CBs) = (388 K,3.59 mol/L,0.41 mol/L)).

The control objective considered here is the typical
one of stabilizing the reactor at the (open-loop) un-
stable steady-state. Operation at this point is typically
sought to avoid high temperatures, while simultane-
ously achieving reasonable conversion. To accomplish
this objective in the presence of control system fail-
ures, we consider the following manipulated input
candidates (see Fig.1):

(1) Rate of heat input, u1 = Q, subject to the con-
straints |Q| · u1

max = 748 KJ/s.
(2) Inlet stream temperature, u2 = TA0¡TA0s, subject

to the constraints |u2| · u2
max = 100 K.

(3) Inlet reactant concentration, u3 = CA0 ¡ CA0s,
subject to the constraints |u3| · u3

max = 4 mol/L.

Each of the above manipulated inputs represents a
unique control configuration (or control-loop) that, by
itself, can stabilize the reactor. The first loop involving
the heat input, Q, will be considered as the primary
configuration. In the event of some failure in this con-
figuration, however, the plant supervisor, will have to
activate one of the other two backup configurations
in order to maintain closed-loop stability. The main
question, which we address in the next section, is how
can the supervisor determine which control loop to
activate once failure is detected in the active config-
uration.

3. INTEGRATING SUPERVISORY AND
FEEDBACK CONTROL OVER NETWORKS

3.1 Fault-tolerant design methodology

Having identified the candidate control configurations
that can be used, we outline in this section the main
steps involved in the fault-tolerant control system de-
sign procedure. These include: 1) the synthesis of a
stabilizing feedback controller for each control con-
figuration, 2) the explicit characterization of the con-
strained stability region associated with each config-
uration, and 3) the design of a switching law that
orchestrates the re-configuration of control system in a
way that guarantees closed-loop stability in the event
of failures in the active control configuration. Below
is a brief description of each step as applied to the
chemical reactor example introduced in section 2.2.

(a) Constrained feedback controller synthesis:

In this step, we synthesize, for each control config-
uration, a feedback controller that enforces asymp-
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Fig. 1. Switching between multiple control configura-
tions, each characterized by a different manipu-
lated input

totic closed-loop stability in the presence of actuator
constraints. This task is carried out on the basis of
the process input/output dynamics. While our control
objective is to achieve full state stabilization (and not
output tracking), process outputs are introduced only
to facilitate transforming the system of Eq.2 into a
form more suitable for explicit controller synthesis.
In the case of Eq.2, a further simplification can be
obtained by noting that CB does not affect the evo-
lution of either T or CA, and therefore the controller
design can be addressed on the basis of the T and CA
equations only. A controller that stabilizes the (T,CA)
system will automatically stabilize the full system.

1. For the first configuration with u1 = Q, we consider
the output y1 = CA ¡CAs. This choice yields a relative
degree of r1 = 2 for the output with respect to the
manipulated input. The coordinate transformation (in
error variables form) takes the form: e1 = CA ¡CAs,
e2 = F

V (CA0 ¡CA)¡∑3
i=1ki0e

−Ei
RT CA.

2. For the second configuration with u2 = TA0 ¡TA0s,
we choose the output y2 = CA ¡CAs which yields
the same relative degree as in the first configuration,
r2 = 2, and the same coordinate transformation.

3. For the third configuration with u3 =CA0¡CA0s, we
choose the output y3 = T ¡Ts which yields a relative
degree of r3 = 2 and a coordinate transformation of
the form: e1 = T ¡ Ts, e2 = F

V (TA0 ¡ T ) + Q
ρcpV +

∑3
i=1Ri(CA,T ).

Note that since our objective is full state stabiliza-
tion, the choice of the output in each case is really
arbitrary. However, to facilitate our controller design
and subsequent stability analysis, we have chosen in
each case an output that produces a system of relative
degree 2. For each configuration, the corresponding
state transformation yields a system, describing the
input/output dynamics, of the following form

ė = Ae+ lk(e)+bαkuk
:= f̄k(e)+ ḡk(e)uk

(3)



where A =

·

0 1
0 0

¸

, b =

·

0
1

¸

, lk(¢) = L2
fk

hk(x), αk(¢) =

Lgk L fk hk(x), hk(x) = yk is the output associated with
the k-th configuration, x = [x1 x2]

T with x1 = T ¡Ts,
x2 =CA¡CAs, and the functions fk(¢) and gk(¢) can be
obtained by re-writing the (T,CA) model equations in
Eq.2 in the form of Eq.1. The explicit forms of these
functions are omitted for brevity. Using a quadratic
Lyapunov function of the form Vk = eT Pke, where Pk
is a positive-definite symmetric matrix that satisfies
the Riccati inequality AT Pk + PkA¡PkbbT Pk < 0, we
synthesize, for each control-loop, a bounded nonlinear
feedback control law (see (Lin and Sontag, 1991; El-
Farra and Christofides, 2001)) of the form:

u = ¡r(x,uk
max)LḡkVk (4)

where r(x,uk
max) =

L∗
f̄k

Vk +

√

(L∗
f̄k

Vk)2 +
(

uk
max|LḡkVk|

)4

(|LḡkVk|)
2
·

1+
√

1+(uk
max|LḡkVk|)2

¸ (5)

and L∗
f̄k

Vk = L f̄kVk + ρ|e|2, ρ > 0. The scalar func-
tion r(¢) in Eqs.4-5 can be considered as a nonlinear
controller gain. This Lyapunov-based gain, which de-
pends on both the size of actuator constraints, uk

max,
and the particular configuration used is shaped in a
way that guarantees constraint satisfaction and asymp-
totic closed-loop stability within a well-characterized
region in the state space. The characterization of this
region is discussed in the next step.

(b) Characterization of constrained stability regions

Given that actuator constraints place fundamental lim-
itations on the initial conditions that can be used for
stabilization, it is important for the control system
designer to explicitly characterize these limitations
by identifying, for each control configuration, the set
of admissible initial conditions starting from where
the constrained closed-loop system is asymptotically
stable. As discussed in step (c) below, this character-
ization is necessary for the design of an appropriate
switching policy that ensures the fault-tolerance of the
control system. The control law designed in step (a)
provides such a characterization. Specifically, using a
Lyapunov argument, one can show that the set

Θ(uk
max) = {x ∈ IRn : L∗

f̄k
Vk · uk

max|LḡkVk|} (6)

describes a region in the state space where the control
action satisfies the constraints and the time-derivative
of the corresponding Lyapunov function is negative-
definite along the trajectories of the closed-loop sys-
tem. Note that the size of this set depends, as expected,
on the magnitude of the constraints. In particular, the
set becomes smaller as the constraints become tighter
(smaller uk

max). For a given control configuration, one
can use the above inequality to estimate the stability
region associated with this configuration. This can be

done by constructing the largest invariant subset of
Θ, which we denote by Ω(uk

max). Confining the ini-
tial conditions within the set Ω(uk

max) ensures that the
closed-loop trajectory stays within the region defined
by Θ(uk

max), and thereby Vk continues to decay mono-
tonically, for all times that the k-th control configura-
tion is active (see (El-Farra and Christofides, 2001) for
further discussion on this issue).

(c) Supervisory switching-logic

Having designed the feedback control laws and char-
acterized the stability region associated with each con-
trol configuration, the third step is to derive the switch-
ing policy that the supervisor needs to employ to acti-
vate/deactivate the appropriate control configurations
in the event of failures. The key idea here is that, be-
cause of the limitations imposed by constraints on the
stability region of each configuration, the supervisor
can only activate the control configuration for which
the closed-loop state is within the stability region at
the time of control system failure. Without loss of gen-
erality, let the initial actuator configuration be k(0) = 1
and let T be the time when this configuration fails,
then the switching rule given by

k(T ) = j i f x(T ) ∈ Ω(u j
max) (7)

for some j ∈ {2,3, ¢ ¢ ¢ ,N} guarantees asymptotic
closed-loop stability. The implementation of the above
switching law requires monitoring the closed-loop
state trajectory with respect to the stability regions
associated with the various actuator configurations.
This idea of tieing the switching logic to the sta-
bility regions was first proposed in (El-Farra and
Christofides, 2002) for the control of switched non-
linear systems.

3.2 Implementation over communication networks

Figure 2 is a schematic representation of the struc-
ture and implementation of the fault-tolerant control
system over a communication network. In this setting,
the multiple control loops or configurations (with their
sets of sensors and actuators) are connected to the
process unit (e.g., the reactor) through a network cable
that transmits information to and from the plant super-
visor which is physically located far from the process
unit (e.g., a computer in a distant control room).

The use of a network introduces additional time-
delays (e.g., see (Zhang et al., 2001)) between the
supervisor and the constituent control configurations
due to the time sharing of the communication medium
as well as the computing time required for the physi-
cal signal coding and communication processing. The
characteristics of these time delays depend on the
network protocols adopted as well as the hardware
chosen. For our purposes here, we will consider an
overall fixed time-delay (which we denote by τmax)
that includes the contribution of several delays, includ-
ing: (1) the time for fault detection and transmission of
the information to the supervisor, (2) the decision time



Fig. 2. Fault-tolerant control structure integrating su-
pervisory and feedback control over network

for the supervisor, (3) the time it takes the supervisor’s
decision to reach and activate the target control con-
figuration, and (4) the inherent time delays associated
with the various actuators and sensors. Failure to take
such delays into account can result in activating the
wrong control configuration and subsequent instabil-
ity. For example, even though failure of a given loop
may take place at t = T , the backup configuration
will not be switched in before t = T + τmax, where
τmax is the overall delay. If the delay is significant,
then the switching rule of Eq.7 should be modified
such that the supervisor activates the configuration for
which x(T + τmax) ∈ Ω(u j

max). The implementation of
this rule requires that the supervisor be able to predict
where the trajectory will be at t = T +τmax and choose,
accordingly, the appropriate configuration. This can
be accomplished by running fast simulations, on-line,
using the available process model.

4. SIMULATION RESULTS

In this section, we illustrate, through computer sim-
ulations, the implementation of the proposed fault-
tolerant control methodology to the chemical reactor
example introduced in section 2.2. We have already
described in section 3.1 how the feedback controllers
can be designed and the stability regions characterized
for each of the three control configurations. Figure
3 depicts the stability region, in the (T,CA) space,
for each configuration. The stability region of con-
figuration 1 includes the entire area of the plot. The
stability region of configuration 2 is the entire area
to the left of the solid line, while the stability re-
gion of configuration 3 covers the area to the right
of the dashed vertical line. The desired steady-state is
depicted with an asterisk that lies in the intersection
of the three stability regions. We consider first the
case where no delays are present and the supervisor
can switch immediately between the different control-
loops in the event of failures. To this end, the reactor
is initialized at T (0) = 300 K, CA(0) = 4.0 mol/L,
CB(0) = 0.0 mol/L, using the Q-control configuration,
and the supervisor proceeds to monitor the evolution
of the closed-loop trajectory. Due to space limitations,
we present only the state profiles. As shown by the
solid parts of the closed-loop trajectory in Fig.3 and
the state profiles in Fig.4, the controller proceeds to
drive the closed-loop trajectory towards the desired

Fig. 3. Stability regions for the three control configu-
rations (I, II, III).

steady-state, up until the Q-configuration fails after
2.0 hr of reactor startup. From the solid part of the
trajectory in Fig.3, it is clear that the failure of the
primary control configuration occurs when the closed-
loop trajectory is within the stability region of the
second control configuration, and outside the stability
region of the third control configuration. Therefore, on
the basis of the switching logic of Eq.7, the supervisor
immediately activates the second configuration (with
TA0 as the manipulated input). The result is shown by
the dashed parts of the closed-loop trajectory in Fig.3
and the state profiles in Fig.4 where it is seen that,
upon switching to the TA0-configuration, the corre-
sponding controller continues to drive the closed-loop
trajectory closer to the desired steady-state. Before
reaching the steady-state, however, we consider the
case when a second failure occurs (this time in the TA0-
configuration) at t = 15.0 hr (which is simulated by
fixing TA0 for all t ¸ 15.0 hr). From the dashed part of
the trajectory in Fig.3, it is clear that the failure of the
second control configuration occurs when the closed-
loop trajectory is within the stability region of the third
configuration. Therefore, the supervisor immediately
activates the third control configuration (with CA0 as
the manipulated input) which finally stabilizes the re-
actor at the desired steady-state (see the dotted parts
of the closed-loop trajectory in Fig.3 and the state
profiles in Fig.4).

To demonstrate the effect of delays on the implemen-
tation of the switching logic, we consider an over-
all delay, between the supervisor and the constituent
control configurations, of τmax = 8.0 min (accounting
for delays in fault-detection, transmission and actuator
activation). In this case, the reactor is initialized at
(T (0),CA(0),CB(0)) = (300 K,4.0 mol/L,0 mol/L)
under the first control configuration (with Q as the
manipulated input). The actual failure of this config-
uration occurs at t = 10 hr, which, as can be seen from
Fig.5, is a time when the state trajectory is within the
intersection of all stability regions. In the absence of
delays, this suggests that switching to either config-
uration 2 or 3 should preserve closed-loop stability.
We observe however from Fig.6 that, when the de-
lay is present, activation of configuration 3 leads to
instability (dotted profile) while activation of config-
uration 2 achieves stabilization at the desired steady-
state (dashed profiles). The reason is the fact that, for
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Fig. 4. Evolution of closed-loop state profiles under
repeated control system failures and subsequent
switching from configuration 1 (solid lines) to 2
(dashed lines) to 3 (dotted lines).

Fig. 5. A phase plot showing the closed-loop state
trajectory leaving the intersection zone (I,II &
III) during the delay period (dashed-dotted lines)
rendering configuration 3 destabilizing (dotted
trajectory).

the time period between the actual failure (t = 10 hr)
and the activation of the backup configuration (t =
10.13 hr), the process evolves in an open-loop fashion
leading the trajectory to move out of the intersection
zone, such that at t = 10.13 hr, the state is within the
stability region of configuration 2 and outside that of
configuration 3. This is shown in Fig.5. To activate the
correct configuration in this case, the supervisor needs
to predict where the state trajectory will be at the end
of the communication delay period.
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