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Abstract: A mathematic model to predict the concentration of 4-carboxy-benzaldhyde 
(4-CBA) for an industrial Purified Terephthalic Acid (PTA) oxidation unit is built in this 
paper. The model is based on a mechanism model from the results of bench-scale 
laboratory experiment and chemical reaction principle, which is structured into two series 
ideal CSTR models. Six plant factors are designed to correct the deviation between the 
laboratory model and the industrial practice. For the existing of substantial time delays 
between process variables and quality variable, the weighted moving average method is 
applied to make each variable be in same time slice. The analysis of process data by 
projection on latent variables of Partial Least Square (PLS) and analysis of Hotelling's 
T-squared statistic value of Principal Component Analysis (PCA) are gave to 
discriminate the operating data into normal operating part and load down and load up 
operating part. At the each operating part, the typical data are selected to regress the plant 
factors. The proposed model predictive result follows the tracks of the observed value 
quite well. Compared with the empirical Amoco model, the proposed model is regarded 
as to be more suitable to be applied to industrial online soft sensor. 
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1. INTRODUCTION 

 

In this Purified Terephthalic acid (PTA) 
oxidation reaction, a proprietary process of 
Amoco Chemical Company is employed for the 
catalytic liquid phase air oxidation of paraxilene. 
More than 30 patents about PTA oxidation 
process and the design of its oxidation reactor 
have been proposed in the past decade (Li, et al., 
2001). The research works about oxidation 
mechanism with high temperature and normal 
pressure also have obtained many progresses 
(Lindahl, et al., 1989, Ge, 1993, Wang, 2001). 
Lindahl, et al. (1989) gave a  set  of empirical  
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mathematical relationships between the oxygen 
uptake in the first  crystallizer,  the CO2 in the 
vent gas from the reactor stage and   
4-carboxy-benzaldhyde   (4-CBA )  content 
levels.  But the empirical model needs a bulk of 
data to regress model parameters and often 
suitable to a limited operating region. Ge (1993) 
provided the experiment results of catalytic 
oxidation kinetics of acetic acid-p-xylene system 
in liquid phase qualitatively. Wang (2001) 
proposed a first principle model based on 
bench-scale laboratory results. It simulated the 
effect of reactive temperature, catalyst ingredient 
and concentration, residence time, vent oxygen 
concentration to the concentration of the 



  

reactants. But the experimental model was only 
verified by few industrial data, and many of 
industrial application problems were not settled. 
 
The paper proposes a practical mathematic 
model to predict the concentration of 4-carboxy 
-benzaldhyde (4-CBA) for an industrial purified 
terephthalic acid (PTA) oxidation unit. The first 
principle model based on laboratory experiments 
is applied and modified according to the analysis 
of the process. The main works comprise: 1. 
obtaining 133 sets of process variables and 
corresponding quality variables by considering 
the time delay between them with weighted 
moving average method; 2. distinguishing the 
operating into normal operating and load down 
and load up operating by projection on latent 
variables of Partial Least Square (PLS) and 
analysis of Hotelling's T-squared statistic value 
of Principal Component Analysis (PCA); 3. 
configuring and regressing six plant factors to 
correct the deviation between the laboratory 
experiment and the industrial process. The 
model is composed of two series CSTR ideal 
models. The plant factors are regressed by 
several sets of typical industrial data. The 
predictive accuracy of the process model could 
satisfy the accuracy requirement of online soft 
sensor. 
 

2. PTA OXIDATION PROCESS 
 
 
Fig. 1 presents the oxidation reaction mechanism 
commonly used (Wang, 2001). The oxidation 
reaction sequence of PX generates three kinds of 
intermediates, p-tolualdehyde (TALD), p-toluic 
acid (P-T) and 4-carboxybenza-ldehyde 
(4-CBA). 

 
The industrial PTA oxidation process flowsheet 
is shown in Fig. 2. Paraxylene (PX), acetic acid 
solvent, promoter, and catalyst are continuously 
metered into feed mixing tank. The residence 
time is approximately 25 minutes. The mixed 
stream pumps the reactor, and the air are fed to 
the reactor through fourinlets. The oxidation 
reaction is conduced in two stages, first stage 
being the agitated oxidation reactor, while the 
second stage is the agitated first crystallizer. 
Exothermic heat of reaction is removed by 
condensing the boiling reaction solvent. A 
portion of this condensate is withdrawn to 
control the water concentration in the reactor, 
and the remainder is refluxed to the reactor.  
 
Reactor effluent is depressurized and cooled to 
filtering conditions in a series of three 
crystallizing vessels (first crystallizer, second 
crystallizer and third crystallizer) for the 
secondary reaction and crystallization step. Air is 
fed to the first crystallizer for additional reaction, 
which used to do polishing oxidation of 
unreacted paraxylene from the reactor. 
Precipitated terephthalic acid (TA) is recovered 
by filtering and drying. The crude TA solids are 
conveyed to the purification section feed silos 
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Fig. 2. Schematic layout of PTA Oxidation process 
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Fig. 1. The oxidation reaction process 

mechanism of PX 



  

for additional processing as shown in Fig. 2. 
 
Autoxidation of PX in acetic acid solvent with 
cobalt acetate, manganese acetate, and 
hydrobromic acid as catalysis proceeds by the 
following overall reaction to afford terephthalic 
acid in 95-96% molar yield. The combined yield 
of the intermediates (4-carboxybenzaldehyde, 
p-toluic acid and p-tolualdehyde) is about 3%. 
The detailed discussion about the oxidation 
mechanism of para-xylene can be found in 
Lindahl, et al. (1989), Ge (1993) and Wang 
(2001). 
 
In the oxidation process, the concentration of 
4-CBA is regarded as observer of the oxidation 
reactive progress. The 4-CBA content should be 
controlled in an interval. Excessive content level 
may lead to over-oxidation and loss more acetic 
acid, whereas low level represents under- 
oxidation and insufficient for PX convert to TA. 
 
The concentration of 4-CBA is related with 
oxidation process. Therefore, the variables affect 
the oxidation process as well as the 
concentration of 4-CBA. In the oxidation reactor, 
the affect variables of the reactive system mostly 

are the residence time of reaction, the ratio of 
PX to acetic acid, the ingredient and the 
concentration of catalyst, reaction temperature 
and pressure, the partial pressure of oxygen and 
water content in the reactor. After the 
comparison of these variables and process 
variables, 10 process variables are selected as 
input variables of the model, which shown in 
Table 1. 
 
The schematic layout of PTA oxidation process 
in Fig. 2 shows that there are exist substantial 
time delay between the different process 
variables and the quality variable. Every tank 
has residence time from 15 minutes to 71 
minutes. The total time delay of the process is 
about 200 minutes. The sample frequency of 
4-CBA from the crude TA dryer is 3 times a day 
by laboratory. While the process data pick 
periodic is 30 seconds by DCS. 
 
The preliminary work of process modeling is to 
collect the process data and corresponding 
quality data as many as possible. Here the 
‘corresponding’ mean both the time delay and 
sample frequency of the two kinds of data are 
considered.

 

Table 1. The all variables of the process model. 

 
3. ANALYSIS AND MODELING OF 

INDUSTRIAL PTA OXIDATION PROCXESS 
 
According to the industrial process, the model is 
composed of two series CSTR ideal models. The 
two ideal CSTR models denote the oxidation 
reactor and the first crystallizer, respectively. 
Each of them follows with the mechanism model 
developed by Wang (Wang, 2001). The feed 

component of the first crystallizer is the effluent 
of the oxidation reactor.  
 
Due to many factors, the plant data contain much 
gross error and not corresponded to each other 
well. Some for the measure instruments are often 
not well calibrated, for the process is not stable 
enough or the inaccuracy of quality data caused 
by artificial sample and analysis. In order to 

No. Variable Time delay(min) Sample frequency 

 Inputs   

1 Paraxylene to feed mixing tank  205 30 s 

2 Feed to reactor  180 30 s 

3 Catalyst concentration  185 30 s 

4 Reactor temperature  110 30 s 

5 Level of reactor 110 30 s 

6 Reactor condenser to water withdraw  95 30 s 

7 Vent O2 concentration from the reactor  95 30 s 

8 Total water withdrawal  90 30 s 

9 First crystallizer temperature  75 30 s 

10 Vent O2 concentration from the first crystallizer  70 30 s 

 Output   

11 4-CBA concentration in the crude TA 0 8 hours 



  

utilize plant data to build the industrial process 
model, it is necessary to screen the data using 
statistical methods. By these techniques some of 
the inherent characteristics of the data can be 
incorporated into the model thereby, increasing 
the model accuracy.  
 
3.1 Preprocessing industrial data 
 
For the oxidation process comprises nearly 10 
tanks shown at Fig. 2, the residence time of the 
all tanks is about 200 minutes. Therefore it is 
reasonable to expect that not the current values 
of these variables, but more so the historical 
values of the variables over the last 200 minutes 
are likely to have a profound effect on the output 
variables at the present time. To take care of the 
historical effect of these variables a weighted 
moving average method is used to define the 
model input variables (Radhakrishnan, et al. 
2000) 

)2.0(05.0)5.0(2.0

)(4.0)2.1(2.0

)5.1(1.0)2(05.0)(

dd

dd

dd

ttxttx

ttxttx

ttxttxtX

−+−
+−+−
+−+−=

    (1) 

where )(tX is the value at time t , )( itx −  is 
the value at time it −  of each input variables 
and dt  is time delay value of the variable, 
which is given in Table 1. 
 
That is, the process variables at time t are the 
combination values of their historical data at 
time point dt2.0 , dt5.0 , dt , dt2.1 , dt5.1 and dt2  
before current. All of the process variables were 
defined in this manner as the input of the model. 
The weights values were decided on the basis of 
a residence time distribution study from the 
investigation on the operators and engineers and 
the analysis of process history data. 

 
3.2 Analyzing the oxidation process 
 
PLS and PCA are used to extract the information 
in the data by projecting them onto low 
dimensional spaces defined by the latent 
variables or principal components. For they are 
capable of tracking the progress of process and 
detecting the occurrence of observable upsets, 
PLS and PCA are widely applied in process 
analysis, monitor, fault diagnosis and statistical 
process control (Kourti, et al., 1995, MacGregor, 
et al. 1995).  
 
The projection of the first two latent variables of 
PLS and Hotelling's T-squared statistic value of 
PCA to analysis historical data are illustrated in 
Fig. 3 and Fig. 4 from 133 sets of data of 
industrial PTA oxidation process. 
 
It is obviously that there are two operating 
regions of the industrial data involved. Region I 
has the most number of points and the highest 
density, which belong to normal operating region 
and identified by the factory. Region II is a little 
away from region I and includes 6 points. This 
region is characterized as periodically load down 
and load up process for purging the dryer 
operation and adjusting the buffer tank, which 
the operating region is widely compared with 
region I. 
 
The two operating regions have significant 
differences intrinsically. Thus, it is reasonable to 
divide the process model into two parts: normal 
operating part and load down and load up 
operating part, and be treated in different plant 
factors. 
 
3.3 Setting the plant factors 
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In the PTA oxidation process, many other factors 
are also effect the reaction but be hard to 
described in the mathematical model. For 
instance, the design of feed inlet of air flow, the 
existing of foam in the vapor phase, the effect of 
crystallized product to main oxidation reaction, 
the occurrence of subsidiary reaction and its 
product, the effects of other process parameters 
from the second crystallizer to the dryer 
sampling valve, etc.  
 
To correct the deviation between the laboratory 
condition and industrial condition, six plant 
factors are set in the principle model. They 
correct the oxidation reactor’s reactive kinetics 
parameters, k, the residence time, r, the feed 
concentration of PX, and the first crystallizer’s 
reactive kinetics parameters, k, the residence 
time, r and the final discharge concentration of 
4-CBA, respectively. 
 
3.4 Regressing the plant factors 

 
In this section, 6 sets of normal operating data 
from 127 total and 3 sets of load down and load 
up operating data from 6 total are selected as 
standard industrial process data to regress the 
two sets of plant factors, respectively. The 
regression algorithm is the modified Levenberg 
-Marquardt algorithm (Gao, 1995). It uses 
differential approximate the Jacobian matrix and 
the initial damped factor set to 40000, the adjust 
coefficient set to 2. To control the rate of 
convergence not less than a certain value, the 
damped factor should be larger than a threshold 
value. The enlarging damped factor procedure is 
limited to run 2 times continuously at one time 
and the initial value is set to initial damped 
factor at every time the procedure be called. 
 
The result of plant factor regression is given in 
the table 2. After obtained the plant factors, the 
model is determined and able to predict the 
concentration of 4-CBA in the crude TA as a 
kernel part of on-line soft sensor.

 

Table 2. The two sets of plant factors regress results from each operating data. 

 F1 F2 F3 F4 F5 F6 

Normal operating 1.5911� 0.8701� 0.9838� 0.1215� 1.2705� 0.3529�

Load down and load 

up operating 1.1807� 0.7677� 0.5197� 0.6395� 1.0532� 0.8768�

 

4. RESULTS & DISCUSSION 

 
The comparison of predictive results of the 
proposed model, Amoco empirical model 
(Lindahl, et al., 1989) and observed 
concentration of 4-CBA is given in Fig. 5. It is 
obviously illustrate that the predictive result of 
the proposed model follows to the tracks of the 
observed value quite well, especially at the 
normal operating part, whereas the predictive 
result of Amoco model only lie near the mean 
value of observed in normal operating region and 
can’t well follow the observed change trend. This 
feature is important in applying to industrial 
online soft sensor, which the qualitative tendency 
is the preference. Though the predictive mean 
error of our model is %54.1±  and the 
maximum error is %03.6± , which are both a 
little worse than those of the Amoco model, 

%49.1±  and %67.4± . 
At the points 7, 88 and 105, the observed quality 
value is badly higher than its neighbors. But its 
associated process variables have not marked 
changes compared with others. Similarly, the 
observed values at points 25, 26, 54 and 65 are 

less than the corresponding points of the model 
predict values extraordinary. Thus, these points 
can be regarded as outliers that their process data 
are anomalous. The predict result of load down 
and load up operating part are not very well as 
that of the normal operating part, which 
contributes to most predictive error for the whole 
MSE, because it is not operated at steady state 
that both the process variables and their residence 
time are under largely dynamic change. But the 
predictive trend of load down and load up 
operating is quite well, which was also confirmed 
by the engineers. 
 
On the whole, the proposed model predictive 
accuracy is satisfied with the requirement of 
online soft sensor. 
 

5. CONCLUSION 
 
This paper proposed a practical mathematic 
model to predict the concentration of 4-CBA in 
PTA oxidation process. The model is based on a 
first principle model and modified according to 
the industrial practice. Several technologies are 



  

applied to cope with the problems in process data. 
Firstly, considering the exact estimation of the 
time delay between variables and quality variable 
is difficult, a weighted moving average method is 
used to combine 6 values at different time point 
from the 0.2 times estimated time delay to double 
time delay in the past as the model input 
variables. Then the projection on latent variables 
and Hotelling's T-squared statistic are made to 
identify two operating regions, which are also 
confirmed by the engineers. For many of factors 
in the industrial process are hard to considered in 
the mathematics model, six plant factors are used 
to correct the deviation between the laboratory 
model and the industrial process model. Robust 
nonlinear least square method, modified 
Levenberg-Marquardt method is applied to 
regress the six plant factors. Finally, the 
satisfactory predict results prove that the 
proposed model is inspiring in applying to 
industrial online soft sensor. 
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Abstract: In this paper a simulation model developed for the start up process of a cold 
and empty reactive distillation (RD) column is presented. The rigoros model is experi-
mentally validated with data from a pilot plant at the department. The sample reaction is 
a transesterification of a fatty methylester with isopropanol. With the validated model, 
different start up strategies, known from conventional distillation have been applied. It 
was found, that the total reflux strategie cannot be recommended for RD processes. 
Mathematical optimization of the the control variables heating duty, reflux and feed 
flowrate did not show significant savings in start up time. Alternative strategies utilizing 
product recycle flows and initial column charges are presented. With these strategies 
about 80% of the necessary start up time could be saved. Copyright   2003 IFAC 
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1. INTRODCUTION 

In recent years the integration of reaction and distil-
lation in one process gained industrial and academic 
interest. The combination of two processes in one 
piece of equipment can help saving enormous in-
vestment and operating costs. The industrial applica-
tion of reactive distillation processes ranges from 
esterification (like methyl-, ethyl and butyl acetate) 
to fuel additives (MTBE, ETBE, TAME) and some 
alkylations.  
With equilibrium limited reactions the thermal sepa-
ration of the products from the reaction zone can 
increase the yield of the desired components. Exo-
thermal reaction can contribute to the energy demand 
of a distillation. This makes reactive distillation a 
favourable process alternative.  
The complexity of the process increases with the 
interaction of reaction and separation. This requires a 
better knowledge of the process and the kinetic ac-
tivities. The steady state process synthesis and simu-
lation for reactive distillation has widely been exam-
ined. A comprehensive overview is given by Doherty 
and Buzad (1992) and Taylor and Krishna (2000).  
Exo- and endothermic reactions and changes in feed 
flows and compositions can have a big impact on the 
yield in the reactive zone and the required product 
quality. It is therefore necessary to also analyse the 
dynamic behaviour of reactive distillation processes, 
which gained attention just recently. As sample proc-
esses the production of acetates with different alco-
hols were used by Alejski and Duprat (1996) or 

Scenna et al. (1998). But these papers all focus on 
the dynamic behaviour near a known operating point 
based on a known steady state.  
The start up of each distillation column and espe-
cially an RD column is a time and energy consuming 
process. In contrast to distillation without reaction, 
the off-spec product produced during start up can 
mostly not be recycled back to the feed stream but 
most costly be disposed. Also the control of a start up 
process is very challenging. Almost all process vari-
ables change rapidly in value, control variables like 
heating power, reflux ratio or feed flow have to be 
switched at least once, but mostly several times to 
reach steady state. Different start up strategies can 
yield different, undesired steady states. Processes 
that show multiplicites and their analysis can be 
found at Güttinger (1998) and Scenna and  Benz 
(2003). In these papers, the column does not start 
from a cold and empty state, but from a defined state, 
with trays filled an warm. To have consisten and 
physically sound starting values for a process, it is 
necessary to simulate the complete start up process. 
In the paper we introduce a rigoros model to simulate 
the dynamic behaviour of a column from the cold 
and empty state. The model is validated with experi-
mental data from a pilot plant with a reaction of fatty 
methylester to isopropylester. Then start up strategies 
known from conventional distillation are presented 
and applied to RD. Alternative strategies to minimize 
the start up time are developed with the aid of the 
rigorous simulation model. 
 



2. START UP OF REACTIVE COLUMNS 

The start up procedure for distillation columns with-
out reaction has already been examined. Kister 
(1979) describes problems with column start ups. 
Eden et al. (2000) developed a procedure for generat-
ing start up sequences utilizing process knowledge 
for heat integrated columns. Löwe (2001) developed 
an optimised strategy for the start up of an energy 
integrated column system and validated the results. 
Gani et al. (1987), Gani et al. (1998)  published vari-
ous papers on dynamic simulation of distillation 
columns with the total reflux strategy. The strategy 
that is recommended for most of the column start up 
processes is the total reflux operation.  
In the following four strategies that are used are 
explained and the classifying parameters are ex-
plained: 
1) Conventional strategy: The empty and cold col-

umn is filled with feed, than all control variables 
(mainly heating power, reflux rate, feed composi-
tion and rate) are set to their steady state values. 

2) Total reflux: The column is filled with feed. Heat-
ing begins, if the first distillate reaches the reflux 
drum, all material is refluxed back into the col-
umn. No distillate is taken from the top.  

3) Total distillate removal: during the start up the 
distillate is completely taken away at the top, there 
is no reflux stream back into the column.  

4) Improved strategy (developed for heat integrated 
columns): reflux and reboiler heat duty are set to 
approximately 1.3 times their steady state value.  

The time, where the control variables are switched 
for strategy 2) to 4) is calculated via the so called 
MT-function developed by Yasuoka et al. (1987) for 
distillation without reaction. 

( )tray,current steadystate
trays

MT T T min= − =∑  (1) 

The MT function is the sum over all trays of the 
deviations of the actual measured temperature profile 
to steady state profile, therefore it can be seen as a 
measure for the distance to steady state. If the func-
tion reaches a minimum, the variables should be 
adjusted to steady state values. With the total distil-
late removal strategy using the MT function as an 
indicator for switching, the time for start up of distil-
lation without reaction could be reduced by up to 
90% (Kruse et al. (1996); Flender (1999)). 
 

2.1. Modelling and Simulation 

To simulate a start up procedure from the cold and 
empty state to a steady state point a description with 
just one set of equations is not enough. During the 
fill up and heating, the trays are not at physical or 
chemical equilibrium. Therefore it is necessary to 
have two sets of equations that are active at different 

times during the dynamic simulation. The first set is 
active during the fill up and heating of the column to 
the boiling point. Once the boiling point of a tray is 
reached, the second set of equations is activated. 
The assumptions made within the overall model are: 

 the reaction only takes place in the liquid phase 
(homogeneous catalysis with sulfuric acid) 

 vapour and liquid phase are in phase equilibrium 
 vapour phase shows ideal behavior (operation at 

ambient pressure) 
The start up process for a tray is demonstrated in 
figure 1. In Phase I the tray is empty, cold and at 
ambient pressure. Feed fills the tray until liquid 
leaves the stage to the stage below. In phase III vapor 
from the below stage is entering the stage and heat-
ing it up until in phase IV the mixture’s bubble pres-
sure reaches the set pressure of 1 bar. The equations 
are then switched to phase equilibrium. In phase V 
the stage pressure is higher than the pressure from 
the stage above, vapor is leaving the stage. In phase 
VI the stage is operating at steady state. In phases I 
to IV the first set of equations is active. The switch-
ing point is reached exactly if pbub = pset. Then the 
phase equilibrium equation is applied. 

Additionally to the known equations (component, 
mass and energy balances, Francis weir formula), 
that are valid from phase I to phase VI, equation 2 
and 3 have to be switched if phase IV is reached. For 
the fill up phase (I-IV), the vapour holdup is set to 
zero and the vapour compositions are equal to the 
liquid compositions. Further the pressure is fixed at 
arbitrarily 1 bar. Once the bubble pressure of the 
mixture on a tray is reached ( bub trayp p≥ ), the equa-

tions are switched to 
 v l

Tot,vap tray Tot,vap Tot,liqM 0 V M v M v= → = ⋅ + ⋅   (2) 

 i
i i i tray i i vapy x y p x p= → ⋅ = γ ⋅ ⋅  (3) 

The reaction rate is captured with a kinetic approach. 
 A for A B back C Dr k x x k x x= ⋅ ⋅ − ⋅ ⋅  (4) 
The sample reaction is a second order reaction from 
the type  A B C D+ ↔ + . A detailed listing of the 
describing equations can be found in Reepmeyer et 
al. (2003). 
 

2.2. Experimental Validation 

For the validation of the rigorous model to simulate 
the start up of a reactive distillation column from the 
cold and empty state, experiments with the pilot plant 
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Fig. 1: different states of sample tray during start up 



at TU Berlin have been conducted. As a sample reac-
tion the transesterification of a fatty methyl ester 
(ME) with isopropanol (IPA) to isopropylester (IPE) 
and methanol (MeOH) has been chosen. The data of 
the process are summarized in table 1. 

Tab. 1: data for pilot plant at department 

number of trays 28 holdup reboiler [l] 5.7 

tray holdup [l] 0.3 reflux flow [l/h] 2.3 

feed flow ME [l/h] 4 feed flow IPA [l/h] 6 

ME temp. [°C] 80 IPA temp. [°C] 130 

tray diameter [m] 0.1 tray spacing [m] 0.18
 
The column has two feeds, one at the top, where the 
high boiling methylester (ME) is inserted and one at 
the bottom, where the lowboiling isopropanol (IPA) 
is prevaporized. Figure 2 shows the comparison of 
the dynamic temperature profile from the cold and 
empty state to the steady state point. As can be seen 
from the figure, the dynamic characteristics of the 
temperature are well captured. The time were the 
first vapour reaches the top tray (about 180 mins) can 
be well predicted by the simulation. 
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Fig. 2: dynamic vaildation: experiment vs. simulation 
for transesterification 

But it is important to not only match the temperature 
profile, but also the dynamic changes in composition 
to be sure, the precise steady state desired is reached. 
Especially for RD, the temperature profile is not 
sufficient to describe a steady state. Therefore during 
the experiments liquid samples over the column 
height have been taken. The samples have been di-
luted with isooctan and have been analysed with a 
gas chromatograph. First, the steady state profile 
over the column height is compared to the simulation 
data. Figure 3 shows the simulation data in lines and 
the experimental data in dots. It can be stated, that 
simulation and experimental data show a pretty good 
fit. The highest deviation for the reboiler methylester 
concentration is below 10 mole%.  
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The following figure 4 shows a comparison of the 
dynamic concentration profile for simulation and 
experiment for the reboiler. 
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Fig. 4: dynamic validation: concentration profile 

As can be seen, the dynamic trend of the concentra-
tion is well simulated. The highest deviation between 
experiment and simulation is 12%. The fit between 
simulation data and experimental data is satisfactory. 
It has been shown that the simulated temperature and 
concentration profiles resemble the experimental data 
in the steady state as well as in the dynamic start up 
phase. With this now experimentally validated 
model, the different start up strategies are calucu-
lated. 
 

2.3. Start up times 

With the now validated model, start up times for the 
process are calculated. First the strategies known 
from distillation without reaction are tested. Table 2 
shows the results. 

Tab. 2: Comparison of start up times 

strategy start up time [min] 
conventional 180 
total reflux 260 
total distillate removal 182 
improved 191 



The start up times show, that the strategy of total 
reflux, recommended for distillation without reaction 
takes in comparison the longest start up time. The 
conventional strategy is the best out of these four 
alternatives.  
This sample process of a transesterification has 
shown, that it is possible to predict the dynamic be-
havior of a RD start up process with the presented 
rigoros model. Now the model is applied to a known 
process, the production of ethyl acetate. 
 

2.4. Ethyl acetate process 

The production of ethyl acetate from acetic acid and 
ethanol has been investigated by several authors like 
Kenig et al. (2001), Suzuki et al. (1971), Alejski and 
Duprat (1996) or Lee and Dudukovic (1998). Most 
of them rely on the following process design. 

Tab. 3: ethyl acetate process from Lee and 
Dudukovic (1998) 

number of trays 13 reflux ratio 10 

feed tray 6 feed [mol/s] 1.076 

diameter [m] 0.6 holdup reb [l] 10 

holdup tray [l] 3 weir height [m] 0.05 

feed composition (acetic acid, 
ethanol, water, ethylacetate) 

0.4963, 0.4808, 
0.0229, 0 

With the model the start up times for this process 
have been calculated. The following table summa-
rizes the results for the four mentioned strategies. 

Tab. 4: start up time: esterification 

strategy start up time [min] 
conventional 175 
total reflux 225 

total distillate removal 183 
improved strategy 191 

Here the same conclusions can be made as with the 
transesterification. The total reflux strategy takes the 
longest time to reach steady state. Therefore it is not 
suited for reactive distillation processes. The follow-
ing chapters all base on the esterification as a sample 
reaction. 
 

3. ALTERNATIVE START UP STRATEGIES 

As could be seen from the calculations utilizing the 
start up strategies for conventional distillation, not 
much start up time could be saved. Mathematical 
optimization of the rigoros model, with control vari-
ables heating duty, reflux and feed flow and objec-
tive function start up time, do not show promise, 

because the results would lie between the strategy of 
total reflux and total distillate removal. Even multiple 
switching in control parameter sets would not yield 
significant saving of start up time. 
Therefore different procedures have to be developed, 
starting from different conditions breaking new 
ground instead of optimizing control variables reflux, 
heating and feed flow rate. In the following two 
examples are presented. 

• initial charge of the column stages with feed 
stock, bottom or top product or one reactant in ex-
cess 

• recycling of top or bottom product during the start 
up phase 

As a measure for reaching the steady state, the MX 
function for top and bottom product is taken here. 
The MX function is based on the MT function ex-
plained earlier, taking into account the deviation of 
the top product compositions from the actual point in 
time to the steady state. The same is done for the 
bottom product. 
 ( )Top i,top,current i,top,steadystate

components

MX x x= −∑  (5) 

If the MX < 0.01, the start up period is defined to be 
finished. 
 

3.1. DIFFERENT INITIAL COLUMN CHARGES 

In conventional start up the column is first filled with 
the feed. Opposite to this, it is possible to charge the 
column not with feed, but with liquid having a dif-
ferent composition. The following figure 5 shows a 
simulation of cases for ethyl acetate production with 
different initial charges. In the diagramm the MX 
function over time is drawn. Five different charges 
have been calculated. For the feed composition this is 
49.63% acetic acid and 48.08% ethanol, for the top 
and bottom product it is the steady state composition 
of the two streams and for acetic acid and ethanol, it 
is pure educt.  
As can be seen from the figure and also from the 
table showing the start up times, a significant amount 
of time can be saved, if the low boiler (in this case 
ethylacetate and ethanol) is initially charged. With 
pure ethanol as charge, the start up time reduces by 
23%, and even more (82%) if the top product is 
charged to the column. In this column two numbers 
are listed, because if top product is charged, obvi-
ously the MX function for the bottom product takes 
longer to reach steady state (1.07 h).  



Therefore it is usefull to save some of the top product 
to recharge the column before the next start up. In the 
next step a cost optimization has to be executed to 
see, if the savings in time and off-spec product can 
compensate the losses in top product. With this sig-
nificant savings in start up time, the initial charging 
with top product should be the strategy of choice, if 
the desired product is the low boiler. 
The same set up has been simulated for the trans-
esterification of methylester as in the experiments. 
Here four different initial charges have been tested. 
Initially charged with pure methylester and pure 
isopropanol and charged with bottom product of 
molar composition ME 52,2%, IPA 34.7%, IPE 
12.7% and MeOH 0.4% and with top product of 
molar composition [0,87.1%, 0, 12.9%]. The re-
quired start up times are summarized in the following 
table 

Tab. 5: start up times for initial charges 

initially charged with start up time [h] 

pure methylester 5.08 

pure isopropanol 5.10 

top product 5.23 

bottom product 5.27 

It can be seen, that the strategy that could save sig-
nificant amounts of start up time for the ethylacetat 
process is not the first choice for the transesterifica-
tion process. The relative volatilities of the products 
and the kinetics of the reaction have a significant 
inlfuence in the choice of a sensible start up strategy. 

 

3.2. Recycle of top and bottom product 

Another alternative to to shorten the start up time of 
an reactive distillation process is to recycle top and 
bottom product, that is off spec. This also saves the 
expensive disposal. 
In these simulations, a splitter, that splits the product 
stream (splitfactor = product/recyclestream) and a 

mixer, that mixes the recycle stream with the feed are 
introduced. The first diagramm shows the recycling 
of the bottom product with different split factors 
continuing for different times again for the ethylace-
tate process. 
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Fig. 6: MXTop function for bottom product recycle 

Figure 6 shows, that a moderate recycle of bottom 
product can save about 12% start up time. A recycle 
of more bottom product yields a steeper descent of 
the MX function, but after switching back to regular 
feed, the MX function shows an increase again, 
which prolonges the start up time for 1.5 h. 
If the top product is recycle, the MX function of the 
bottom product shows no influence. The start up 
times for different splitfactors and recylce times do 
not show significant differences. Therefore this strat-
egy should not be chosen for the start up of a reactive 
distillation column. 
 

4. CONCLUSIONS 

A rigoros simulation model has been presented, that 
can capture the dynamic behavior of a RD column 
starting from a cold and empty state. This model has 
been validated with steady state and dynamic data for 
a transesterification of a methylester. The match 
between experimental data and simulation data is 
satisfactory. 
The validated model has been used to calculate start 
up times for two different processes, one esterifica-
tion and one transesterification, utilizing strategies 
known from conventional distillation without reac-
tion. It has been shown, that these strategies do not 
yield significant savings in start up time. The industi-
rally favoured strategy of total reflux takes the long-
est start up time for reactive distillation.  
Alternative strategies to reduce the necessary start up 
time have been developed. The investigation of these 
strategies showed, that a saving of about 82% of the 
start up time for the ethylacetate process could be 
achieved, if the column is initially charged with top 
product. About 23% start up time could be saved, if 
the low boiling educt is initially charged to the col-
umn. Recycling of the bottom product could save 
about 12% of the start up time whereas a recycling of 
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top product did not yield in any savings. In contrast 
to this the transesterification did not show significant 
start up time reduction for initial top product charg-
ing. The relative volatilities of the components as 
well the kinetic contast are critical for the correct 
choice of strategies. 
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6. NOMENCLATURE 

D,L,V,B,F mol/s Distillate, liquid, vapour, 
bottom and feed stream 

FV, FL mol/sec vapour, liquid flow 
HUB mol liquid holdup  
kfar, kback  mol/s frequency factor 
Κ - phase equilibrium constant 

MT, MXTop  MT function, MX function 
for top product 

MTot,vap, 
MTot,liq 

mol vapour, liquid holdup on 
tray 

pvap
i, ptray bar vapour pressure compo-

nent i,  pressure of tray 
rA mol/s reaction rate component A 
T K, °C temperature 
Vtray m3 tray volume 
vv,vl m3/mol vapour, liquid volume 

xA,xB,xC, xD mol/mol liquid mol fraction of 
components 

yi mol/mol vapour mol fraction  
∆Level m level of liquid over weir 

∆p bar pressure drop between two 
adjacent trays 

γI - liquid activiy coefficient 
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Abstract: A novel plantwide dynamic optimizer PathFinder has been applied to 
a dynamic model of a Borealis Borstar process. PathFinder optimizes dynamic 
paths subject to a merely economical criterion. Introduction of process 
constraints allows for a gradual migration from the currently used transition 
towards a more optimal transition. Special care has been taken to integrate the 
optimizer with on-line control tools. The results show a significant 
improvement in added value during a grade transition.  
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1. INTRODUCTION 
 
The chemical process industry is facing a huge 
problem to increase their capital productivity. A 
solution to this problem is demand driven 
process operation. This implies that exactly these 
products can be produced that have market 
demand and take price advantage of a scarce 
market. Flexible operation of production is 
therefore required [Backx, et al., 1998]. 
A new integrated process control and transition 
optimization technology is needed for this 
purpose.   
The idea of optimization of grade transitions has 
been introduced by McAuley [McAuley and 

MacGregor, 1992]. Based on rigorous dynamic 
models optimal open-loop paths are calculated. 
The cost function has been improved into a more 
straightforward economical framework [Van der 
Schot et al, 1999]. The introduction of an 
economic objective function introduces strong 
non-linearities resulting in a strong increase in 
model evaluations. Special effort is paid to 
reduce the number of model evaluations to make 
the optimization feasible within a realistic 
timeframe. The PathFinder rigorous model based 
dynamic optimizer has been developed for these 
purposes. An application on a Borealis Borstar 
process is discussed. The paper is organized 
along the following four Sections: 



 

• In Section 2 the formulation of the 
plantwide economic optimization criterion is 
given.  

• Subsequently, in Section 3 a framework for 
on-line implementation of the optimized 
paths is discussed. 

• In Section 4 relevant aspects of the Borstar 
process are described. 

• Finally, Section 5 describes the application 
of PathFinder on a Borealis Borstar process. 

 
2. PLANTWIDE DYNAMICAL 

ECONOMICAL OPTIMIZATION  
 
PathFinder is a generic framework for plantwide 
economical dynamic optimization.   
 
An economical balance is being calculated for 
the entire process over a finite time horizon. For 
this purpose the revenues and costs are assigned 
to various economical flows entering and leaving 
the process (Figure 1).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Example of the Generic Plantwide 
Economic Process Framework 

In general, three types of flows characterize a 
process: 
 
- Economical flows that are consumed by the 
process. In most cases these will correspond to 
the use of raw material (Figure 1, flow A, B and 
C), but also the use of utilities (cooling water, 
steam (Figure 1, flow D), electricity…) can be 
accounted for as well. These flows are 
characterized by a fixed price per unit 
consumption. 
 
- Economical flows that are generated by the 
process, under a fixed price condition per 
generated unit. Typical examples are material 

flows of reaction side products that can be sold 
but where the quality of the generated product is 
not determined fully inside the process (Figure 1, 
flow G). The price can be negative if side 
products result that must be reworked afterwards 
as waste material. Also non-material flows such 
as generated steam (Figure 1, flow H) or 
electricity can be accounted for in the same 
fashion. 
 
- Economical flows corresponding to material or 
energy flows where the generated value depends 
on the value of a set of quality variables. Typical 
examples are reaction end products that must 
comply with given customers requirements, 
distillation tower top and bottom products that 
must satisfy purity demands (Figure 1, flow E 
and F) … 
 
It is key for an economical framework that the 
prices that must be accounted for in the last class 
of economical flows have a discrete nature. 
Products meeting a set of specifications have 
high economical value, while products that are 
outside the specification range (‘off spec’) show 
a value drop.  
 
As such, the economic criterion to be optimized 
is given by the added value over a fixed time 
horizon T. 
 
 
 
 
 
 
 
 
 
 
 
Within PathFinder various specifications (also 
called ‘grades’) can be introduced for each of the 
existing product flows (Figure 2). A grade 
consists of a set of quality parameters, which 
form bounded regions by the introduction of 
inequalities.  
 
Based on the given economical criterion, one can 
calculate improved dynamical paths to move 
from one operation point to another. As such it 
can be used to calculate economically optimal 
grade changes, production load changes, start-up 
and shut down procedures… 
 
Economically optimal grade change trajectories 
reduce the transition cost and thus make it easier 
to operate the process in accordance with market 
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demand. It also enables a flexible process 
operation strategy that is no longer coupled to a 
fixed grade slate, but that allows shortcuts 
between most of the grades in the grade slate. 
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Figure 2 PathFinder’s multigrade set-up 

It can readily be understood that this economic 
formulation leads to different optimal trajectories 
if the market conditions change from an 
unsaturated market condition towards a closed 
market. In an unsaturated market raw material 
and utility consumption will be less penalized 
since the on-spec product will typically generate 
significantly more benefits compared to the 
production costs. On the other hand, in a closed 
market, the optimizer will automatically strive 
for cost reduction, since the on-off spec price 
difference will not be as large. 
 
The optimizer searches for the optimal process 
manipulations, such that the resulting trajectory 
is economically optimal. It is clear that a 
dynamic process model is needed to enable the 
calculation of the Added Value given the applied 
process manipulations. The nonlinear dynamic 
model equations (set of DAE’s) have to be 
integrated over the time horizon given by the 
input manipulations. 
 
Constraints are added to the optimization 
problem, restricting the optimization freedom.  
 
The reasons for the introduction of these 
constraints (Path Constraints and Rate of Change 
constraints on MV’s and CV’s) are: 
 

• Guarantee a safe and feasible operation 
during the transition. 

 
• Constrain the optimizer freedom such 

that the new trajectory doesn’t differ too 
much from the initial trajectory.  

 
The last reason is important when one has no 
blindfolded confidence in the process model. 

Adding constraints will allow one to migrate 
gradually from a well-known recipe to a new 
recipe. 
 
PathFinder is a robust and fast solution for the 
above optimization problem. Though the 
objective function is strongly non-linear, due to 
the discontinuous price function, typically 5 up 
to 10 trajectory simulations and model 
linearizations are needed for the cases that have 
been analyzed (compared to 500 up to 1000 
model evaluations with a SQP optimization 
scheme). These model evaluations are the 
bottleneck for a faster calculation time. In [Van 
Brempt, et al., 2001] relevant implementation 
topics are discussed. 
 
3. INTEGRATED TRAJECTORY CONTROL 

AND OPTIMIZATION TECHNOLOGY 
 
The manifest reduction that has been achieved in 
the number of required model evaluations, makes 
off-line economical plantwide dynamical 
optimization feasible. However, given the 
currently available computing power, on-line 
economical plantwide dynamical optimization 
will not be feasible for most industrial problems. 
 
Therefore, a general framework has been set up 
in order to cope with the challenge to integrate 
dynamic optimization and on-line control [Van 
Brempt, et al., 2000]. The key idea is explained 
in Figure 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Integration of MPC control technology 
and optimization technology 
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PathFinder calculates off-line optimal dynamic 
economically paths based on the non-linear 
rigorous dynamic process model. These 
manipulated and controlled variable trajectories 
are as such applied to the process. The on-line 
controller corrects only for the deviations ∆u and 
∆y (‘delta mode’) from the process input-output 
setpoints uopt and yopt that are given by the 
optimizer. These deviations will occur due to 
model-plant mismatch and due to disturbances 
entering the process. 
 
The delta-mode guarantees a best of both worlds 
operation. The trajectory has generally been 
carefully designed with the knowledge of the 
non-linear process. It would be a pity to have this 
result overridden by a linear model controller.  
Therefore this trajectory is applied as such to the 
process. It puts a curb onto the controller, and the 
controller is allowed to shift the deviations of the 
input-output trajectory (uopt, yopt) between the 
controller input and output. It does not only try 
to follow as closely the output trajectory, but 
makes a compromise between deviations from 
the output trajectory and from the input 
trajectory. 
 
As explained in the previous section, the long 
trajectory simulation time determines the 
optimization calculation time. In practice the 
optimizer will therefore still need a considerable 
time to calculate a new trajectory. Therefore 
PathFinder is started some time before the 
trajectory has to be initiated, with up-to-date 
market conditions that can be uploaded from an 
ERP environment. 
 
In order to reduce plant-model mismatch, 
PathFinder will use the latest instance of the 
rigorous model that is known, with the latest 
state updates in case an Extended Kalman Filter 
is available. Once the optimal trajectory is 
calculated and acknowledged, it is sent to the 
controller environment (Figure 3). 
 

4. THE BORSTAR PROCESS 
 
Development in polymer materials is nowadays 
geared towards increased strength, resulting in 
less thickness for films, pipe and container walls. 
This results in a clear reduction in weight, 
transport cost and material usage, as such giving 
less harm to the environment. 
Less taste and odor is also an issue for polymer 
materials, as is the speed of processing the 
polymer materials, which allows faster 

production for end user applications. This 
requires more tailoring of the molecules. A 
bimodal molecular weight distribution is often 
used as it is a tailored distribution of the 
incorporation of co-monomers. Figure 4 shows 
how end polymer properties are affected by the 
molecular weight of the polymer molecules.  
 
There are basically two routes to tailor-make a 
polymer; either to tailor the catalyst used in the 
production of the polymer and/or tailor the 
polymerization process. Both routes are 
extensively used.  The following description will 
describe the up-to-date approach of modifying 
the polymer by the process route. 
 
 

Figure 4 Molecular weight distribution can be 
more easily adapted with bimodal than uni-
modal materials to meet the property needs of 
the end application. 
 
The polymer that is being produced depends not 
merely on the kinetic properties of the catalyst, 
but also on the temperature, pressure and 
duration of polymerization as well as on the 
concentration of the polymer and monomer 
involved in the reactions. The polymerization 
process used to produce the material controls the 
latter. There have been strong developments in 
this field to enable wide variations in the 
properties of the final polymer. Figure 5 shows 
the process for producing bimodal molecular 
weight distributed polymer as well as wide 
variation in co-polymer incorporation. 
 
The Borstar process consists of at least three 
reactors. One pre-polymerization reactor is used 
to start the catalytic polymerization process in a 
controlled manner as well as developing the 
desired particle morphology. The subsequent 
loop reactor produces the low molecular weight 
polymer.  Propane is used as the diluent. 
Operating the reactor above the critical 
thermodynamic point gives a very low solubility 



 

of PE in the diluent. The probability of fouling is 
hence greatly reduced compared with process 
using other diluent. The loop reactor can 
therefore produce polymer with larger variation 
in density than a number of other processes. The 
high molecular weight part of the polymer is 
produced in the fluidized bed reactor following 
the loop reactor.  
 
An extra versatility of the combined Borstar 
process comes also with the ease of varying the 
co-monomer content in each reactor and thereby 
tailor-making the co-monomer distribution of the 
final polymer. Various polyethylene grades can 
be produced on the same process using a 
carefully chosen set of flow, temperature and 
pressure setpoints (SPi) that we will refer to as a 
“recipe”. A given polyethylene grade will be 
characterized by a specified density and melt 
index.  
 

 
Figure 5. The Borstar process for producing 
bimodal MWD polymer as well as variation in 
co-polymer distribution. 

 
When changing from one polymer grade to 
another polymer grade, setpoints must be moved 
from one recipe to the other, driving the process 
through a zone where off-specification product is 
made. Typically the transition path for recipe 
setpoints will be selected to minimize production 
of low value off-spec product.  
Borealis developed a rigorous dynamic model 
for the Borstar process. This model is used to 
demonstrate the application of PathFinder. 
 
5. APPLICATION OF PATHFINDER ON THE 

BORSTAR PROCESS 
 
PathFinder’s optimization technology is applied 
on a model of the Borstar process in order to 

optimize the transition from one specific 
polymer grade to another grade. 
In Figure 6 optimized trajectories are shown for 
both quality variables. Notice that in both 
situations the off-spec time has considerably 
been shortened to about a half of the original off-
spec time. Also observe that the optimizer fully 
exploits the dynamical behavior of the process 
within the freedom of the entire specification 
band to optimize the transition. A typical 
optimizer behavior results for the density 
variable: the process first moves away from the 
desired spec, changes direction within the 
specification band, and takes full speed to go to 
the other grade. Upon arriving in the second 
grade specification, the process enters with full 
speed into the specification zone, bumps against 
the opposite boundary, and swings back without 
leaving the specification boundary. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Trajectories for quality variables 
Density and Melt Index (together with 
specification boundaries): initial trajectory (--- , 
final trajectory (solid).  

 
In Figure 7 some MV trajectories are shown. 
The production setpoint controls the ethylene 
inflow using a PI controller. One can easily 
notice the move times in the trajectories, i.e. the 
timestamps where the optimizer is allowed to 
change the MV values. In between these values, 
the MV values are kept constant. In total an 
optimization problem with 174 move times 
(degrees of freedom) was solved. Observe also 
that the original trajectory was a rather quasi 
steady state transition, while the new trajectories 
are fully dynamic. 
 
In  Figure 8 the economical added value is 
shown in function of time. During Off-Spec the 
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added value drops due to the fact that only a 
lower price can be achieved for the end product. 
The optimized trajectory shows a much shorter 
dip due to the fact that the off-spec time is 
shortened considerably.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Manipulated Variable Trajectories 
(initial trajectory (---), Optimized (solid)). 

 
 
 
 
 
 
 
 
 
 
 

Figure 8 Added value: initial trajectory (---), 
optimized (solid). 

 
6. CONCLUSION 

 
A plant wide dynamical optimization tool has 
been developed for optimization of a 
straightforward economical criterion. Several 
types of constraints can be introduced, such that 
a safe operation can always be guaranteed and 
such that a gradual migration from a known 
recipe to a renewed recipe is obtained. 
 
PathFinder has especially been laid out to 
increase optimization speed by limiting the 
number of necessary model evaluations. The 

optimizer is seamlessly integrated with a model 
predictive control technology such that on-line 
implementation of the optimized paths becomes 
feasible. 
PathFinder has been successfully applied on a 
grade transition problem for the Borstar process. 
The results showed considerable shortening of 
the off-spec time as well as a reduction of the 
overall cost of a grade transition. 
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Abstract: A fuzzy neural network model has been developed to predict the 4-CBA 
concentration of the oxidation unit in PTA process. Several technologies are used to deal 
with the process data before modeling. Suitable input variables set has been selected 
according to prior knowledge, experience and fuzzy curve method. Dead time delay has 
been considered in the fuzzy neural network model. The simulation results show that the 
model of the fuzzy neural network is better than that of AMOCO in prediction precision. 

 
Key words: Purified Terephthalic acid (PTA), 4-CBA ,Fuzzy Neural Network, Fuzzy 
Curve, Soft Sensor 

 
1. INTRODUCTION 

 
PTA (Purified Terephthalic Acid ) is the necessary 
material used widely in textile and packaging 
industries. It is made by purifying the TA 
(Terephthalic Acid) which is produced by oxidizing 
PX(para-xylene) with the catalyzer. The Catalytic 
Oxidation process of the PX is shown in figure 1. 
There are some mediproducts such as P-T(P-Toluic 
Acid) and 4-CBA (4-Carboxybenzaldchydc ) in TA. 
 
Concentration of 4-CBA is the main impurity and the 
important quality indicator. Reference (Cao,G,et 
al.1994) shows that the lower the 4-CBA 
concentration the more energy cost. So it is 
important to control the 4-CBA concentration of the 
oxidation unit on-line for saving energy and ensuring 

the purity of PTA. 
 
In practice the 4-CBA concentration is sampled three 
times each day and measured by spectroscopic 
analysis. Since spectroscopic analysis is a laboratory 
technique with obvious time delay, the analysis 
values of the 4-CBA concentration are not available 
for timely control adjustment if required. An 
alternative method is to build a soft sensor for on- 
line control of the 4-CBA concentration. In soft 
sensor technique the 4-CBA concentration is inferred 
from the other measured process variables such as 
temperatures, pressures, flows and their relationship.  

 
 

_________________________ 
 
*This work is supported by The National Outstanding 
Youth Science Foundation of China (NSFC:60025308) 
 

Fig. 1. The catalytic oxidation process of the PX 
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The relationship between the measured process 
variables and 4-CBA concentration is modeled by a 
suitable technique. 
 
Schematic diagram of the industry PTA oxidation 
process is shown in figure 2. The PTA oxidation 
process is very complex including heat transfer �
mass transfer and solid crystal in gas and liquids 
phase. A complex dynamic model (Cao,G.,et al. 1994) 
about the PX oxidation process has been proposed 
firstly. However this model is highly nonlinear and 
its parameters have uncertainty. In order to forecast 
the 4-CBA concentration, some famous chemistry 
corporations have also developed different empirical 
regression models with patent rights (Harold,A.L,et 
al.1989). But the empirical models are only suitable 
to a limited operation region. In the present work 
fuzzy neural network based soft sensor is proposed 
to model the nonlinear relationship between the 4-
CBA concentration and the measured process 
variables and accordingly predict the 4-CBA 
concentration in a timely manner.  
 
The organization of the paper is as follows. Section 2 
presents the architecture of the fuzzy neural network. 
Section 3 deals with a few practical issues including 
variable selection, dead time determination and data 
filtering. Section 4 presents simulation results. The 
final section gives conclusion. 
 

2. FUZZY NEURAL NETWORK 
 
The architecture of four layer fuzzy neural network 
with m  inputs and one output is shown in figure 3, 
The four layers are input layer, fuzzification layer, 
inference layer and defuzzification layer respectively. 
There are m  neurons connected with m  input 
variables in the first layer, m R×  neurons in the 
fuzzification layer, R  neurons in the inference layer 
and one neuron in the output layer. Each m  neurons 
in the fuzzification layer represents the premise part 

of one fuzzy rule, so there areR  rules in total. 
The ith  IF-THEN rule is,  
 

iR :IF 1x  is ,1iA  and � and jx  is ,i jA  and � and 

mx  is ,i mA  

THEN y  is iB       

Where  jx  is an input variable;  

y  is an output variable; 

,i jA  is a fuzzy set that characterized by the  

membership function , ( )i j jA xµ ;          

iB  is a fuzzy set that characterized by the 

   membership function ( )iB yµ ; 

 
Gaussian-type membership functions are used to 
calculate the values of ,i jA  and iB  as follows, 

 

, 2
, ,

,

( ) exp( ( ) )j i j
i j i j j

i j

x a
A A x

c
µ

−
= = −            (1) 

2( ) exp( ( ) )i
i i

i

y b
B B y

d
µ −

= = −                 (2) 

Fig. 2.  Schematic diagram of the industry PTA oxidation process 
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where ,i ja , ,i jc , 1,2i R= � ; 1,2j m= �  represent 

the center and width of input membership functions 
respectively. ib  and id reprensent the center and 

width of output membership function respectively. 
On the basis of multiplicative inference, we get 
 

,
1

m

i i j
j

w Aµ
=

= ∏                              (3) 

 
The inference result coming from R  rules follows a 
standard center of gravity formla, 
 

1 1

( ) ( )
R R

out i i i i i
i i

y d b w d w
= =

= � �                  (4) 

 
the learning of FNN is accomplished by adjusting the 
input/output widths and centers of membership 
functions and follows gradient descent algorithm. in 
this study, we use an Euclidean distance, that is  
 

21
( )

2 outE y y= −                            (5) 

 
where E  is the error;  
      outy  is the actual output value; 

      y  is the target output value. 

 
We only take ,i ja  as an example for brevity. Using 

the BP (BackPropagation) algorithm, the following 
update formula can be derived 
 

, , , ,
,

( 1) ( ) ( ( ) ( 1))i j i j i j i j
i j

E
a k a k a k a k

a
η α∂+ = − + − −

∂
 

(6) 

,

, , ,

i jout i

i j out i i j i j

Ay wE E

a y w A a

µ
µ

∂∂ ∂∂ ∂=
∂ ∂ ∂ ∂ ∂

               (7) 

 
where η  is the learning rate;  

      α  represents the momentum coefficient. 
 
It is important to initialize the parameters of fuzzy 
neural network because BP algorithm is sensitive to 
the initial parameters. In order to select a suitable 
parameters fuzzy C means clustering (FCM) 
algorithm (D.A.Linkens,Min-You Chen,1999) is 
applied to initialize the parameters. The centers of 
membership function, ,i ja , ib , are initialized by the 

fuzzy clusters’ centers; the initial width ,i jc   is 

given as follows, 
 

2
, , ,

1
,

,
1

( )
( )

N

i k k i i j
k

i j N

i k
k

U x a
c sqrt

U
β =

=

−
= ×

�

�

          (8) 

where U is the final fuzzy partition matrix 
 calculated by FCM algorithm. 

      β  is a constant. 

id  is initialized in the same way as ,i jc . 

 
3. INPUT VARIABLES SELECTION AND DATA 

SET COLLECTION 
 
3.1 Preliminary Selection of Process Variables 
 
Hundreds of process variables affecting the 4_CBA 
concentration are recorded respectively one time per 
30 seconds by the DCS system in PTA process. The 
selection of an appropriate subset from these 
variables is important. Too many unimportant 
variables included in the soft sensor model will lead 
to the difficulty of training and usage. On the other 
hand the model’s accuracy can not be guaranteed if 
some important variables are not included. 
 
According to prior knowledge and experience, ten 
variables are preliminarily selected including flow 
rates, reaction pressures, temperature, resident time, 
solvent ratio in the reactor and catalyzer liquid level. 
These ten process variables are measured in the 
reactor and the first crystallizer. Fuzzy curve method 
(Lin and Cunningham,1995) is applied to select the 
final variable subset in section 3.4. 
  
3.2 Dead Time Determination 
 
Dead time is the delay between the time when the 
value of a process variable changes and the time 
when the dependent variable begins to change in 
response which dependent on the structure and scale 
of the production equipment. It is obvious that the 
larger the scale of the production equipment and the 
longer the distance of materials transportation the 
longer the delay of dead time. 
 
The schematic diagram of PTA oxidation process in 
figure 2 shows that the production equipment is of a 
large scale, so there are long dead time delays 
between the process variables and 4-CBA 
concentration. The different dead time of every 
process variable results from the fact that every tank 
has different residence time from 15 to 72 minutes 
and every sensor has its different position. Analysis 
indicated that the maximum dead time of the process 
variables is about 200 minutes while the minimum 
dead time is only about 70 minutes. 
 
3.3 Data Collection and Preprocessing  
 
As mentioned above, 4_CBA concentration is 
sampled only three times while the process variables 
are recorded about three thousand times each day. In 
other words, three samples at most are collected for 
training fuzzy neural network each day. The data set 
with 216 samples was collected according to the 
dead times of process variables and the sample time 
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of 4-CBA concentration. That is  
 

1 1 2 2 10 10[ ( ) ( ) ( )]X x t x t x tτ τ τ= − − −�      (9) 

[ ( )]Y y t=                                (10) 

 
Where X and Y represent process variables values 

and 4-CBA concentration collected, respectively, iτ , 

1,2, 10i = � ,is the dead time of  the i th process 
variable. 
  
When data sets were collected, weighted moving 
average filtering method (Radhakrishnan V.R., 
Mahamed A.R. ,2000) is adopted to filter noise of the 
process data. 
 
3.4 Reduce the Input Variables Using Fuzzy Curves 

method 
 
The fuzzy curves method (Lin and 
Cunningham,1995) uses fuzzy logic to establish the 
relationship between the input variables and the 
output variable to identify the significant inputs. 
Suppose a multiple-input, single-output system has  
m inputs 1 2[ ]mX x x x= �  and one output 

[ ]Y y= , We have N  training data points. The 

algorithm is described briefly as follows, 
 
1) Calculate the fuzzy membership function for 

the input variable ix defined by 

, 2
, ( ) exp( ( ) )i k i

i k i

x x
x

b

−
Φ = −                  (11)  

    where 1, ,i m= � ; 1, ,k N= � ; 
0.2 (max( ) min( ))i ib x x= × −  

2) Use centroid defuzzification to calculate the 
fuzzy curve ic  for each input variable ix  by 

,1

,1

( ).
( )

( )

N

i k i kk
i i N

i k ik

x y
c x

x

φ

φ
=

=

= �

�
                    (12) 

3) Calculate the range of each fuzzy curve by  
( ( )) ( ( ))i i i i iR Max C x Min C x= − , the larger the 

iR , the more important the corresponding 

variable ix . 

   
According to the approach the ranges of the fuzzy 
curves ic  in the PTA process, 1,2, 10i = � , are 

shown in table 1. 

 
As shown in table 1, the range of the fuzzy curve for 

7x  and 9x  is smaller than that of other variables. 

We delete these two variables for simplifying the 
model. However this does not mean that these two 
variables have no effect on the concentration of 4-
CBA. It is just because that the range of these two 
variables is too small to produce any obvious error in 
the model prediction. 
 
Table 1 The range of the fuzzy curves in PTA process 
 

Input 
variables 

The Range 
of ic  

Input 
variables 

The Range 
of ic  

1x  0.6188 
6x  0.5542 

2x  0.6030 
7x  0.0928 

3x  0.5822 
8x  0.4863 

4x  0.3318 
9x  0.1097 

5x  0.4921 
10x  0.3596 

 
 
 

4. SIMULATION RESULTS 
 
The data set with 216 samples is divided into two 
sets, one set has 150 samples used for training, the 
other set has 66 samples used for testing. After 
training FNN with different number of fuzzy rules, it 
is found that the most suitable number is 5. The 
training and testing relative errors after 250 iterations 
are shown in Fig 4. For comparison, the empirical 
nonlinear regression model of AMOCO is applied to 
the same data set. Under the same condition as in the 
FNN approach, the training and testing relative error 
are also given in Fig 4. Table 2 lists the two models’ 
performances including maximum relative error, 
minimum relative error and root-mean-square-error 
(RMSE) in detail. It can be seen that not only the 
training results of the FNN model are better than that 
of the AMOCO model but also the better 
generalization results on the testing data. 
 
The comparison of the predicted values of the two 
different models and the actual 4-CBAconcentration 
is given in Fig. 5. It can be seen that the FNN model 
has better prediction capability in the change trend of 
4-CBA concentration while the AMOCO model just 
predicts the average of it. 
 

Table 2 Training and testing performance for 4-CBA concentration  
using the FNN method and AMOCO model 

 
 Training set Testing set 
Model max.rel.Error min.rel.Error RMSE max.rel.Error min.rel.Error RMSE 
FNN 0.0813 -0.0576 0.0248 0.0923 -0.0845 0.0342 
AMOCO 0.1109 -0.0846 0.0357 0.0941 -0.0887 0.0373 
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5. CONCLUSION 
 
In this paper, a fuzzy neural network model has been 
applied to predict the concentration of 4-CBA of the 
oxidation unit in PTA process. Several technologies 
are used to deal with the process data before 
modeling. Suitable input variable subset has been 
selected according to the prior knowledge and 
experience and fuzzy curve method. Dead time has 
been considered into the fuzzy neural network model. 

The simulation results show that the model of the 
fuzzy neural network is better than AMOCO model 
in prediction precision. 
 

REFERENCES 
Yinghua Lin,George A. Cunningham (1995) A new 

approach to fuzzy-neural system modeling. IEEE 
Transactions on Fuzzy Systems, Vol 3.No 2. MAY 
1995.pp:190-198.  

Cao,G.,et al(1994). Kinetics of p-Xylene Liqui-Phase 
    Catalytic Oxidation  AIChE J 40 pp:1156. 
Harold,A.L,et al(1989). Method and Apparatus for 

Observation number 
Fig. 4. Predicted relative errors for 4-CBA concentration using the fuzzy neural 

 network model and AMOCO nonlinear regression model . 
 

 
Fig. 5.  Actual and predicted results of 4 CBA-concentration 



 6

  Controlling the Manufacture of Terephthalic 
Acid to Control the Level and Variability of the 
contaminant content and the Optical Density. 
U.S. Patent: 4835307. 

D.A.Linkens,Min-You Chen(1999) Input selection 
and partition validation for fuzzy modelling 

using neural network Fuzzy Sets and Systems 
107 pp:299-308.  

Radhakrishnan V.R., Mahamed A.R. (2000), Neural 
networks for the identification and control of 
blast furnace hot metal quality, Journal of 
process control, 10 (6), pp: 509-524. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 

DESIGNING NEUROFUZZY SYSTEM BASED ON IMPROVED CART 
ALGORITHM 

 
 

Jia Li    Li Erguo  and  Yu Jinshou 
 
 

Research Institute of Automation, East China University of Science and Technology,  
Meilong Road 130, Shanghai, 200237, People’s Republic of China ,  

Tel.: +86-021-64253399; Fax: +86-021-64253399; Email address: jli75@263.net 
 
 
 
 

Abstract: In this paper, a neuro-fuzzy system based on improved CART algorithm 
(ICART) is presented, in which the ICART algorithm is used to design neuro-fuzzy 
system. It is worth noting that ICART algorithm partitions the input space into tree 
structure adaptively, which avoids the curse of dimensionality (number of rules goes up 
exponentially with number of input variables). Moreover, it adopts density function to 
construct the local model for every node in order to overcome the discontinuous 
boundaries existed in CART algorithm. To illustrate the validity of the proposed method, 
a practical application are done. Copyright © 2003 IFAC 
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1．  INTRODUCTION 

 
According to the published papers about neuro-fuzzy 
system, there are still important open problems in the 
neuro-fuzzy system. At first, most of the current 
neuro-fuzzy approaches address parametric 
identification or learning only. In general, the 
designer chooses membership functions shape and 
the respective parameters are adjusted Mauricio 
(1999). Secondly, for some neuro-fuzzy systems, e.g., 
the fuzzy inference network in Wang (1994), the 
self-organizing neural-network-based fuzzy system 
in Yin (1999), neuro-fuzzy networks in Mauricio 
(1999), fuzzy neural networks in Meng (2000), etc., 
the number of partitions or the cluster radius is 
determined by the user, which can’t guaranteed a 
optimal fuzzy system. In addition, extracting 
significant input variables among all possible input 
candidates is another challenging problems in fuzzy 
structure identification.  
Considering above disadvantages, decision tree is 
another useful tool to construct the neuro-fuzzy 
system and choose the input variables, which is 
currently the most highly developed technique for 

partition. It is  generated from training data in a 
top-down, general-to-specific direction. The initial 
state of a decision tree is the root node that is 
assigned all the examples from the training set. If it is 
the case that all examples belong to the same class, 
then no further decisions need to be made to partition 
the examples, and the solution is complete. If 
examples at this node belong to two or more classes, 
then a test is made at the node that will result in a 
split. The process is recursively repeated for each of 
the new intermediate nodes until a completely 
discriminating tree is obtained. Obviously, the 
advantages are decision tree’s understandable 
representation and adaptability to the inference Serge 
(2001). There are many methods have been used for 
modeling decision tree, such as ID3 and ID4 using 
entropy criteria for splitting nodes, SLIQ utilizing 
data structures and processing methods to build 
decision tree, CART  utilizing the GINI for splitting 
nodes and so on. However, in these methods, 
classification and regression trees (CART) has been 
in extensive use, which was developed to analyze 
categorical and continuous data using exhaustive 
searches and computer intensive testing to select a 



decision tree by Breiman in 1984. Crawford (1989) 
states that in cases where data is “noisy”, CART is “a 
remarkably sophisticated tool for concept induction”. 
Jang et al. (1997), based on CART algorithm, 
propose a quick method to solve the problem of the 
fuzzy rule generation. This method generates a tree 
partition of the input space, which relieves the 
problem of curse of dimensionality (number of rules 
goes up exponentially with number of inputs) 
associated with grid partition. Moreover, the method 
combines CART with artificial neuro-fuzzy inference 
system (ANFIS) approach to complete the task of 
fuzzy modeling and provides a new approach for 
neuro-fuzzy designing. There are no similar articles 
appeared in recent years. 
After deeply researching the CART algorithm, an 
improved CART algorithm, abbreviated as ICART 
algorithm, adopting density function to construct the 
local model for every node is proposed in this paper. 
It is worth noting that it decides every decision 
output value according to space distribution and thus 
smoothes the discontinuous boundaries existed in 
CART algorithm. This advantage is obvious 
especially when the decision tree is smaller. Then a 
neuro-fuzzy system based on ICART algorithm, 
which using ICART algorithm to design neuro-fuzzy 
system is proposed. In this method, ICART algorithm 
is used to elect relevant inputs and classify the input 
space into adaptive tree structure, which avoids the 
curse of dimensionality because the total number of 
fuzzy rules doesn’t increase exponentially with the 
number of input variables and neuro-fuzzy system is 
utilized to refine the regression and make it smooth 
and continuous everywhere. It can be seen that 
ICART and neuro-fuzzy system are complementary 
and their combination makes a solid approach to 
fuzzy modeling.  
This paper is organized as follows. In section 2 we 
introduce the designing neuro-fuzzy system based on 
ICART algorithm. It consists of ICART algorithm, 
neuro-fuzzy system based on ICART algorithm and 
optimization algorithm. In section 3 the method 
proposed in this paper is applied to quality prediction 
for hydrocracking processing. Finally, section 4 
contains some conclusions. 
 

2．  DESIGNING NEURO-FUZZY SYSTEM 
BASED ON ICART ALGORITHM 

 
2.1 Decision Tree 
 
Decision trees are generated from training data in a 
top-down, general-to-specific direction. The initial 
state of a decision tree is the root node that is 
assigned all the examples from the training set. If it is 
the case that all examples belong to the same class, 
then no further decisions need to be made to partition 
the examples, and the solution is complete. If 
examples at this node belong to two or more classes, 
then a test is made at the node that will result in a 
split. The process is recursively repeated for each of 
the new intermediate nodes until a completely 
discriminating tree is obtained. 
A typical decision tree with three-dimensional 
input-vector and one-dimensional output-vector is 

showed as Fig.1. Where 1x , 2x  and 3x  are 

respectively the three inputs and y  is the output. 
The decision tree is a tree structure that represents a 
subspace of all the possible rules. It consists of 
internal nodes (with two children) and terminal nodes 
(without children). Each internal node is associated 
with a decision function to indicate which node to 
visit next, while each terminal node shows the output 
of a given input vector that leads the visit to this node 
(Duan, 2001, Jang, 1997 and Serge, 2001). 
Obviously the decision tree in Fig.1 classifies the 
input space into five non-overlapping rectangular 
regions. Each is assigned a constant value ib  as its 

decision output value, which is the output value of 
the given input vector. The main advantage of this 
decision tree is that it is a very easy-to-interpret 
representation of a nonlinear input-output mapping 
(Quinlan, 1986). They generate incomplete rules 
constrained to a given partitioning and offer a 
compact description of a given context by using only 
the locally most significant variables.  
 

 
 
Fig. 1 The structure of decision tree 
 
2.2 ICART algorithm 
 
In this section, we will describe the ICART algorithm. 
Before proceeding, the definition of CART algorithm 
must be introduced. The CART technique can be 
generalized as involving the partitioning of training 
data into terminal nodes by a sequence of binary 
splits, starting at a parent node. The procedure 
searches through all values of all the independent 
variables to obtain the variable and the value that 
provides the best split into child nodes. Once a best 
split is found, CART repeats the search process for 
each child node, continuing recursively until further 
splitting is impossible or stopped for some reason. 
Splitting is not possible if only one case remains at a 
particular node or if all the cases at that node are 
identical copies of each other. When all branches 
from the root reached terminal nodes, the tree was 
considered complete. CART produces more robust 
results by generating what is called a maximal tree 
and then examining smaller trees obtained by 
pruning away branches of the maximal tree. The 
important point is that CART trees are always grown 
larger than they need to be and are then selectively 
pruned back (Ina,1998). The final tree is picked up as 
the tree that performs best when the test data set is 
presented. 
For terminal nodes with constant output values, 
CART can always construct an appropriate tree with 
a right size and, at the same time, find which inputs 
are irrelevant and thus not used in the tree. The 



processing of determining the constant output values 
is stated as follows (Breiman, 1984). 
For node t, the error function can be defined as:  
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Where { },i ix y  is a pair of input and output data, 

( ),t id x θ is the local model of node t, ( )N t is the 

number of input and output data pairs belonging to 
node t and θ  is variable parameters.  
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Obviously, the CART algorithm only uses the 
average output of node t as its predictive output. This 
may cause discontinuous boundaries. In order to 
overcome this drawback, our improved CART 
(ICART) algorithm adopts the distributing density 
function. For node t, the predictive output is 
determined by the average output, the maximum 
output and the minimum output of this node, namely  
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Where _ tMAX Y is the maximum output of node t, 

_ tMIN Y  is the minimum output of node 

t, _ tAVG Y  the average output of node t, 

_ tMAX U  and _ tMIN U  are, respectively the 

input data of _ tMAX Y  and _ tMIN Y . 1tξ  and 

2tξ  are adjustable parameters. Obviously, when 1tξ  

and 2tξ  are set to 1tξ → ∞  and 2tξ → ∞ , 

Formulate (3) equate to Formulate (2). So Formulate 
(2) is a special case of Formulate (3).  
Obviously, the main advantage of our proposed 
ICART algorithm is that it adopts density function to 
construct the local mo del for every crunodes and 
overcomes the discontinuity at the decision 
boundaries, which is unnatural and brings undesired 
effects to the overall regression and generalization.  
 
2.3 Designing neuro -fuzzy System Based on ICART 
Algorithm 
 
The decision tree in Fig.1 is equivalent to a set of 
crisp rules: 
     

1 1 2 2 1

1 1 2 2 2

1 1 2 3 3

1 1 2 3 3 4 4

1 1 2 3 3 4 5

If x a And x a Then y b

If x a And x a Then y b
If x a And x a Then y b
If x a And x a And x a Then y b

If x a And x a And x a Then y b

< < =
 < ≥ = ≥ < =
 ≥ ≥ < =
 ≥ ≥ ≥ =

     

                                    (4) 
The CART procedure initially considers the data as 

belonging to a single group. This group is partitioned 
into two relatively homogeneous subgroups. More 
specifically, given any input vector (x; y), only one 
rule out of five will be fired at full strength while the 
other four rules are not activated at all and the output 
only is determined by the fired rule. Moreover, this 
crisp sets reduce the computation burden in 
constructing the tree using ICART and it also gives 
undesired discontinuous boundaries. Fuzzy inference, 
however, is the most basic human being’s reasoning 
mechanism. The fuzzy set can smooth out the 
discontinuity at each split, so we use fuzzy sets to 
represent the premise parts of the rule set. The 
statement x a≥  can be represented as a fuzzy set 
characterized by the sigmoid membership function： 

1
( ; , )

1 exp[ ( )]x a sig x a
x a

µ β
β≥ = =

+ − −
  (5) 

Obviously, when the premise parts of the rules set in 
decision tree are represented by fuzzy sets, the 
decision tree is equivalent to a fuzzy system. On 
basis of this fact, we use ICART algorithm to design 
neuro-fuzzy system. The proposed neuro-fuzzy 
system based on ICART algorithm is showed as 
Fig.2. 
 

 
 
Fig. 2 The structure of neuro-fuzzy system based 
on ICART algorithm 
 
The neuro-fuzzy system based on ICART algorithm 
consists of five layers. The first layer is input layer. 
Each node in this layer is called an input linguistic 
node and corresponds to one input variable. The node 
only transmits input values to the next layer directly. 
Nodes in second layer are called input term nodes, 
each of which correspond to one linguistic label of an 
input variable. Each node in this layer calculates the 
membership value specifying the degree to which an 
input value belongs to a fuzzy set. INV nodes 
represent negation operator. A sigmoid membership 
function is used in this layer, which is described as: 

1
( ; , )

1 exp[ ( )]x a sig x a
x a

µ β
β≥ = =

+ − −
                        

1
1 ( ; , ) 1

1 exp[ ( )]x b sig x b
x b

µ η
η< = − = −

+ − −
                    

(6)  
where β , α , b and η  are the adjusted 
parameters in membership function. 
The third layer consists of N neurons, which compute 
the fired strength of a rule. Multiplicative inference is 
used, so the output of this layer is:                   

(3)
j x a

y µ
<

= ∏                           (7)                 



There are two neurons in fourth layer. One of them 
connects with all neurons of the third layer through 
the weight jh  representing the consequence of the 

jth rule and another one connects with all neurons of 
the third layer through unity weights.  
The last layer has a single neuron to compute y. It is 
connected with two neurons of the fourth layer 
through unity weights. The integral function and 
activation function of the node can be expressed as: 
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==                           (8) 

 
2.3 Parameters optimization 
 
In parameters optimization learning phase input and 
output data are presented to adjust parameters and 
obtain better fuzzy model. Its goal is to minimize the 
error function: 

                         

( ) ( )[ ]2

2
1

tdtyE −=                      (9) 

where ( )ty  is the current output and ( )td  is the 
desired output. For a training data pair, starting at the 
input nodes, a forward pass is used to compute the 
activity levels of all the nodes, a backward pass is 
used to compute yE ∂∂ /  for all parameters. The 
adjustable parameters can be adjusted as follows. 

( ) ( ) ( ) ( )( ) 2,1,11 =−−+
∂
∂−=+ ikkEkk titi

ti
titi ξξβ

ξ
αξξ  

(10) 

( ) ( )2
1

2

1

_exp)__(_ xUMAXYAVEYMAXxUMAXbdy
E

tttttt
t

−−−−−=
∂
∂

ξ
ξ

   

(11) 

( ) ( )2
2

2

2

_exp)__(_ xUMINYAVEYMINxUMINbdy
E

tttttt
t

−−−−−=
∂
∂

ξ
ξ

  

(12) 
And the membership parameters can also be adjusted 
as above supervised algorithm. 
 

3. PRACTICAL APPLICATION FOR 
MODELING JET FUEL ENDPOINT OF 

HYDROCRACKING PROCESSING 
 

 
 
Fig.3 The schematic representation of the hydro- 
cracking fractionator 
 
Hydrocracking is one of the most important 
processes  in the petroleum industry. It upgrades 

heavy oil value by making high quality products, 
such as gasoline or kerosene. The purpose of the 
main fractionator of a hydrocracking process is to 
split a feed that produced from the former process 
into three product streams of different molecular 
weight, that is, light naphtha, heavy naphtha and jet 
fuel. Their endpoints are the key indicators to value 
the product quality. Figure 3 shows a schematic 
representation of the main hydrocracking 
fractionator.  
According to the analysis of technological 
mechanisms, the endpoints of the three sides (i.e., 
light naphtha, heavy naphtha and jet fuel) are related 
with the above mentioned 13 variables, which can be 
measured and recorded on-line. In this section, the jet 
fuel endpoint will be studied. The relationship 
between it and above-mentioned 13 variables is 
described as equation (13):  

( ) ( ( ), ( ), ( ), ( ),

( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )) ( )
J H H J J

r r top top in in b b L

EP k f T k F k T k F k

T k F k T k P k T k F k T k F k F k kξ

=

+
  

(13) 
where EPJ(k) represent the endpoint (℃) of jet fuel, 

)(⋅f is the complex multivariable non-linear 

function, )(kξ  represents the uncertain term. The 
task is to find the relationship between the endpoint 
of jet fuel and the selected 13 secondary variables, so 
we can estimate the product quality of jet fuel 
on-line. 
From equation (13) and the views of technological 
mechanisms , though all the 13 variables have 
cause-and-effect relationships with the quality 
variable, selecting all thirteen variables as the input 
of self-organizing neuro-fuzzy system is totally 
unnecessary because the above-mentioned variables 
(i.e. Tr, TH, TJ, FL, FH, FJ) are highly correlated each 
other. By statistical regression analyzing step by step, 
jet fuel endpoint is mainly affected by the following 
six measurable variables: Tr , Fin, Fr, FL, FH, FJ. So its 
model structure is represented as: 

                     

( ),  ,  ,  ,  ,  JEP g Tr Fin Fr FL FH FJ=  

Then the proposed algorithm is used to establish the 
system. There are 223 sets of sample data of thirteen 
operating variables in different operating states. 173 
pairs of them are used as off-line training data sets 
and another 50 pairs are used as on-line testing data 
sets, which verify the fuzzy inference power of the 
neuro-fuzzy system designed based on ICART 
algorithm. In the learning phase, all training data are 
scaled in the intervals [-1, +1].  
After the learning, 173 sets training data are clustered 
into 40 categories, that is the number of IF-THEN 
rules of neuro-fuzzy system is 40 which is less than 
conventional grid partitioned neuro-fuzzy system’s. 
In order to verify the generalization of the presented 
fuzzy model, another 50 sets are used to test it. The 
estimated values are shown in Fig.4 (a). In addition, 
the neuro-fuzzy system based on CART algorithm is 
used to build a soft sensing model shown as Fig4 (b). 
Table4 are about the comparison between CART 
algorithm and ICART algorithm. The results show 
that the proposed neuro-fuzzy system designed by 
ICART algorithm possesses better generalization 
ability and is smoother than CART algorithm. 



In order to verify the validity of the proposed 
neuro-fuzzy system designed by ICART algorithm, 
the method proposed in paper Jia (2001), which uses 
clustering algorithm to construct neuro-fuzzy system, 
is applied to build a soft sensing model shown as 
Fig4 (c). Comparisons between these two models are 
represented in Table.1. From Table.1 we learn that 
the method proposed in this paper possesses simple 
structure and better generalization ability than the 
method presented in paper Jia (2001).  
 

 
（a） ICART algorithm ( — Practical Output, 

----Model Predictive Output) 
 

 
（b） CART algorithm ( — Practical Output, 

----Model Predictive Output) 
 

 
（c） The algorithm proposed in paper Jia (2001) 

(—Practical Output, ----Model Predictive 
Output) 

 
Fig.4 The comparison between CART algorithm, 
ICART algorithm and Method in paper Jia (2001) 

 
 

Tab.1 the comparison between CART algorithm, 
ICART algorithm and Method in paper Jia (2001) 

 
Algorithm Rule RMSE MAX 

ICART 40 0.8786 2.9812 
CART 40 1.7772 4.1718 

Method in paper Jia 
(2001) 

45 1.6784 3.6864 

 
In summary, the proposed neuro-fuzzy system 
designed by ICART algorithm possesses simple 
structure, better generalization ability and is 
smoother than CART algorithm. And it can be 
successfully applied to quality prediction for 
hydrocraking processing. 
 

4. CONCLUSION 
 

A neuro-fuzzy system based on ICART algorithm, 
which using ICART algorithm to design neuro-fuzzy 
system is proposed in this paper. It is worth noting 
that ICART algorithm classifies the input space into 
tree structure adaptively, which avoids the curse of 

dimensionality because the total number of fuzzy 
rules doesn’t increase exponentially with the number 
of input variables. Moreover it adopts density 
function to construct the local model for every 
crunodes in order to overcome the discontinuous 
boundary existed in CART algorithm. The major 
advantage offered by this approach is that the user 
can now quickly determine the roughly correct 
structure of a fuzzy inference through ICART, and 
then refine the membership functions and output 
functions via efficient neuro-fuzzy system 
architecture. It can be seen that ICART and 
neuro-fuzzy system are complementary and their 
combination makes a solid approach to fuzzy 
modeling. In addition, a supervised scheme is used to 
adjust parameters to minimize the network output 
error and constructer optimal fuzzy model on the 
basis of ICART algorithm. Finally, to illustrate the 
validity of the proposed method, a practical 
application are done. The results show that the 
proposed method can provide optimal model 
structure and parameters for fuzzy modeling, 
possesses high learning efficiency and is smoother 
than CART algorithm. And it can be successfully 
applied to quality prediction for hydrocraking 
processing. 
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Abstract: Many processes, even being of a continuous nature, involve in its operation 
signals or rules different from the classical continuous variables represented by real 
variables and modelled by DAE. In practice they include on/off valves or other binary 
actuators, are subjected to logical operational rules, or are mixed with sequential 
operations. As a result, classical control does not fit very well with the overall operation 
of the plant. In this paper we consider the problem of hybrid control from a predictive 
control perspective, showing in a practical non trivial example with changing process 
structure, how the problem can be stated and solved. Copyright © 2003 IFAC 
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1. INTRODUCTION 

 
The topic of hybrid systems and hybrid control has 
received a lot of attention in the latest years, mainly 
in relation with complex distributed systems that 
combine continuous operating units of several nature 
with interconnections following logical rules. In the 
present paper this  field is seen from a process control 
perspective where the core of the process is 
continuous, and the main variables can be represented 
by real numbers, but where there are also other 
elements that do not fit in this  framework. These can 
be classified into four categories:  

• Devices or elements that operates in an 
on/off way and that can be represented by 
binary variables instead of usual real ones. 
As typical examples we can mention on/off 
valves or motors. 

• Process units that can operate or be switched 
off according to the production needs or 
constraints. 

• Operational rules or constraints of logical 
nature that form part of the correct operation 
of a process. They are given usually in the 
form IF (situation) THEN (action). 

• Process units that operate in batch mode 
according to a given sequence of stages. 
Here the timing and scheduling of the 
operation is a key factor. 

 
In all these cases, the standard control approach, 
based on a continuous process model and continuous 

manipulated variables, fails due to the discrete 
(integer) or logical nature of the new elements. 
Nevertheless, in industrial practice, if we exclude the 
more simple cases of SISO control loops and we 
navigate towards plant wide control considering the 
problem of controlling a complex process unit or a 
section of a factory, it is very likely that the above 
mentioned elements are present in a certain degree. 
Then, it is important to reformulate the control 
problem finding adequate representations of these 
hybrid systems as well as practical paths to solve and 
analyse them. 
 
There are several approaches to model hybrid 
systems. Some of them set hierarchical levels, leaving 
the continuous parts in the bottom and the discrete 
decision variables in the upper ones (Grossmann, et 
al., 1993). Other approaches take advantage of the 
fact that prepositional logic expressions can be 
formulated in a systematic way as linear inequalities 
of binary variables (Clocksin and Mellish, 1981). An 
important contribution in this line is (Bemporad and 
Morari, 1999), where MLD systems are defined and 
analysed. Other contributions can be seen in 
(Colmenares, et al., 2001; Zhu et al., 2000). 
 
In this paper, within the framework of predictive 
control, a case study of a process with four 
interconnected tanks is presented. It is able to operate 
in different modes according to the value of a set of 
on/off valves. The paper is organised as follows: In 
section 2, a review of how to formulate hybrid models 



     

and the associated predictive control is presented. In 
section 3 the process is described, while in section 4 
the specific formulation for the model and MPC 
controller is given. Results can be seen in section 5 
and, finally, some brief conclusions are drawn. 
 
 

2. MLD MODELS 
 
A natural way to represent discrete elements with two 
or more states (on/off type) or process units that can 
be switched off, is by means of integer (0–1) 
variables. Logical operational rules can be translated 
into inequalities involving binary variables in a 
systematic way. 
 
If P is a logical proposition that can have the values 
true or false, then associating an integer variable y (1-
0) to it, conjunctions and disjunctions of propositions 
can be translated easily: 

1,1
1

2121

2121

≥≥∨
≥+∧
yyPP

yyPP
               (1) 

More general exp ressions are first converted into the 
so called normal conjunctive pattern: 

nQQQ ...21 ∧∧                           (2) 

where Q is a disjunctive proposition and then 
translated as before. The procedure for converting a 
proposition into this pattern follows three steps: 
 

a) Replace the logical implications by its 
equivalent: 

2121 PPPP ∨⇔⇒                        (3) 
b) Apply Morgan's laws in order to move the 

negations inside 

21212121 )()( PPPPPPPP ∧⇔∨∨⇔∧   (4) 
c) Apply the distributed property in order to 

obtain the desired pattern 
)PP()PP(P)PP( 3231321 ∨∧∨⇔∨∧      (5) 

 
Activation or de-activation of real variables x liked to 
the existence or operation of discrete elements can be 
formulated as products of the type xy, but this creates 
a non-linearity. An alternative is to formulate them in 
terms of linear inequalities of the type: 
 

UyxLy ≤≤                          (6) 
 
where L and U are lower and upper limits of x, while 
y is the associated integer variable. If y is 1, then the 
standard constraint on x remains active, but if y=0 the 
x variable is forced to 0. In (Floudas, 1995) a way of 
dealing with more complex situations can be seen. 
 
A model integrating continuous dynamics, 
discontinuous variables and logical constrains results 
then in a set of equations such as: 
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being x continuous process variables, u real decision 
variables and y integer ones.  
 
The predictive control problem is then to choose u 
and y over a given control horizon, so that a cost 
index is minimised along a given prediction horizon, 
repeating the problem every sampling period as part 
of a moving horizon strategy. Unfortunately, because 
of the presence of the integer variables, this is a 
mixed integer optimisation problem which implies a 
heavy computational burden. 
 
 

3. PROCESS DESCRIPTION 
 
The four tanks systems is part of a lab plant at UAB 
used as a test bed for this kind of problems. The 
system to be controlled is depicted in Fig. 1 and 
consists of two sections: the storage section, 
represented by the two upper tanks and the mixing 
one which includes the two bottom tanks. 
 
Liquid flows from the storage tanks to the mixing 
ones through four pipes which have on/off valves (V) 
in order to activate or block the lines, and two speed 
pumps. Another flows qBM are added into the mixing 
tanks in proportion to the main currents. Input flows 
qEv to the storage tanks, as well as the demands of the 
final products qM , are subjected to strong and 
frequent changes, as  coming from a batch section, and 
can be considered as the main disturbances to the 
plant.  

Fig. 1 Schematic Diagram 
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The purpose of this process is mixing the currents qBE 
and qBM in given proportions while maintaining the 
levels of the four tanks close to given setpoints and, 
on any case, within pre-specified ranges. 
 
The storage phase can be described by the following 
equations: 
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1 qqq
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where h represents the level in the tanks and the 
relation between the output flow of the pumps (qBE1, 
qBE2) and the input signal to them (u1, u2) is 
considered linear. The inflows qEv1 and qEv2 are 
measured disturbances and the four cross flows qij are 
depending on qBE1 and qBE2. 
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A simplified linear expression of relations (12) and 
(13), can be obtained approximating (14) and (15) by 
its values at the nominal operating point ( )21 , AA hh : 
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The other part of the process, the mixing tanks, is 
modelled by a similar set of equations: 
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11 BEBM Rqq =                           (21) 

22 BEBM Rqq =                          (22) 
 
The outflows qM1 and qM2 represent the demand of the 
final product which is also a known value. The 

equations (21) and (22) indicate that ratio control is 
apply in maintaining the value of qBM1 and qBM2. 
 
 

4. PREDICTIVE CONTROL 
 
As mentioned above, the goal is to control the levels 
of the four tanks in spite of the disturbances, 
manipulating the signals (u1, u2) to the two pumps and 
the four on/off valves, Vij, which interconnect the 
tanks. So, there are four controlled variables, two real 
manipulated variables and four integer ones, plus four 
disturbances. 
 
Behind all approaches of predictive control there are a 
model of the plant used to predict the future evolution 
of the system. Based on this prediction, at each time 
step, the controller selects a sequence of future 
command inputs through an on line optimization 
procedure, which aims at maximizing the tracking 
performance subjected to given constraints. In our 
case, due to the on/off valves, the model is one of 
hybrid nature. So, in addition to continuous models 
used to describe the process ((8)-(22)), the behavior 
of the system must be completed with the operating 
modes imp osed by the four on/off valves, which can 
be stated in terms of prepositional logic. In this way 
the process can be modeled through a MLD structure. 
There are several ways of doing it. Here, a particular 
one is presented. 
 
 
4.1 Representation of Logic 
 
Note that, when taking into account the on/off valves, 
equations (10) and (11) are not valid in all situations 
and the model must be modified. The outflows from 
the pumps depend also on the state of the on/off 
valves Vij, according to the following rules: 
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So, considering the possible combinations of the 
valves states (0/1), for each left and right section of 
the process, four possibilities are generated. The first 
group of compound statements is: 
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The prepositional logic expressions P1j (25)-(28) can 
be translated into a mathematical representation by 
associating a binary variable y1i ∈ {0,1} with each 
clause P1i. The clause P being true or false 
corresponds to the values y=1 or y=0. 
 
In this way the expression for the inlet flows to the 
left pump has a new mathematical form: 
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where the 0-1 y variables activate/de-activate 
continuous terms. As mentioned in section 2, a more 
efficient equivalent form of (29) is obtained by 
introducing inequality constraints instead: 
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                       (32) 

 
with Umax and Umin the upper and lower bounds on the 
voltage of the pumps. 
 
Notice that one and only one of the situations (25)-
(28) can be active at a time, which implies the need of 
the prepositional logic expression (the exclusive-or 
condition): 
 

14131211 PPPP ⊕⊕⊕                   (33) 
 
which can be easily converted into a linear equality 
constraint in terms of the associated integer variables: 
 

114131211 =+++ yyyy               (34) 
 
In a similar way, other four 0/1 variables y2i (i=1,4) 
are introduced in order to model the right section of 
the process. The corresponding constraints are: 
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4.2 The optimization problem 
 
The task of the predictive controller is minimizing at 
every sampling time the following finite horizon 
objective function: 
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where )(ˆ jthi +  are predicted values of the outputs (the 

levels of the four tanks) and ∆u(t)=u(t)-u(t-1), 
subjected to the model previously developed and 
possible constraints on the process variables. Due to 
the presence of integer variables, the optimization 
procedure is a Mixed Integer Quadratic Programming 
(MIQP) problem. This is a hard task from a 
computational point of view, mainly in the non-linear 
case. So, in order to keep it as simpler as possible, 
that is, in linear form, the optimization problem was 
formulated in terms of the decision variable x (39), 
which includes current and future values of the inlet 
flows to the pumps as well as the eight integer 
variables ijy , i=1÷2, j=1÷4, instead of the more 

natural V and u signals. 
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Then, in addition to (30), (31), (34)-(37), other 
constraints in the controlled and manipulated 
variables are also taken into account: 
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Fig.2 Evolution of inflow qEv1 
 
Finally, a practical solution in terms of the two 
control signals u and the V positions can be obtained 
from the yij values and 
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At each time step, this problem involves ∑
=
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continuous variables, eight integer variables and 
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The implementation of the Mixed-Integer Predictive 
Controller proposed in this paper has been obtained in 
C language by using the NAG package as a MIQP 
solver based on the branch and bound method. 
 
 

5. RESULTS 
 
Several tests have been carried out to investigate the 
performance of the controller. The nominal operating 
point is ( )21, AA hh  = (8.37 cm, 11.16 cm) which in 
our plant leads to α1=0.46 and α2=0.54. The ratio 
factor from the mixing was chosen as R=3 and the 
coefficient k  = 7.5. The sampling period was set to 5s, 
and the controller was tuned with the following 
design parameters: 
• Prediction horizon: N1={1,1,1,1}, 
N2={10,10,10,10}; 
• Constraint horizon: N3={1,1,1,1}, 
N4={10,10,10,10}; 
• Weighting factor for the control term: 
β={0.01,0.01,0.01,0.01} 

Fig. 3 Evolution of inflow qEv2 
 

Fig. 4 Demand product outflow qM1 
 
• Weights of the controlled variables in the cost 
index γ={1,1,15,15} which implies that preference 
was given to maintain the level of the mixing tanks. 
• Set points for hA1, hA2, hM1 and hM2 were given 
the values: {8.37, 11.16, 20, 20 cm}, while the input 
and output constraints (40) were fix to: 
• }0,0,0,0{=U , }75,75,75,75{=U  cm3/s; 

• }15,15,15,15{ −−−−=D ; }15,15,15,15{=D ; 

• }038.0,038.0,14.0,14.0{=L cm 

• 30} 30, 26.5, 26.5,{=L cm. 
 
The disturbances qEv1 and qEv2 representing the load to 
the storing tanks have the time evolution represented 
in Fig. 2 and 3, while the others two product outflows 
qM1 and qM2 have another periodic structure which is 
usual in cases where a batch section follows (Fig. 4, 
5). 
 
The first experiment considers the control horizon 
Nu={1,1,1,1} and the results are presented in Fig. 6. 
There we can see that the process operates according 
to the control objectives: keeping the levels of the 
mixing tanks on the set point (see the top half of the 
figure) and maintain the other two levels into the 
operating bounds (the bottom of the figure). Fig. 7 
shows the manipulated variables, the two continuous 
signals to the pumps and the four on/off valves. A 
different response (Fig. 8, 9) of the process is 
obtained if the control horizon is increased to 
Nu={7,7,7,7}. The levels of the mixing tanks are 
closer to the set point and the control actions present a 
more active form. 

Fig. 5 Demand product outflow qM2 
 



     

 
Fig. 6 Controlled variables. Short control horizon 
 
The computation time corresponding to each sample 
time is approximately 0.01 seconds in a SUN 
workstation with 128 Mbytes of RAM. 
 
 

6. CONCLUSIONS 
 
In this paper an example of practical hybrid control 
have been presented. The results shows the feasibility 
of this approach but topics such as the best problem 
formulation, computational methods and closed loop 
properties are still open to further research. 
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Abstract: In this work, we explore the temperature control of n-butyl propionate reactive 
distillation. Process characteristics of n-butyl propionate are explored and a systematic 
procedure is proposed for the design of butyl propionate heterogeneous reactive 
distillation. Control objective is to product specifications: high purity propionate and 
ppm level of acid. The control structure design procedure consists of the following steps: 
(1) selection of manipulated variables, (2) determine temperature control trays, and (3) 
find controller settings. Since two specifications on the bottoms product have to be met 
and stochiometric balance has to be maintained, we have a 2x2 control problem with two 
obvious inputs: reboiler duty and feed ratio. The reactive distillation exhibits unique 
temperature sensitivities and the non-square relative gain (NRG) successfully identifies 
temperature control trays. It results in an almost one-way decoupled system. Therefore, 
decentralized PI controllers are employed. Simulation results indicate good control 
performance can be achieved with simple control strategy. Copyright © 2002 IFAC 
Keywords: esterification, n-butyl propionate, reactive distillation, heterogeneous 
distillation, temperature control 

 
1. INTRODUCTION 

 
Reactive distillation provides an attractive alternative 
for process intensification, especially for 
reaction/separation systems with reversible reactions.  
The literature in reactive distillation has grown 
rapidly in recent years and the book by Doherty and 
Malone (2001) gives an updated summary. However, 
relatively few papers that discuss process control 
aspects of reactive distillation columns. These are 
reviewed in a recent paper by Al-Arfaj and Luyben 
(2000). Al-Arfaj and Luyben (2000, 2002a, 2002b) 
proposed several control structures for different types 
of reversible reactions ( A+B↔C+D, A+B↔C, and 
A↔B+C) and consecutive reactions for the product C 
and by-product D (A+B→C & A+C→D). They have 
shown that (1) reaction stoichiometric balance is 
crucial for system with multiple reactants, and (2) 
simple control strategy works satisfactorily for these 
complex dynamics. 
Similar to the gradual replacement of methyl tert-
butyl ether (MTBE) with ethyl tert-butyl ether (ETBE) 
(Sneesby et al., 1997), this work is a continuous effort 
to study the production of less volatile solvents to 
replace light solvents such as methyl acetate or ethyl 
acetate.  In this work, we explore the esterification of 
propionic acid and n-butanol to form n-butyl 
propionate (Lee et al., 2002 ; Liu and Tan, 2001). n-
Butyl propionate has increasing been used as a 
cleaning solvent for processing polymers for its 
relatively low volatility. The process (Huang, 2002) 
falls into a specific class of reactive distillations: 
heterogeneous reactive distillation (or three-phase 
reactive distillation; Chiang et al., 2002). By 
heterogeneous reactive distillation, we mean two-
liquid phase exists in the reflux drum and a decanter  
 

 
is employed to separate the aqueous product from the 
organic reflux. 
The objective of this work is to devise control 
structure for n-butyl propionate process and the 
control objective is to maintain the propionate quality 
at specification while keeping the acid purity at ppm 
(part per million) level. This would require two on-
line analyzers. Instead of using expensive and less 
reliable on-line composition analyzers, temperature 
control of this three-phase reactive distillation is 
explored. 
 

2. PROCESS 
 

By heterogeneous reactive distillation, we mean two-
liquid phase exists in the reflux drum and a decanter 
is employed to separate the aqueous product from the 
organic reflux. For esterification reactions, propyl 
acetate, butyl acetate, and amyl acetate are good 
examples, because they all share the following 
characteristics: 
(1) a large two-liquid zone exists, 
(2) the minimum boiling azeotrope is located in the 
two-liquid zone,  
(3) one end of all tie lines points to the direct of a 
pure component (typically water for esterification). 
 
n-Butyl propionate typically is synthesized from 
propionic acid and n-butyl alcohol via an 
esterification. However, ternary azeotropes were 
found in the mixture of n-butanol – n-butyl acetate - 
water. This may lead to difficulty in down-stream 
separation when the conventional reactor/separator 
process is employed. Obviously, reaction distillation 
provides an attractive alternative. The esterification 
follows the elementary reaction: 
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The normal boiling points (NBP) in Eq. 1 show that 
the acetate is the highest boiler, the acid is the second 
highest boiler while water has the lowest NBP. The 
reaction is catalyzed by acidic cation exchange resin 
(Amberlyst 35). Quasi-homogeneous model with non-
ideal-solution assumption (Lee et al., 2002) is used. 

2( )BuOPr H O
f HOPr BuOH

eq

a a
r k a a

K
= −

      (2) 
where r is the reaction rate per unit volume 
(Kmol/m3sec), a stands for the activity of 
corresponding components (Kmol/m3sec). kf is the 
forward reaction rate constant 
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fk e
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= ⋅       (3) 
with T in Kelvin and Keq is the equilibrium constant 
with a value of 27.8. This is a reaction with negligible 
heat effect and the equilibrium constant is around 
27.8. The catalyst price is assumed to be 18.5 $/lb and 
a catalyst life of one year is assumed in this study. 
 
Following Liu and Tan (2001), the nonrandom two 
liquid (NRTL) activity coefficient model is used for 
the vapor-liquid-liquid equilibrium (VLLE) for the 
quaternary system (Table 1). The Hayden-O’Conell 
second virial coefficient model with association 
parameters is used to account for the dimerization of 
acetic acid in the vapor phase. The Aspen Plus built-
in association parameters are employed to compute 
fugacity coefficients. 
 
The quaternary system has three minimum-boiling 
binary azeotropes (n-butanol - water, n-butyl 
propionate - water, and water - propionic acid) and 
one maximum-boiling binary azeotrope (propionic 
acid - n-butyl propionate). There is one ternary 
azeotrope for water - butanol - n-butyl propionate 
which corresponds the lowest boiling azeotropic 
temperature (92.9°C). Notice that liquid-liquid (LL) 
envelopes are found in three out of four ternary 
subsystems and, moreover, a very large LL envelope 
(type 2) is observed for the water – n-butyl propionate 
(Fig. 1) and one end of the tie lines are connected to 
very high purity water. This corresponds to more than 
50% of the composition space as shown in Fig. 1.  
Figure 1 also gives the residue curve maps for these 
ternary systems. Following the coordinate 
transformation of Doherty and Malone (2001),  

  &  A HOPr BuOPr B BuOH BuOPrX x x X x x= + = +      (4) 
the LL envelop can be visualized in a 2-D plot as 
shown in Fig. 2. This is a significant two-liquid zone 
and the ternary azeotrope lies within the LL envelop. 
 
Systematic procedure is devised to design 
heterogeneous reactive distillation. Here, we extend 
the approach Chiang et al. (2002) by rearranging feed 
tray locations. Initially, the arrangement of feed 
streams is based on reaction kinetics consideration, 
where the heavy reactant (propionic acid) is fed to the 
top tray of the reactive zone and the light reactant 

(butanol) comes in from the lower section of the 
reactive zone. 
For a system with given specifications on the 
products and a given production rate, the design steps 
are: 
1. Fix a number of reactive trays (Nrxn). 
2. Place the heavy reactant feed on the top tray of the 

reactive zone and the light reactant feed on the 
lower section of the reactive section. 

3. Guess the tray numbers in the rectifying sections 
(NR). 

4. Find the minimum number of trays of the stripping 
section (Ns,min) from the short-cut design with a 
given specification and set Ns =2Ns,min. 

5. Adjust reboiler duty until the bottom product 
specification (99% n-butyl propionate) is met 
(because organic phase is under total reflux, we 
have only one degree of freedom). 

6. Go back to 3 and change the number of trays in the 
rectifying section until the total annual cost (TAC, 
Chiang et al., 2002) is minimized (because of the 
type II LLE, practically, we do not have control 
over water purity). 

7. Go back to 2 and vary feed tray locations until 
TAC is minimized with acceptable acid purity in 
the bottom (<50 ppm). 

8. Change the number of reactive trays (Nrxn) such 
that TAC is minimized. 

 
ASPEN Plus was used to carry out steady-state 
simulations and the residence time of 15 s was 
assumed for the reactive trays.  The TAC calculation 
was based on the cost models of Douglas (1988) 
(Chiang et al., 2002). The optimized design is shown 
in Fig. 3 and Table 2 gives parameters values and 
costs. The column has a total of 18 trays, with 12 
stripping trays, 5 reactive trays (tray 13-17), and 1 
rectifying tray (tray 18). The optimum feed tray 
locations are tray 15 (NF1) and tray 17 (NF2). The 
acid composition in the bottoms is kept to 7 ppm 
while maintaining propionate purity at 99%. The 
phase split in the decanter automatically gives rather 
high purity water (98.8%). Figure 4A shows most of 
the stripping section trying to separate propionate 
from butanol. The acid is consumed early in the 
reactive zone and its purity is kept low in the 
stripping section. Significant reaction is observed on 
trays 16 and 17 as shown in the thick long-dashed line 
as the fraction of the total reaction. This type of 
reaction rate profile is within one’s expectation, 
because it is necessary to further react the limiting 
reactant (acid) in trays 13-15 in order to meet the 
stringent acid specification in the bottoms. Significant 
temperature breaks are also observed in the stripping 
section (trays 2-5) and the reactive zone (trays 15-17) 
as shown in Fig. 4B. This optimized design results in 
10% less energy consumption and also 10 % less 
TAC as compared to the traditional feed arrangement. 
 

2. CONTROL 
 

The control objective is to maintain bottoms 
propionate purity while keeping the acid 

     



concentration at ppm level. Instead of control the 
compositions directly, temperatures are used to infer 
product composition. This is a multivariable control 
problem and decentralized PI controllers are used. 
 
 A typical multivariable control system design 
procedure consists of the following steps: (1) 
selection of manipulated variables, (2) determining 
measurement locations, (3) variable pairing, and (4) 
controller tuning. 
As pointed out earlier, the organic phase condensate 
is under total reflux and we are left with only one 
manipulated input, reboiler duty. The other 
manipulated variable naturally is the feed ratio (Fig. 3) 
for this double feed column, because the feed ratio 
has to be adjusted to maintain stoichiometric balance 
(Al-Arfaj and Luyben, 2000). 
Before looking into measurement selection criterion, 
let us examine the sensitivity of temperature profiles 
as manipulated variables change. As the heat input 
changes (±1%), two large changes are observed (Fig. 
5A).  One is in the stripping section which is typical 
for conventional distillation and the other is in the 
reactive zone where significant reaction occurs (cf. 
Fig. 4). The later comes from the effect of increasing 
(or decreasing) reaction rate which has not been seen 
in non-reactive distillation column. Nonlinear 
behavior can be seen for small change in feed ratio as 
shown in Fig. 5B. Larger and wider temperature 
deviation is observed when acid is in excess 
(Fbutanol/Facid=0.99). The asymmetry in Fig. 5B comes 
from the fact that the excess acid activates the 
reaction capability in trays 13-15 and significant 
amount of propionate (heaviest component) is 
produced and, subsequently, results in much larger 
temperature rise. Note that this is not the result of 
temperature control. Similar behavior can also be 
seen if we choose to use direct composition control 
and the real reason is that we deliberately design the 
column asymmetrically (to maintain trace amount of 
acid in the bottoms).  
Table 2 shows the steady-state gain matrix (K) 
between the temperatures and two inputs (QR and 
Fbutanol/Facid). The non-square relative gain (NRG) of 
Chang and Yu (1990) is used for measurement 
selection. 

( )N TK K +Λ = ⊗      (5) 
Here, ΛN stands for NRG, ⊗ denotes element-by-
element multiplication, the superscripts T and + 
correspond to transpose and pseudo-inverse, 
respectively. From the definition, the temperatures 
with large row sum imply the temperature profile is 
best maintained by holding corresponding 
temperatures constant. Based on the row sum of NRG, 
temperatures on trays 4 and 16 (T4 and T16) are 
selected (Table 3). These two temperatures 
correspond to the locations either with large 
temperature breaks (Fig. 4) or having high sensitivity. 
T4 is located in the stripping section and T16 is in the 
place where largest fraction of total reaction occurs 
(Fig. 4). 
Here, we have a 2x2 multivariable system. The 
relative gain array (RGA) is used for input-output 

pairing. For this temperature controlled reactive 
distillation, the RGA is: 

R butanol acid

16

4

        Q      F /F
T0.999 0.001
T0.001 0.999

⎡ ⎤
Λ = ⎢ ⎥

⎣ ⎦      (6) 
We have a system with RGA almost equal to 1.  
Actually, Fig. 5 already reveals that this is a one way 
decoupled system (i.e., T16 is not sensitive to feed 
ratio change). Therefore, the controller structure 
becomes: pair T16 with reboiler duty and pair T4 with 
feed ratio.
  Once the control structure is set, decentralized PI 
controllers are tuned automatically. First, the ultimate 
gain and ultimate are identified using sequential relay 
feedback of Shen and Yu (1994) and, then, PI 
controller settings are obtained following Tyreus and 
Luyben tuning rule. 
 
Figure 6 shows that good temperature control can be 
achieved using simple PI controllers. For ±10% 
production rate increase, T4 and T16 return to their set 
points in less than 100 min. However, butyl 
propionate composition deviates from its 
specification because we are controlling temperatures 
while the acid concentration shows little changes. For 
±5% measurement errors in feed ratio, good control 
performance can also be obtained, but asymmetric 
responses are observed for positive and negative 
changes as shown in Fig. 7. The reason was pointed 
out earlier and it can be expected from the 
temperature sensitivity in Fig. 5B. 
 

4. CONCLUSION 
 
In this work, vapor-liquid-liquid equilibrium behavior 
of n-butyl propionate, a low volatility solvent, is 
explored and a systematic procedure is proposed for 
the design and temperature of the heterogeneous 
reactive distillation. Significant two-phase zone and a 
ternary minimum boiling azeotrope lead to a unique 
separation characteristic. Next, the issue control 
structure design for heterogeneous reactive 
distillation is studied. Since two specifications on the 
bottoms product (propionate purity and ppm level of 
acid impurity) have to be met and stochiometric 
balance need to be maintained, we have a 2x2 control 
problem with two inputs: heat duty and feed ratio. 
The reactive distillation exhibits a unique temperature 
sensitivities, as compared to conventional distillation, 
and the non-square relative gain (NRG) successfully 
identifies temperature control trays. It results in an 
almost one-way decoupled system. Therefore, 
decentralized PI controllers are employed. The 
reactive distillation column may become over-
capacity as production rate decreases, coordinated 
control is proposed by the n-butanol feed to a lower 
feed location. This control system over-design 
provides the flexibility to handle production rate 
variations in reactive distillation.  Results show the 
effective control can be achieved over a reasonable 
range of disturbances. 
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Table 1. Steady-state parameters for reactive 
distillation 
_________________________________________ 
total no. of trays (NT)                              18 
stripping (Ns)/reactive(Nrxn)/rectifying(NR)  12/5/1 
propionic acid feed tray                               17 
n-butanol feed tray                               15 
n-butanol feed flow rate (Kgmol/h)               49.991 
propionic acid feed flow rate (Kgmol/h) 49.991 
top product flow rate (Kgmol/h)                50.042 
bottoms product flow rate (Kgmol/h) 49.941 
distillate 
propionic acid (mole fraction)               0.0108 
n-butanol (mole fraction)                             0.0004 
n-butyl propionate (m.f.)                               0.0006 
water (m.f.)                                                   0.9882 
bottoms 
propionic acid (ppm)                               7 
n-butanol (mole fraction)                             0.0104 
n-butyl propionate (m.f.)                             0.9900 
water (mole fraction)                            <10-9

heat duty 
condenser (107 kJ/h)                            0.320 
reboiler (107 kJ/h)                            0.548 
column diameter (m)                            1.23 
heat exchanger area (m2) 
condenser 18.96 
reboiler 42.87 
capital cost ($1000) 
column 232.80 
trays 17.03 
heat exchangers                                        206.12 
operating cost ($1000) 
catalyst                                                           6.24 
energy                                                        162.02 
total annual cost ($1000)                        333.83 
 
Table 2. NRG and row sum 
 

Tray No. Q F1/F2 rs(i)
T19 0.0314 0.0006 0.0320
T18 0.1032 -0.0006 0.1026
T17 0.1676 -0.0006 0.1670
T16 0.3938 0.0025 0.3963
T15 0.0012 -0.0002 0.0010
T14 0.0001 0.0002 0.0003
T13 0.0002 0.0003 0.0005
T12 0.0003 0.0004 0.0007
T11 0.0002 0.0008 0.0010
T10 0.0001 0.0017 0.0018
T9 -0.0005 0.0049 0.0044
T8 -0.0028 0.0160 0.0132
T7 -0.0115 0.0540 0.0425
T6 -0.0388 0.1613 0.1225
T5 -0.0881 0.3313 0.2432
T4 -0.0579 0.3460 0.2881
T3 0.1677 0.1182 0.2859
T2 0.2323 -0.0191 0.2132
T1 0.0865 -0.0148 0.0717
T0 0.0149 -0.0028 0.0121

NRG

 
 

     



 
Figure 1. The residue curve maps (RCM) and LLE 
envelope for water - n-butyl propionate - n-butanol. 
 
 

 
Figure 2.  Two-liquid phase for the quaternary 
system. 
 

 
 
Figure 3. Temperature control scheme for the butyl 
propionate reactive distillation: feed trays NF1=15 & 
NF2=17, reactive trays 13-17, temperature control 
trays T4 & T16. 

(A) 

 
(B) 
 
 
 
 
 
 
 
 
Figure 4. Composition (A) and temperature (B) 
profiles for optimally designed reactive distillation 
with NR/Nrxn/NS=1/5/12, NF1/NF2=15/17. 
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Figure 5. Steady-state gains for 1% changes in 
reboiler duty (QR) (top) and feed ratio (FBuOH/FHOPr) 
(bottom) 
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Figure 6. T4 and T16 temperature control for 10% feed 
flow disturbances. 
 

 
Figure 7. T4 and T16 temperature control for 5% feed 
ratio errors. 
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Abstract: Interaction between design and control for gas-phase adiabatic tubular reactor with liquid recycle is 
studied. This generic bimolecular reaction, A+B→C, has two important features: (1) stoichimoetiric balance has 
to be maintained and (2) reactor temperature plays an important role in design and operability. More importantly, 
it represents a large class of important industrial processes. Optimal reactant distribution can be obtained 
directly form the simplified TAC equation and effects of kinetics parameters and relative volatilities on this 
optimality are also explored. The results show that an increased reactor exit temperature leads to a more 
controllable optimal design while a high activation energy results in a less controllable one. For the operability 
analysis, two control structures are proposed with three different combinations of TPM. The control structure 
using the reactor inlet temperature as TPM gives good control performance when the reactant distribution is 
held constant. However, potential problem may arise as the result of high reactor exit temperature (Tout). For the 
case of biased reactant distribution, the reactant redistribution provides an extra degree of freedom and this 
alleviates the high Tout problem. The results presented in this work clearly indicate that simple material and 
energy balances provide useful insights in the design and control of recycle processes. 
 
Keywords: recycle process, plantwide control, interaction between design and control, tubular reactor. 
 

1. INTRODUCTION 
 

Buckley’s pioneer work on the plantwide control  
has been widely adopted in industry for many years. 
The first step is to lay the “material balance” control 
structure that handles the inventory controls. Then 
“product quality” loops are closed on each of the 
individual units. Since these loops are typically much 
faster than the slow inventory loops, interaction 
between the two is often not a problem. Steady 
development on the dynamics and control of recycle 
processes is also witnessed from 60s to 80s as can be 
seen in Gilliland et al. [1], Verykios and Luyben [2],  
and references therein. Unfortunately, progress in 
plantwide control is hindered by the lack of software 
support. During that incubation period, conceptual 
plantwide control design procedure is formulated, but 
it was difficult to validate such design procedures 
except for limited cases (as a result of extensive 
engineering manpower required for modeling and 
simulation). In early 90s, the increased computing 
power and the advent of dynamic process simulators, 
such as HYSYS and Aspen Dynamics, lead to 
renewed engineering practice.  

Subsequent plantwide control research can be 
divided into two schools. One group tends to provide 
fundamental understanding of the problem [3, 4, 5]. 

 Another group tried to provide a systematic 
procedure for the design of plantwide control 
system[6, 7, 8]. Most of the above mentioned 
literature addresses the control issues. Much less 
work has been done on the interaction between 
design and control. Elliott and Luyben [9] evaluate 
the steady-state design of a ternary system based on 
the total annual cost (TAC) and controllability is 
assessed quantitatively using capacity-based 
approach evaluate different designs using several 
control measures, e.g., relative gain array, and 

relative disturbance gain. These approaches akin to a 
sequential control-design approach. That is 
controllability analysis is an add-on feature to a 
design problem. Luyben et al. [10] analyze the pole 
location of a ternary system using simple dynamic 
reactor model and this provides an insight into 
potential control problem with any given design. 
Chen and Yu [11, 12] extend such approach to the 
design of feed-effluent heat exchangers, heat-
integrated reactors. Cheng and Yu [13] proposed a 
framework for analyzing design and control 
simultaneously. Ternary systems with a bimolecular 
reaction (A+B→C) in a CSTR and separators were 
studied and possible tradeoffs between design and 
control were explored. The objective of this work is 
to extend the approach of Cheng and Yu [13] to 
systems with simultaneous material and energy 
recycles. 
 

2. STEADY-STATE DESIGN 
 
2.1 Process 
 

Consider a recycle process where an irreversible, 
exothermic reaction A+B→C occurs in a gas phase, 
adiabatic tubular reactor. The process flowsheet 
consists of one tubular reactor, one distillation 
column, one vaporizer, and one furnace with two 
heat exchangers which was first studied by Reyes 
and Luyben [14] (Fig. 1). Two fresh feed streams 
F0Aand F0B are mixed with the liquid recycle stream 
D and sent to a steam-heated vaporizer. According to 
the requirement of reaction temperature, the vapor 
from the vaporizer outlet stream is preheated first in 
a feed-effluent heat exchanger followed by a furnace 
to get proper reactor temperature as well as for the 
start-up purpose. The exothermic reaction takes place 



     

in the tubular reactor and the reactor temperature 
increases monotonically along the axial direction 
with the following inlet and outlet temperatures, Tin 
and Tout. The hot gas from the reactor preheats the 
reactor feed in a feed-effluent heat exchanger, HX1, 
and the liquid recycle stream in a second heat 
exchanger, HX2, as shown in Fig. 1. 

After heat recovery, via HX1 and HX2, the 
reactor effluent is fed into a distillation column. The 
two reactants, A & B, are light key (LK) and 
intermediate boiler (IK), respectively, while the 
product, C, is the heavy component (HK).  The 
Antoine constants of the vapor pressure equation are 
chosen such that the relative volatilities of the 
components are αA = 4, αB = 2, and αC = 1 for this 
equal molar overflow system (Table 1). Only one 
distillation column is sufficient to separate the 
product (C) from the unreacted reactants (A & B). 
Ideal vapor-liquid equilibrium is assumed. Physical 
property data and kinetic data are given in Table1. 
The kinetic data are shown in Table1. 

Following Reyes and Luyben [14], the following 
process specifications are used. 
1. The product flow rate (stream B) from the base of 
the column is fixed at 0.12 kmol s-1. 
2. The product purity xB,C is fixed at 0.98 mole 
fraction C. 
3. The reactor exit temperature (Tout) is limited to 
500K at design. 
4. The pressure in the reactor is assumed to be 35 bar, 
and the pressure drop is neglected. 
 
At design, the following assumptions are made. 
1. The minimum approach temperature differences 
for the heat exchangers are fixed at 10 K in HX1 and 
25 K in HX2. 
2. The reflux drum temperature in the distillation 
column is fixed at 316 K (to back-calculate column 
pressure) 
3. Distillation columns are designed by setting the 
total number of trays (NT) equal to twice the 
minimum number of trays (Nmin) and the optimum 
feed tray is estimated from the Kirkbride equation. 
4. The vapor leaving the vaporizer is at its dew point 
temperature, given P=35 bar. 
5. The ratio of furnace duty to total preheat duty is 
fixed at 20% (QF/QTOT=0.2). 
6. The distillate composition of C is fixed at 1%. 
 
2.2 Steady-state design and analysis 
 
  With the given specifications, we can complete the 
steady-state design for any given reactor conversion 
and reactant distribution. The steady-state conditions 
of all streams in the ternary recycle system are 
calculated from balance equations as shown in 
Appendix A. Next, shortcut methods are applied to 
find the minimum number of trays (Fenske equation) 
for distillation columns, locate the feed tray location 
(Kirkbride equation), and size the column diameter. 
The heat transfer areas for the reboiler and condenser 
are also computed from the vapor flow rates. 
 

 
Fig. 1. process flowsheet for the recycle process with 
optimal design. 
 
Table 1. Physical properties and kinetics data for 
steady state design 

 
 
2.2.1 Simplified TAC model. Following the approach 
of Malone et al. [15], the TAC model is linearized.  
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For the purpose of comparison, it is useful to express 
the simplified TAC model in terms of process 
variables, e.g., conversion, reactant distribution, 
relative volatilities, and reaction rate constant. This 
can be done by substituting relevant process 
variables for the equipment size, tray numbers, and 
vapor rates in Eq.(1). From the mass balance 
equation, the total amount of catalyst WCAT (implying 
reactor size, VR) can be expressed as: 

21

/2
( )(1 ) ( )(1 )

1
[ ][ ]R A R Bi

R R P o C R P o C

i
CAT N i Hy N i HyE RT

i NR o N C T T y N C T T y

F
W

N BP k e − −∆ − −∆−
= − + − +

=
+ +∑

where B is the production rate, NR is no. of lumps in 
the reactor (NR=50),  Fi denotes molar flow rate in 
each lump, P is pressure in the reactor, yA, yB, yC are 
mole fractions in the reactor effluence stream, -∆H 
denotes heat of reaction. Next, we use Fenske 
equation for the minimum number of trays and set 
the total number of theoretical trays as NT=2Nmin.
Then the vapor rate can be found from the minimum 
reflux ratio( DRV mS )12.1( += ). And the minimum 
reflux ratio equation of Glinos and Malone [16] is 
used. 
  When the conversion (yC) and reactant distribution 
(yA/yB) are given, we can find the TAC immediately. 
 
2.2.2 Optimal Paths. The objective here is to find the 
optimal reactant distribution for different conversion. 
This locus is termed as optimal TAC trajectory. 
Consider the following system parameters: 
production rate B = 0.12 kmol/s, product purity xB,C= 
0.98, reactor outlet temperature Tout = 500 K, 
QF/Qtotal = 0.2, vaporizer outlet stream temperature TV  

= 380 K, column feed temperature TF = 336 K. For a 
given yC, the optimal reactant distribution can be 
found by taking the derivative of the simplified TAC 
(Eq.(1)). First, we substitute yB and yC for yA in the 



     

cost model and, then, take the derivative with respect 
to yB. Since the fractional recoveries are fixed and 
Ki’s are constant. Because of CPA=CPB, the last four 
term of Eq.(1) can be eliminated and  can be 
simplified to: 
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For any given yC, we can find the optimal yB by 
solving Eq.(2) and subsequently optimal reactant 
distribution along the trajectory as shown in Fig. 2. 
Next the TACs along the trajectory are compared and 
the true optimum is thus obtained. Fig. 2 reveals the 
changes of TAC as yC varies and the minimum TAC 
corresponds to yA=0.45, yB =0.42, yC =0.13 with a 
TAC of 4.21×107$/year. Table 2 gives the steady-
state operating conditions for the optimal design. 
Note that, unlike the isothermal operation, the 
optimal trajectory does not reach the pure product 
corner as indicated by the dashed line in Fig. 2. The 
reason is that the lower-end of reactor inlet 
temperature is limited by the vaporizer temperature, a 
constraint imposed by the physical properties of 
reactants A and B. The optimal trajectory (Fig. 2) 
also reveals that, at low conversion, the separation 
cost dominates and a biased reactant distribution with 
LK in excess (yA/yB>1) is preferred, and, as the 
conversion increasing, the reactor cost becomes more 
important and an equally distributed reactant 
(yA/yB=1) is favored. The tradeoffs between reactor 
and separation costs are clearly illustrated in Fig. 2 
for different values of yC along the optimal trajectory. 
 
2.3 Effect of process parameters on optimal path and 
true optimality 
   The analytical expression of Eq.(2) allows us to 
explore the effects of kinetics parameters and vapour 
liquid equilibrium on the optimal trajectory and 
corresponding optimal design. Fig. 2A reveals that as 
the maximum allowable reactor outlet temperature 
increases, the optimal trajectory converges to the 
center line at a larger yC. The reason is that a higher 
reactor temperature leads to a smaller reactor costs 
and this, in turn, reduces the relative cost of reactor 
(compared to the separation cost). Moreover, the 
reactant distribution becomes biased (light reactant A 
in excess) as Tout increases. 

Next the effects of relative volatilities on the 
optimal trajectory are examined. Fig. 2B shows that, 
for fixed reactor outlet temperature, changes in the 
relative volatility of intermediate key (B) from 
αB=1.5 to αB=3 do not produce significant difference. 
Because a larger αB results in a lesser separation cost 
and, therefore, the trajectory converges to center line 
at a lower conversion, but not by much. 

If the heat of reaction increases, the optimal 
trajectory converges faster toward the center line as 
shown in Fig. 2C. The reason is the reactor inlet 
temperature will become lower for system with a 
larger heat of reaction (this can be seen from the 
overall energy as will be discussed in the next section) 
and this in turn will lead to a higher reactor cost. This 
is exactly what Fig. 2C reveals, but the true optimal 
remains at almost the same reactant distribution. 

 
 

 
Fig. 2. Optimal TAC trajectory and design for 
different specifications on (A) reactor outlet 
temperature, (B) relative volatilities, (C) heat of 
reaction, (D) activation energy. 

 
It is well known that chemical reactions with large 

activation energies present difficult control problems 
because of the rapid increase in the reaction rate as 
the temperature increases. It also presents difficult 
reactor temperature control problem when feed-
effluent heat exchanger is installed as the result of 
large reactor gains (Tout/Tin). Fig. 2D shows that, 
from steady-state economic perspective, the relative 
reactor cost will be higher for reactions with large 
activation energy. Therefore, the optimal trajectory 
converges to the center line at a much lower yC value 
and, more importantly, the true optimum is also 
located closer to the center line which implies 
equally distributed reactant. 
    The optimal trajectory can be computed directly 
from Eq.(2) and this facilitates the investigation of 
chemical reactions with different kinetics parameters 
and vapour liquid equilibrium. More importantly, the 
trajectories obtained provided insight to possible 
tradeoffs between design and control for different 
bimolecular reactions. 
 

3. OPERABILITY 
 
  The material and energy balances provide the basis 
for steady-state operability analysis  [13,17]. For a 
simple isomerization reaction, the production rate in 
terms of recycle ratio and subsequently control 
structure can be devised. Similar approach is taken 
for the case of adiabatic tubular reactor. 
   As pointed out earlier, for adiabatic reactor, the 
temperatures (Tin and Tout) play significant role in 
operability and energy balance has to be taken into 
consideration. Without loss of generality, let us use 
one-lump adiabatic tubular reactor to illustrate the 
derivation. The relationship between heat generation 
and the production rate can be expressed as (Luyben, 
2001), and it can be derived from reactor energy 
balance. 
The production rate for adiabatic tubular (actually, 
CSTR) becomes:   
 
 



     

 
Fig. 3. Normalized production rate as a function of 
recycle ratio (RR) for adiabatic and isothermal 
operations. 
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 (3)  
Comparing Eq.(3) with isothermal system, one 
immediately observes a significant difference in the 
reaction rate constant where, for the case of adiabatic 
tubular, it is a function of recycle ratio (RR). Also 
shown in Eq.(3) is that the reactor inlet temperature 
(Tin), the reactor pressure (P), and the distribution of 
the reactant (xDA/xDB) also play visible roles in the 
production rate expression. 

Insights can be gained by examining Eq.(3). Let 
us explore the effects of different design/operating 
variables on the production rate changes. 
 
3.1 Recycle Rates (RR=D/B) 
    Let use kinetics data and reactant distribution of 
the optional design to illustrate the difference 
between isothermal and adiabatic operation. That is: 
Tin = 424 K, P = 35 bar, and xDA/xDB = 0.52/0.47. The 
normalized production per kg of catalyst, B/WCAT, 
can be computed as the recycle ratio (RR) changes. 
Fig. 3 shows a non-monotonic behavior for a wide-
range of recycle ratio. At low RR (corresponding to 
high conversion or large yC), the production rate 
increases as we increase RR. However, the opposite 
behavior is observed at high RR region (low 
conversion). That is B/WCAT decreases with an 
increase in RR and this is the typical results as seen 
in many of Luyben and co-worker examples. The 
reason for that is the temperature effect (Tout of the 
reactor) dominates the concentration effect (at high 
RR region). In other words, a smaller production rate 
will result for an increase in RR for an adiabatic 
reactor at low conversion with high activation energy 
(E) and high heat of reaction (-∆H). This can be 
quantified by taking the derivative of Eq.(3) with 
respect to RR. After some algebraic manipulation, we 
have: 
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Eq.(3) clearly indicates the competing effect between 
concentration and temperature. Note that, for 
isothermal operation, i.e., Treactor=Tin, we have only 
the concentration effect. That is: 
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Fig. 3 also shows the production rate variation for 
isothermal operation and the “snowball effect” is also 
evident at high RR region. 
 
3.2 Reactor Inlet Temperature (Tin) 

The reaction inlet temperature is an ideal 
candidate for the throughput manipulator (TPM) and 
this is especially true for reaction system with high 
activation energy where the RR is relatively 
ineffective. Again, the sensitivity of the production 
rate for a change in Tin can be derived from Eq.(3). If 
the reactant distribution is maintained at the nominal 
value, we have: 
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Eq.(6) clearly shows that from steady-state viewpoint. 
Tin is a good TPM for systems with large E. 
Compared to the isothermal CSTR case, the 
sensitivity is amplified by the reactor gain KR which 
is the sensitivity between the inlet and outlet 
temperature (i.e., KR=∂Tout/ ∂Tin). As pointed out by 
Chen and Yu [11, 12], a heat integrated reactor via 
feed-effluent heat exchanger can easily become 
open-loop unstable for system with a high reactor 
gain (KR). Therefore, controllability problem may 
arise when we try to recover more heat form the hot 
gas of the reactor effluent. Nevertheless, Eq.(6) 
indeed shows that Tin is a good candidate for TPM. 
 
3.3 Reactor Pressure (P) 

In theory, the reactor holdup is also a good 
candidate in handling production rate changes. And, 
for the case of isothermal operation, this forms the 
basis to overcome “snowball effect” as pointed out 
by Wu and Yu [18]. The problem handling capability 
can be quantified the taking the derivative of Eq.(3) 
with respect to the pressure. Thus, one obtains: 

P
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Steady-state analysis clearly shows the reactor 
pressure is a good choice for TPM. However, for 
gas-phase reactor, interaction between pressure and 
temperature may lead to dynamic problem. The 
thermal inertia may cause significant variation in the 
reactor inlet temperature unless a large gas-phase 
holdup is employed. 
 
3.4 Reactant Distribution 
   Before heaving this section, we would like to look 
at an important design parameter: reactant 
distribution (yA/yB). The reactant distribution in some 
cases represents an important tradeoff between 
design and control as shown in the case 2 Reyes and 
Luyben [14] where we have a bimolecular reaction 
with high activation energy. The optimal TAC 
corresponds to an almost equally distributed reactant 
distribution, but the operability consideration lead to 
a biased reactant distribution (e.g., one of the reactant 
is in excess). Let us consider the case where the 
reactant A is in excess. The sensitivity in the 



     

production rate variation for changes in yB can be 
expressed as: 
(A) 

 
(B) 

 
Fig. 4. Control structure fixing (A) recycle ratio (CS1) 
and (B) reactor exit composition (CS2). 
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It clearly shows that, a small change in the limiting 
reactant B can lead to significant change in the 

production rate and this is especially true when A is 
in large excess. 
 

4. CONTROL 
 
4.1 Control Structures 
 The on-going analysis provides the basis for control 
structure design. Two scenarios are considered. One 
is the optimal design as shown in Table 2 where we 
have a case of almost equally distributed reactant and 
the other case corresponds to a biased reactant 
distribution (also shown in Table 2). Two control 
structures are devised for these two cases. In the first 
case, the recycle ratio is fixed as shown in Fig. 4A, 
denoted as CS1 hereafter, and in the second case the 
reactant distribution is maintained by controlling one 
of the reactant in the vaporizer, called CS2 hereafter 
(Fig. 4B).  
Fig. 4 shows the essential loops for these two control 
structures. 
 
4.2 Throughput Manipulator 

As mentioned in section 3, we have three 
candidate throughput manipulators. One is the 
reactor inlet temperature (Tin) which is denoted as 
CSia, the second one is the reactor pressure (P) 
which is called CSib, and the third one is the recycle 
flow rate which is the control structure CSic. 
Nonlinear dynamic simulations were performed to 
evaluate the effectiveness of different control 
structures. The modeling approach of Reyes and 
Luyben [19] was taken and the nonlinear recycle 
plant was solved numerically using FORTRAN. Two 
different designs are tested.  

 
Fig. 5. Closed-loop performance using CS1 and CS2 
for ∆Tin = +5 K (case 1). 
 

 
Fig. 6. Closed-loop performance using CS1 and CS2 
for ∆P = +1 bar (case 1). 
 

 
Fig. 7. Closed-loop performance using CS1 and CS2 
for ∆D = +5 % (case 1). 
 

 
Fig. 8. Closed-loop performance using CS1 and CS2 
for ∆Tin = +5 K (case 2). 
 



     

One is the optimal design (Table 2) which 
represents the case of almost equally distributed 
reactant (e.g., yA/yB≈1) and the other case explores 
the scenario of biased reactant distribution (e.g., 
yA/yB=2.3). Let us compare the control performance 
of CS1 and CS2 for the case of equally distributed 
reactants. Fig. 5 shows the production rate changes 
for a +5 K increase in Tin. Despite quite similar 
process dynamics (e.g., settled in 4 hours), different 
magnitudes in production rate changes are observed. 
For CS2, it results in 61% production increase while, 
for CS1, only 8.3% production rate increased can be 
achieved. The reason for the smaller magnitude in 
production rate increase for CS2 is that the effect of 
Tin is offset by the re-distribution reactant as shown 
in Fig. 5. This was not seen for CS1 become the 
composition of B is controlled to maintain the 
optional reactant distribution. Similar results can also 
seen when the reactor pressure and recycle flow are 
used as TPM. Also notice that significant change in 
Tout can be seen for CS1 when Tin is used as TPM and 
this may lead to potential problem in practice. 
  Finally, for the case when A is in excess (e.g., 
yA/yB=2.3), exactly the opposite results were obtained 
when comparing CS1 and CS2 (Fig. 4). Again, for a 
+5 K change in Tin, a larger production rate increase 
can be achieved using CS2 (50%) as compared ti that 
of CS1 (67%) while having a lower Tout as shown in 
Fig. 8. The reason is obvious that the redistribution 
of reactants contributes to the production rate 
increase. 
 

5. CONCLUSION 
 
In this work, recycle process with the bimolecular 
reaction, A+B→C, is investigated. The total annual 
cost (TAC) is used to evaluate economic incentive 
for different designs. The simplified TAC facilitates 
the search for optimal reactant distribution under 
conversion. Similar to isothermal CSTR case, the 
optimal TAC trajectory starts form the light reactant 
corner at low conversion (where the separation cost 
dominated) toward the equally distributed reactant at 
a higher conversion (where the reactor cost 
dominated). Optimal design can thus be computed 
given different kinetics and relative volatilities 
provided with cost data. Next, the connection 
between total production and reactor temperature is 
derived analytically. It clearly shows the difference 
between adiabatic and isothermal operation. 
Moreover, the capability in handling production rate 
changes can be evaluated. Subsequently, control 
structures are devised. The results indicate that 
different control structures should be applied when 
the optimal reactor composition varies. More 
importantly, the results show that insight to the 
recycle process with adiabatic tubular reactor can be 
gained form fundamental material and energy 
balances. 
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1. INTRODUCTION

 
FCCU (Fluid Catalytic Cracking Unit) is one of the
most important units in oil refinery. It also occupies
very significant position in the refinery because of its
economic benefits. So how to improve the operation
level of this unit is paid a close attention by the circle
of petrochemical works. No doubt one of the effective
methods is to implement its online optimization and
advanced control.
 
The Department of Chemical Engineering of Xiamen
University has cooperated with Guangzhou Oil
Refinery of China Petroleum&Chemical Corporation
Guangzhou Branch to develop the FCCU optimal
control system. This system has done a good job since
it was put into practice at the beginning of 1995.
 

This paper will introduce this system and its
application

2. FCCU PROCESS FLOW

 
FCCU consists of three subunits: Reactor-regenerator
section, main fractionator and absorption stabilization
section. The reactor-regenerator section is the most
important sector in these three subunits. In which the
fresh feed is atomized by superheated steam, injected
into riser, and combined with high temperature
(650-750) catalyst which came from regenerator. The
catalyst and the hydrocarbon vapors flow up the riser
and the cracking reaction is processed at the meantime.
In order to prevent over reaction and improve the
distribution of the product, a quick separation is
adopted in the outlet of the riser. After separation, the
catalyst is known as spent catalyst. At first the spent
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Fig 1. FCCU process flow

catalyst is dropped into stripping section of the reactor.
Then the spent catalyst is transported to regenerator by
the slope-pipe. The reacted vapor products are sent to
the main fractionator where various boiling point 
fractions are withdrawn such as distillate, light cycle
oil (LCO), heavy cycle oil (HCO) gasoline and diesel,
etc. Parts of oil that are not converted by the
crack-reaction are sent back to riser reactor according
to some ratio. The diesel is out of FCCU directly but
the gasoline must be sent to absorption- stabilization
section and then the stabilized gasoline is formed.
 
Regenerator is the spot where the coke of the spent
catalyst is burnt off in contact with air and the activity
of the catalyst is recovered. The regenerated catalyst is
then recalculated back to the bottom of the riser reactor
though the regenerated-slope-pipe. After that, the
regenerated catalyst flows into the riser by rising steam
and used again in the riser. The flux of the cycle
catalyst can be controlled in the two slope-pipes where
the valve location of the single slide valve is tuned. By
changing the valve location of the double slide valve,
which is equipped in the gas pipe of the regenerator,
the pressure of the regenerator can be controlled.

 

3. OPTIMAL CONTROL SCHEME
 
Traditional optimal control scheme in FCCU is
primarily based on the control of reaction temperature.
But it is the degree of reaction that influences the
whole unit and the products distribution mostly.
Reaction temperature doesn’t represent the degree of

reaction as it is affected by many factors, so is not
suitable to be used as the control variable. So the
traditional scheme is an indirect method actually. To
solve this problem, YuanPu(1992) put forward a
scheme using reaction heat as the main control variable.
The basis of it is that the reaction heat may serve as a
direct measurement to the degree of reaction under the
condition of unchangeableness of property of feedstock.
So it doesn’t fit for those units with frequently
alterative feeds on property. Moreover,
immeasurability of reaction heat is also a great
difficulty to make the scheme going on.
 
Our developed optimal system is a two cascade
closed-loop system which takes the conversion
percentage as the optimal variable because it is the
direct measurement to the degree of reaction and can
be calculated online from the products distribution of
FCCU. A neural network is used to predict this
conversion percentage online and at real-time because
there may be a large time-delay to calculate the
conversion percentage. Based on this, closed-loop
optimization is achieved by the uses of online
observation for feeds property and adaptive intelligent
optimal method.
 
Two cascade closed-loop optimal control schemes are

shown as Fig 2:

 

Where Cpv: conversion percentage

Csv: optimum set-point of conversion percentage

S: operation information

D: fault diagnosis information

E: error of controller

u: controller output

Fig 2. optimization scheme



3.KEY PROBLEMS AND SOLVING METHODS

 
3.1 Online observation of property of feedstock

 
As much oil refinery in southward China use much
export oil from various countries, the oil property can
not be kept stable. So it is of great importance for the
optimal control system to make a quick response to the
change of oil. However, the real-time analytic data on
the feed oil is lacking because of the poor real-time and
online analytic means. To solve this problem, we use
the reaction model and the temperature distribution of
riser reactor to estimate the property of the
feedstock(Jiang Qingyin,1995).
 

Simplify the reaction model, a parameter is gotten as:

Where CrAOCO KKK ,, are coke reaction rate

constant, cracking reaction rate constant and cracking

heat respectively. Define YX as feed factor. As YX

only has relationship with the property of feedstock and

the catalyst activation, it can serve as an expression for

the property of oil. The right size of the equality above

is a function relationship formed by riser temperature,

temperature difference and catalyst-oil ratio which are

all measurable or calculable. Therefore YX can be

estimated online at real-time.
 
We can see that YX mainly indicates the heat needed by

the feedstock in cracking reaction. The larger YX is, the

more cracking heat is needed, and the feed oil is more

difficult to be cracked.

 
3.2 Prediction of conversion percentage

 
As mentioned above, the core of conversion percentage
control is its real-time prediction. To solve this problem,
a BP neural network is adopted and has made a good
result.
 
BP neural network is the most extensive kind of neural
networks to be applied. It consists of an input layer La,
several hidden layers (usually one layer) and an output
layer Lc. Nonlinear mapping relationship between
input variables and output variables is built up by

learning. For its structural characteristic it has good
fault-tolerant capacity which is very important in the
industrial process.
 
For the industrial online application, the BP models
must have a strong generalization capability. A number
of papers had discussed the generalization problem by
discussing the structure and the learning algorithm of
ANN, but recently, some researchers have paid
attention to the problem of training samples. It has been
pointed out that the basic reasons affecting the
generalization capability of neural network are quality,
quantity and the representation ability of the training
samples.

In this Optimal Control system, we introduce a
Self-organizing structure (JiangQingyin,Caijie and Cao
Zhika,2002) to build up an input-output pattern base
which use the continuous sample data of industrial
process and automatically screen out the inputs-outputs
patterns with high quality and good representation
ability. Using these patterns as training samples, we can
obtain a BP model of good generalization capability.
 
Real-time running result has shown that this BP
predictor has a quite high accuracy on prediction. As
shown in Fig 3, fluctuations of conversion percentage
are exactly predicted. What needs to be explained
clearly is that in this case the weights matrix of BP
neural network was calculated some months ago when
it was used. Although there are many changes in
operative condition, prediction is accurate, as comes
from the good adaptive capacity of this BP neural
network.
 

3.3 Model identification-free adaptive control
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BP network



 
Model identification-free adaptive control (MFA) is a
kind of adaptive control proposed by Marsik and
Strejc(J.Marsik V.Strejc,1989) which needs not
process model also needs not on-line identification of
model parameters. This method only needs the error of
process value and the expected value in industrial
process, thus can form an adaptive closed-loop control
system with good dynamic characteristic. Because of
the advantages such as little calculating amount, easy
to carry out and strong robustness, it is very suitable for
the advanced control in industrial process. But this
theory can't cope with the process with large time-delay.
So in our optimal control system, a predictive
algorithm is introduced and a self-searching algorithm
aiming at to solve the problems of inaccurate
estimation on delay time and predictive error has been
developed(Jiang Qingyin,1997). The improved
controller works well, as shown in Fig 4. In where
the svC is the optimum set-point of conversion
percentage and pvC is the process value of conversion
percentage, pD is the main disturbance, u the output
of controller and T the reaction temperature.

 
3.4 Fuzzy fault diagnosis

 
To assure the security of optimal control system, fault
diagnosis is very important and necessary. Traditional
expert system method doesn’t quite fit for FCCU as it
is very difficult to describe the faults in definite
production rule. To make it more accurate and effective,
we propose a fuzzy fault diagnosis method based on
the theory of factor space (Caijie, Jiang
Qingyin ,CaoZhikai and Zhouhua,2002). Besides, to
solve the problem of improve on the adaptive capacity

of fault diagnosis system, the method of variable
weights based on the balanced function of factor spaces
is introduced into the fault diagnosis system.
 

3.5 Adaptive intelligent optimal method
 
The traditional optimal method is based on the
mathematic model. That is the optimal set- point is
calculated by use of a series of mathematic methods.
However, traditional method is hard to be realized for
the on-line closed loop optimal system, because it is
difficult to develop an accurate FCC mathematic model
and correct it on-line. The expert system that rose in
the 1980s has offered a kind of intelligent method for
optimization. But it is necessary to build a knowledge
base covers the whole states of process. Meanwhile it
is important to keep the knowledge base adaptive as
there has been a time-variation characteristic in most
industrial process. For this reason, Jiang Qingyin and
Shu diqian (Jiang Qingyin and Shu diqian,1993)
proposed an on-line self-organizing learning method to
construct a self-organizing knowledge base which can
modify the knowledge automatically by itself,
therefore to realize self-adaptation of the expert
system.
 
Based on it, a BP neural network is used to construct
the reasoning model in order to adjust the set-point of
conversion percentage in time when feedstock change.
Because the building and correction of knowledge base
and reasoning model are both going on automatically
online, this enables a good adaptive capacity and
robustness of optimal system for realizing the
closed-loop optimization.
 
 

4. RUNNING SITUATION OF THE OPTIMAL

CONTROL SYSTEM

 
This system had already been put close-loop running
for years and achieved good results. After long time
running, the optimal control system has shown some
characteristics:
 
1. Security of close-loop is guaranteed. Because the
optimal control system contains an integrated fault
diagnosis system and adopts a series of safety measures
to prevent accidents, such as instruments failure,
sudden lost of power of master computer, the optimal
system can all switch the closed-loop control to regular
control of DCS immediately.

0 3000 6000 9000 12000 15000
0

20

40

60

80

100

400

440

480

520

560

600

C
S

V
,C

P
V
,u

,Dp
/%

t / s

T

CPV

CSV

u

Dp

Fig 4. Online MFA control of conversion

percentage



0 5000 10000 15000 20000 25000 30000
0

10

20

30

40

50

60

70

80

90

100

0

20

40

60

80

100

120

140

C
S

V
,L

1
/%

t / s

T1

CSV

L1

Figur5 Close-loop running of optimal control system

 
2. The performance of conversion percentage
controller is good. It can follow the changes of given
values, and has strong capacity of anti-interference,
also the controller has an adaptive capacity to the
change of property of feedstock and other operation
condition.
 

3. This system is highly automatic and easy to use. As
this optimal system has achieved closed-loop control in
addition to the operational safety, the entire optimal
process can be finished automatically without
intervention by operators on the whole. Moreover,
friendly user interface is supplied to make it easy to
operate and maintain.
 
After being putting into effect, the optimal system has
made several results as follow:
 
1. It makes the whole process more stable.
Degree of reaction becomes more steadily and the
whole Unit of FCC includes the fractional and
stabilizing systems are more steady and easier to be
operated. For example, under the routine control, the
liquid level of fractionating tower bottom waves up and
down frequently to a high extent. While after the
optimal control system working, generally flat liquid
level has been maintained as degree of reaction has
turned to be stable. This change has directly led to the
decrease of related regulation and further the stability
of whole fractionating tower. The operation state of the
liquid level and the temperature of main fractionator on
an eight-hour working period shift are shown in Fig 5.
We can see that the stability of this unit is satisfactory.
 
2. The yield of light oil increases. Once we compared

the effect of optimal control system and the old
control system by put into operation in day shift with
that of old control system and in night shift the optimal
control system, under the condition of same quantity
and same property of feedstock. The yield of light oil
and the liquid in night shift increase obviously, as
shown in Table 1. In addition, the yield of light oil
increases about 0.6% according to workshop’s
statistics in a long time.
 
 

5. CONCLUSION
 
There is a hard work to achieve closed-loop optimal
control in FCCU. Our proposed new optimization
scheme has been verified to be feasible and effective
by the practice in Guangzhou Oils Refinery. In this
scheme, many technologies arising in the 1990s have
been adopted. Especially it is the first time for some of
these technologies to be applied successfully into so
complicated catalytic cracking process.
 
During the development of this optimal control system,
operators, technologists and managers in Guangzhou
Oils Refinery gave us great support. Thanks them for
their help to make it fulfill smoothly.
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Table 1: yields comparison

shift

Processing

capacity

(ton)

Light

dirty

oil

Yield of

light oil

Yield of

liquid

day 837.9 77.6 75.7% 82.2%

night 838.0 76.0 77.2% 84.1%

Note:

1. The products data were read by the process instruments

which values were lower than real value in both cases.

2. Temperature control was used in day shift, and closed-loop

optimal control was used in night shift.
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the APC system can maintain the best operation for a long time and realize ultimate 
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1. INTRODUCTION 

 
Distillation columns have been widely used for 
separation processes in the petroleum and chemical 
industries. These columns are not only the most 
energy-intensive operations, but also determine the 
quality of products of those industries and many 
times limit process product rates (Kister, 1990). 
Recent progresses in the control theory, computer 
and communication have made possible extensive 
application of APC in process industries (Wang et al, 
2001). The large economic benefit of applying APC 
system to the distillation columns arises from 
reducing the deviations of crucial process variables 
and pushing the steady-state operation to a better 
operating point (Riggs, 1998). 
 
Distillation control has been studied extensively and 
poses many challenging problems since a distillation 
column is complex, highly non-linear, multivariable 
process (Shinskey, 1984, Luyben, 1992, Lundstrom 
and Skogestad, 1995). Recent efforts have 
contributed to the analysis of control properties of 
distillation sequences (Jimenez, et al, 2001) and 
comparison of control strategies for the distillation 

columns (Huang and Riggs, 2002). However, the 
APC system that deals with whole distillation 
columns rather than single column via a MPC 
controller is lack of report in open literature. 
 
This paper introduces industrial application via a 
commercial software of MPC for the distillation 
columns in a LAB plant, which consists of four 
distillation columns operated in series: HF acid 
stripper, benzene column, paraffin column, and LAB 
column. A MPC system that is constructed of twelve 
controlled variables, twelve manipulated variables 
and eight disturbance variables is developed to deal 
with the constrained multivariable control problem of 
the distillation columns. The MPC system is divided 
to four subsystems according to the distillation 
column. Each subsystem is relatively independent 
with the others and mainly takes charge one column. 
Industrial application results show that the APC 
system can maintain the best operation for a long 
time and realize ultimate operating potential of the 
distillation system by reducing the consumption of 
energy, improving product purity, and minimizing 
operating cost. 
 



 

     

 
2. PROCESS DESCRIPTION 

 
LAB now accounts for nearly all of the worldwide 
production of alkylbenzene sulfonates (LASs) that 
are frequently used as raw material of biodegradable 
household detergents. A LAB complex consists of 
two major steps: production of normal paraffins, and 
production of LAB from normal paraffins. The 
straight run kerosene from a refinery is used to 
produce normal paraffins through kerosene pre-
fractionation, distillate unionfining process and 
Molex process. Then, the normal paraffins are 
dehydrogenated to corresponding mono-olefins over 
a highly selective and active catalyst. Lastly, benzene 
is alkylated with mono-olefins to LAB using 
hydrofluoric (HF) acid as the catalyst in alkylation 
process. 
 
The alkylation process includes two major sections: 
alkylation section and distillation section. The 
distillation columns are researched in this paper. The 
process diagram of the distillation columns with the 
basic regulatory loops is shown in Figure 1. The 
controlled variables (CVs) , manipulated  variables 
(MVs) and disturbance variables (DVs) of the APC 

system are also given in Figure 1. The distillation 
columns include a HF acid stripper, a benzene 
column, a paraffin column, and a LAB column. The 
columns are operated to separate multi-component 
mixtures of LAB stream from upstream section. The 
separations of various distillation columns are key 
variables influencing the economic performance of 
the alkylation process since the series of columns 
directly affect product quality, product rate, and 
utility usage. 
 
The feed of the distillation columns is a mixed LAB 
stream with HF, benzene and paraffin from 
alkylation section, which passes through a feed heat 
exchanger enters at the top tray of the HF stripper. 
The HF vapor is vented to the HF recovery system. 
The hot oil to the reboiler is on flow control. The 
bottom level is directly controlled by adjusting 
bottom product flow to the benzene column. The 
bottom temperature is a key variable that reflects 
fractionation effect. The HF stripper is typically not a 
bottleneck, but it can be disturbed by operation of 
alkylation section and flooded if overloaded. 
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Fig. 1 Process diagram of the distillation in LAB plant 

 
 
The benzene column has a whole condenser. The 
pressure is controlled via a hot vapor bypass around 
the overhead condenser. The accumulator level is 
controlled by adjusting top benzene product flow rate. 
There is a flow limit for top benzene product in that 
it is returned to alkylation section. The hot oil to the 
reboiler and reflux to column are on flow control. 
The bottom level is directly controlled by adjusting 
bottom product flow to the paraffin column. There 
are two important temperatures in benzene column: 
upper tray temperature and lower tray temperature, 
which reflect distillation effect and are controlled 
variables. The benzene column is very sensitive to 
feed composition disturbance. When HF stripper is 
overloaded or operated unsteadily the upper tray 

temperature of benzene column can vary acutely and 
the lower tray temperature may exceed the lower 
limit, then influence the operation of the paraffin 
column. 
 
The paraffin column is a typical packed column that 
is operating at a pressure slightly lower than 
atmospheric pressure. A jet pump is used to create 
and maintain the vacuum. The accumulator level is 
controlled by adjusting top paraffin product flow that 
is returned to dehydrogenation process of paraffin. 
The hot oil to the reboiler and hot reflux to column 
are on flow control, but the cool reflux to column is 
fixed. The bottom level is directly controlled by 
adjusting bottom product flow to the LAB column. 



 

     

 
There are two important temperatures in paraffin 
column: upper temperature and lower temperature, 
which reflect distillation effect and are used to direct 
normal operation. The paraffin column is very 
important to LAB productivity of the plant since any 
LAB in top paraffin product will suffer losses. The 
paraffin column is the throughput bottleneck in the 
distillation columns, and can be easily overloaded. 
 
The LAB column is also a packed column and its 
operation is similar to the paraffin column’s. The top 
product is LAB that can be used to produce LASs. 
There are also two important temperatures in LAB 
column: upper temperature and lower temperature, 
which reflect distillation effect and are used to 
instruct normal operation. The LAB column is a 
column of finished product in which any LAB in 
bottom heavy LAB product will suffer losses. It is 
important for the LAB column to maintain steady 
operation. 
 
In conclusion, the columns need to be maintained 
close to optimal operating conditions lay at some 
constraints. Nevertheless, regulatory controls of 
distillation column are difficult to achieve better 
control performance all the time for moving the 
column to its optimal operating point and rejecting 
disturbances on the controlled variables. Therefore, 
for the control of distillation column, especially a 
series of columns affected by many constraints, MPC 
can be used to improve control performance 
characterized by a reduction in the variability of the 
controlled variables through information gathering, 
process analysis, and constrained multivariable 
optimisation. 
 
 
3. MODELLING AND MPC OF THE COLUMNS 

 
There exist several difficulties in terms of controlling 
the columns of the LAB plant: 1) there are some 
constraints on equipment capacities and process 
operations. 2) The flow rate and properties of feed to 
distillation columns are not constant because it is 
dependent on the operating conditions of the 
upstream alkylation section. 3) There are couples 
among various manipulated variables of each 
columns, especially two-end temperature control of 
the column is adopted. 4) There are different time-
delays in the responses of CVs versus MVs and some 
channels show non-linearity. The skilled operators 
can operate the columns based on their experience 
and knowledge, but they need to work intensively 
and can’t optimise the columns. Therefore, it is 
necessary for the distillation columns to implement 
MPC system in order to realize steady operation and 
process optimisation. The modelling procedure and 
results of distillation columns and the structure and 
implementation of MPC system are given below. 
 
 
3.1 Modelling of the columns 
 

Dynamic models play a central role in MPC system. 
It has been shown that modelling is the most difficult 
and time-consuming work in an MPC project. 
Generally, the classical black-box model 
identification methodology is used for MPC 
controllers. Nevertheless, a good knowledge of the 
process is still required to bring out possible model 
structures and define an experiment design. 
 
The modeling procedure of the distillation columns 
may be summarized as the following steps: 

1) studying and understanding the columns 
operation from collected data sets, 

2) determining the model structures of the 
columns and designing test signals, 

3) implementing open-loop multivariable tests of 
the columns and dealing with the relevant data, 

4) estimating the open-loop step response (or 
impulse response) models of the columns and 
editing these models, 

5) validating and assessing the estimated models 
of the columns. 

 
The MVs, DVs and CVs of the MPC controller for 
the distillation columns are listed in Table 1. The 
choice of CVs was fixed by specifications of the 
columns including tray temperatures and levels of the 
reboilers and/or the accumulators. 
 
A dynamic model was developed with adding test 
signals in the manipulated and disturbance variables 
on the distillation columns and estimating model 
parameter from collected data. The sample time was 
taken to be 2 min. The data collections lasted 
between 48 and 72 hours. Each time, 98 variables 
were measured and selected. Data pretreatment and 
model identification were achieved using a 
professional off-line identification tool. 
 
 

 
Fig. 2 Open-loop model of bottom temperature  

in HF stripper 
 
 



 

     

The estimated model of the columns describes the 
multivariable relationship between 20 inputs and 12 
outputs. Here, the open-loop step response models of 
the bottom temperature in HF stripper are shown in 
Figure 2 as examples. To demonstrate model 
validation, we use fresh data to test how well the 
model output agrees with the measured bottom 
temperature. Figure 3 shows the test result obtained 
over more than 900 time period. 
 
 

 
Fig. 3 Model validation of bottom temperature  

in HF stripper 
 
 
3.2 MPC of the columns 
 
MPC is a control strategy which predicts the future 
behavior of process in a control envelope from the 
past moves of MVs with using the dynamic models 
of the CVs versus MVs and determines the future 
moves of MVs in order that CVs will match the 
target values as close as possible in each control 
cycle. We adopted Model Algorithmic Control 
(MAC) to realize the overall control of the 
distillation columns.  
 
The relationship between CVs and MVs of the 
columns is given in impulse response that can be 
achieved by process modelling: 

∑
=

−=
N

j
jm jkuhky

1

  )(ˆ)(                                (1) 

Where, ˆ
jh  is the coefficients of a impulse response, 

y is CV, u is MV, and N is number of impulse. The 
subscript m denotes model output. Model vector 

h= T
Nhh ]ˆˆ[ 1! is often saved in host computer and 

names internal model. 
 
The closed-loop predictive model is obtained in 
terms of equation (2) as follows: 
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Where the subscript m denotes model predictive 
output, )(ky  is current process output. 
 
The reference trajectory that is used to smooth 
expected output from )(ky  to setpoint spy  adopts 

first order exponential form in MAC as follows: 
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Where, )/exp( τα T−= , T is sample time and τ  
is constant time of reference trajectory. 
 
To meet the above control goals, the objective 
function can be formulated as follows: 
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Where, 
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We have combined our process control experience, 
design skills and process modelling capabilities into 
the MPC application. The MPC system shown in 
Figure 4 is implemented via a MPC controller and 
divided to four subsystems according to distillation 
column process. Each subsystem turns on/off 
independently with the others and mainly takes 
charge one column.  
 

 
Fig.4 MPC system structure of distillation columns 

in LAB plant 
 

 
Fig.5 Connection between MPC system and DCS 

system 
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After four subsystems turn on, the over MPC system 
simultaneously adjusts the setpoint values for 12 
regulatory loops of the distillation columns, while 
continuously checking the status of process and 
equipment limits. To handle the interactions between 
the different subsystems, the HF stripper bottom 
temperature is used as a CV in the HF stripper 
subsystem and its measurement as a DV in the 
subsequent Benzene column subsystem, the HF 
stripper bottom flow is a MV in the HF stripper 
subsystem and its measurement as a DV in the 
Benzene column subsystem, the downstream 
columns may be deduced by analogy. By integrating 
controls into a single controller, interactions across 
entire distillation columns can be better managed. 

 
The MPC software named APC-Adcon is provided 
by Zhejiang Supcon Software Ltd.. APC-Adcon has 
two kinds of optimising functions. One is steady 
optimising function, which solves the steady optimal 
values of a CV and MV as target values for dynamic 
optimising. The other is the dynamic optimising 
function, which calculates the optimal future path of 
an MV. The MPC software is equipped in the host 
computer of an existing distributed control system 
(DCS) RS3 made in Fisher-Rosemount and the 
communication between host computer and DCS is 
seamless connection based on RNI for RS3 and OPC 
interface. Figure 5 shows the connection between 
MPC system and DCS system. 

 
Table 1 Configuration for distillation columns MPC system 

 
Controlled Variables Manipulated Variables Disturbance Variables 
CV1-HF stripper bottom 
temperature 

MV1-HF stripper 
reboiler duty 

DV1-Reactor feed flow 

CV2-HF stripper reboiler 
level 

MV2-HF stripper bottom 
flow 

DV2-Reactor feed 
temperature 

CV3-Benzene column upper 
tray temperature 

MV3-Benzene column 
reflux flow 

DV3-HF stripper bottom 
flow 

CV4-enzene column lower 
tray temperature 

MV4-Benzene column 
reboiler duty 

DV4-HF stripper bottom 
temperature 

CV5-Benzene column 
reboiler level 

MV5-Benzene column 
bottom flow 

DV5-Benzene column 
bottom flow 

CV6-Paraffin column upper 
tray temperature 

MV6-Paraffin column 
hot reflux flow 

DV6-Benzene column 
bottom temperature 

CV7-Paraffin column lower 
tray temperature 

MV7-Paraffin column 
reboiler heat duty 

DV7-Paraffin column 
bottom flow 

CV8-Paraffin column 
reboiler level 

MV8-Paraffin column 
bottom flow 

DV8-Paraffin column 
bottom temperature 

CV9-Paraffin column 
accumulator level 

MV9-Paraffin column 
top paraffin flow 

 

CV10-LAB column upper 
tray temperature 

MV10-LAB column hot 
reflux flow 

 

CV11-LAB column lower 
tray temperature 

MV11-LAB column 
reboiler heat duty 

 

CV12-LAB column 
accumulator level 

MV12-LAB column top 
LAB flow 

 

 
 
  

4. PERFORMANCE OF THE APC SYSTEM 
 
After the MPC controller was tuned, it had been 
tested on-line for three months. The comparison of 
the performance before and after the MPC 
implementation is summarized. The comparison of 
product quality of LAB plant and LAB in recycle 
paraffin is given in Table 2. The result of control 
performance comparison for LAB column MPC 
subsystem is shown in Figure 6 and Figure 7. 
 
The MPC system is superior to human supervisory 
control in follow aspects: 

1) The skill of most high experienced operator has 
been implemented by the MPC system. 

2) Operation and compensation is executed at 
fairly frequent intervals. In case of a skilled 
operator, operation frequency is about 20 
minutes, while, in case of the MPC system, it is 
2 minutes. 

3) Operator control manipulates the process 
variables in sequence. Nevertheless, the MPC 
control can manage several process variables in 
parallel. 

 
After the implementation of the MPC system, the 
deviation of the main process variables became one 
half of that before implementation. As a result, The 
over economical merit from this implementation is 
approximately over one million Yuan by reducing 
the consumption of energy, improving product purity, 
and minimizing operating cost. 



 

     

 

Table 2 Comparison of product quality of LAB plant 

 
Quality Index 

of LAB Plant 

Average  
Value 

Standard 
Deviation 

 Before After Before After 
LAB TNP % Base -0.01% 0.094 0.048 
LAB BR Base -0.37 1.580 0.820 
LAB in 
recycle 
paraffin 

Base -0.01% 0.280 0.071 

 
 

 
Fig. 6 Performance of the CVs of LAB column 

before MPC implementation 
 
 

 
Fig. 7 Performance of the CVs of LAB column after 

MPC implementation 
 
 

5. CONCLUSION 
 
This paper presents process modelling and APC 
system of the distillation columns in LAB plant. 
Industrial application results show that the APC 
controller is superior to conventional control. The 
APC control can maintain the best process operation 
for a long time and realize ultimate operating 
potential of the distillation columns. Economic 
benefits are achieved by using the APC system when 
the process model is constructed correctly and MPC 
controller is set compatibly. 
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