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Abstract
Parameter estimation and PID tuning are two crucial issues in control engineering. Classical methods either require some

prior information or depend on some rules, especially they are short of generality and their performances are not satisfied in
many engineering fields. Although genetic algorithm and simulated annealing approaches have gained much attention and
applications during the past decades, it may cause the premature convergence of genetic algorithm and prohibitive time-
consumption required for simulated annealing if executing them alone. In this paper, reasonably combining the parallel
structure of genetic algorithm with the controllable jumping property of simulated annealing, a class of effective and general
hybrid optimization strategy is proposed for parameter estimation and PID tuning. The proposed strategy is easy to be
understood and implemented, and only a little pre-needed information is required. Numerical simulation results demonstrate
that the hybrid strategy is of effectiveness, robustness on initial states, and adaptability on models or plants, and comparisons
show that the hybrid strategy can achieve performances greatly better than those of pure genetic algorithm and classical
methods.
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1. Introduction

Parameter estimation and PID tuning are two
crucial issues in control engineering, which are of
important theoretical value and engineering
significance and have been widely studied so far.
Traditional estimation methods, such as Least Square
Method (LSM) and their generalizations, gradient
estimation algorithms, and maximum likelihood
algorithms require some prior information and model
structure, e.g. time-delay, order etc, which greatly
limit their applications, especially in the field of
nonlinear systems. Moreover, most classic and
improved methods are intrinsically dependent on the
gradient information of the error index so as to be
prone to be trapped in local optima. It is known that
the control performances of PID are completely
dependent on PID parameters, but classical tuning
methods, such as Ziegler-Nichols method, Cohen-
Coon etc (Astrom and Hagglund, 1995), are based on
experiments and strongly depend on the plant model
and the tuning results are not satisfied in many fields,
which leads to the limitation of their applications. In
the past decade, genetic algorithm (GA) gained much
attention (Michalewicz, 1994) and was widely
applied in many engineering fields, including control
engineering (Szczerbicka and Becker, 1998). Versek,
Urbancic and Filipic (1993) developed a three-stage
framework based on genetic algorithms for learning
control. Lima and Ruano (2000) proposed neural
network models of tuning criteria together with the
use of GA to achieve PID autotuning. Li and Shieh
(2000) designed a GA-based fuzzy PID controller for
non-minimum phase systems. Teo and Marzuki
(1999) presented a neuro-fuzzy controller based on
neural network with all the parameters tuned by GA.
Kristinsson and Dumont (1992) used GA for model
identification and then used the model parameters in

a certainty equivalence control law based on pole-
placement method. Lennon and Passino (1999) used
a different method for fitness evaluation and
employed a model reference approach. Wu and Yu
(2000) proposed a GA based learning algorithm for
the identification of a class of fuzzy models. But
there still existed two main drawbacks when using
pure GA alone, that is, difficult to determine
operating parameters and pre-mature convergence.
  In this paper, GA and Simulated Annealing (SA)
are reasonably combined to construct an effective
hybrid strategy (HS) for parameter estimation and
PID tuning, which utilizes the population parallel
search structure of GA and the controllably
probabilistic jumping of SA. With some operations
specific designed, the HS can be applied to various
kinds of models and controlled plants. The
computation procedure is simple and easy to
understand and accomplish, and only a little pre-
needed information is required. Numerical simulation
results based on some classical problems demonstrate
that the HS is of effectiveness, robustness on initial
states, and adaptability on models or plants, and it
can achieve better performances than classical
approaches.
  The organization of remain contents is as follows.
Firstly, the problems to be studied are described,
secondly the HS is proposed, then the strategy is
implemented in detail for parameter estimation and
PID tuning, and some numerical simulations and
comparisons are carried out, lastly we end with some
conclusions.

2. Problem statement

Generally, the representation style of the estimated
model is known in advance, and it is supposed that



the system output can be measured and the ratio of
signal/noise should be large enough, as well as the
parameters to be estimated should be specified.
Usually, a system model can be generally described
as follows.

),()( θrfty =                (1)
where, )(ty is the system output, r is the system
input ),,,( 21 kθθθθ ⋅⋅⋅= is the parameters to be
estimated, f  is the model representation which can
be expressed by transfer function, state space or
ARMA model etc.
  Parameter estimation means to obtain the
estimated parameters using certain algorithm
according to certain error index based on the model
output and actual sampling data ntty ,,2,1),(0 ⋅⋅⋅= ,
with certain model input. In this paper, hybrid
strategy will be proposed to estimate the model
parameters. The principle can be illustrated by Fig. 1,
which will be explained in detail later.
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Fig. 1. Illustration of model parameter estimation

  PID controllers are well known to engineers for
their simple structure, easy implementation, good
performances and strong robustness, so that they are
widely used in various fields of industry, especially
in chemical process industry. More than 90% of the
controllers used in real applications are of the PID
types. Generally, the formula of conventional PID
and its discretized formula can be written as follow.
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where pK , iT  and dT are proportional (P), integral
(I) and derivative (D) parameters respectively, 0T  is
sampling period, )(te  and )(tu  are error variable
and plant input respectively. Let ipi TTKK /0=  and

0/TTKK dpd = , then the formula (3) can be
rewritten as follows.

)]1()([)()()( −∆−∆++∆=∆ kekeKkeKkeKku dip  (4)
  PID tuning means to determine the above three
parameters by certain algorithm to achieve the
optimal control performances. In this paper, PID will
be tuned by hybrid strategy, whose principle can be
illustrated by Fig. 2 and interpreted later.
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Fig. 2. Illustration of PID tuning

  Intrinsically, both parameter estimation and PID
tuning are the problems to search optimal parameters
according to certain objective functions, which can
be regarded as complex functional optimization
problems with high dimensions and many local
minima. To solve the problems effectively and
achieve good performances, in next section a class of
HS by combining genetic algorithm and simulated
annealing will be proposed.

3. Hybrid optimization strategy

Based on the mechanics of natural selection and
genetics, genetic algorithm combines the concept of
survival of the fittest among solutions with a
structured yet randomized information exchange and
offspring creation. GA is naturally parallel and is
able to exhibit implicit parallelism, which does not
evaluate and improve a single solution but analyses
and modifies a set of solutions simultaneously. There
are three basic operators in pure GA, i.e. selection,
crossover and mutation. The ability of GA, i.e.,
operating on many solutions simultaneously and
gathering information from all current solutions to
direct search, reduces the possibility of being trapped
in a local optimum.
  Originated from the similarity between statistical
mechanics and combinatorial optimization, simulated
annealing provides a framework for optimization of
properties of very large complex system and can be
viewed as an enhanced version of local optimization
or iterative improvement algorithms (Kirkpatrick et
al, 1983). SA attempts to avoid entrapment in a local
optimum by sometimes accepting a move that
deteriorates the value of the objective function. With
the help of the distribution scheme, SA can provide a
reasonable control over the initial temperature and
cooling schedule so that it performs effective
exploration of solution space and good confidence in
the solution quality.
  GA is a highly parallel procedure, which contains
certain redundancy and historical information of past
solutions. However, GA may lose solutions and
substructures due to the disruptive effects of genetic
operators. In addition, it is not easy to regulate GA’s
convergence and tune global parameters.
Consequently, GA is easy to be premature and results
in poor solution (Leung et al, 1997). On the other
hand, SA maintains only one solution at a time,
whenever they accept a new solution, the old one



must be discarded, which often causes low search
efficiency. But, SA has the ability to escape from
local optima that can be controlled by cooling
schedule (Hajek, 1988). Reasonably combining these
two approaches from mechanism to structure, it will
develop novel hybrid strategy (HS) with more
powerful search efficiency. So, utilizing the parallel
searching framework of GA and incorporating SA to
avoid individual being trapped in local minima with
controllable probability, an efficient HS is proposed
as follows.
 Step1: initialize population, and determine the
initial temperature 0t , and set 0=k .
 Step2: if stop criterion has been satisfied, then
output the results; else go on below steps.
 Step3: implement selection and crossover operators.
 Step4: implement mutation operator.
 Step 5: perform simulated annealing for each
individual i  in parallel mode, then back to Step 2:
 Step 5.1: if equilibrium condition has been reached,
then decrease temperature )(1 kk tupdatet =+  and set

1+= kk , and go to step2; otherwise go to step 5.2.
 Step 5.2: generate a neighbor solution j  from
solution i  randomly and calculate the difference of
the objective values ijij ccc −=∆ ;
 Step 5.3: if ]1,0[)}/exp(,1min{ randomtc kij >∆− ,
then let i = j , and update the best solution found so
far if possible; else keep the old solution.
  It can be seen that during the hybrid search process
GA provides a set of initial solutions for SA at each
temperature to perform Metropolis sample for each
solution until equilibrium condition is reached, and
GA uses the solutions found by SA to continue
parallel evolution. Temperature is adjusted to control
the behavior of SA, i.e., at a high temperature, SA
performs a “course” search with high escaping
probability from current solution; while at a low
temperature, SA performs a “fine” search among the
neighbor solutions of current solution. In addition,
the optimization operators, such as mutation operator
and the new solution generator of SA, can be
different or hybrid used to yield a large neighborhood
and efficiently explore better solutions among the
solution space. Theoretically, Wang and Zheng (1998)
analyzed the convergence behavior of such HS and a
sufficient condition for global convergence was
provided, and the job-shop scheduling was solved
(Wang and Zheng, 2001).
  Moreover, such HS reserves the generality of GA,
SA and can be easily implemented and applied to any
optimization problems by suitably modifying the
encoding scheme, optimization operators, algorithm
criteria and parameters. In next sections, the HS will
be designed in detail for parameter estimation and
PID tuning.

4. Implementation of the strategy

Encoding scheme: The real value encoding is used,
i.e., all the parameters are specified by real values
except that the model order is encoded by an integer.

Objective function or fitness function: The Integral
of Time multiplied by Absolute Error (ITAE) index,
i.e., ∫∞τ dttet )(  is employed as objective function in
PID tuning, which is able to restrain the overshoot
and settling-time to certain extent. While

]01.0))()(())()((/[1 00 +∑ −−=
t
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used as fitness function in parameter estimation,
where )(0 ty  is the actual output and )(ty  is the
output of the estimated system.

Initialization of population and temperature: After
generating initial population with sizeP  individuals
randomly at the beginning of the procedure, the best
and worst individuals with the objective index bestc
and worstc  are determined. Then, at the initial
temperature 0t  the probability to accept the worst
individual with respect to the best individual is set as

)1,0(∈rp , i.e., ]/)(exp[ 0tccp bestworstr −−= . Hence,

0t  can be determined by )ln(/)(0 rbestworst pcct −−= .
Obviously, such process can be implemented easily
and the relative performance of the initial population
is used, so such method is of handleability and
reasonability.

Selection: In parameter estimation, classical
proportional selection based on fitness value is
applied, i.e., individual i  would be selected with
probability ∑ ji ff / , where if  is the fitness value
of i . While in PID tuning, rank-based selection is
applied, i.e. all the individuals are arranged with
decently order according to the objective value firstly,
then the k th individual would be selected with
probability )]1(/[2 sizesize PPk + .

Crossover: Based on real-value-encoding scheme,
crossover operator is designed as Equation 5 to
generate two new individuals after selection operator.
And such procedure is repeated 2/sizeP  times ( sizeP
is population size) to generate the new population.
Then, the top sizeP  solutions with better objective
values from the old population and new solutions are
reserved for the next optimization operator.
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where )1,0(∈α  is a random variable, 1w  and 2w
are parents, '1w  and '2w  are children.

Mutation, SA state generator: Due to the merit of
HS, here mutation rate is set to one to perform a
“fine” local neighbor search and all these operators
can be conducted by appending random noise for
each parameter.



ξη ⋅+= ww'                 (6)
where ξ  is a random variable subjected to Gaussian
distribution N(0,1), η  is a scale parameter.
  Moreover, during the evolution process the best
solution found so far should be updated if possible to
avoid the lost of good solution, i.e., “elitist” scheme.

Annealing function: Exponential cooling schedule
is used to adjust the temperature, i.e. 1−⋅= kk tt λ ,
where )1,0(∈λ  is decrease rate.

Equilibrium condition and stop criterion: since
theoretical convergence conditions may lead to huge
computation and are not practicable, two
approximate conditions are simply designed to
provide a rather good compromise between quality
and search efficiency. The Metropolis sample process
is set to 1L  iterations fixed, and if the best solution
found so far keeps fixed at 2L  consecutive
temperatures, the algorithm will stop.

5. Numerical simulation
5.1 Simulations on parameter estimation

Based on three kinds of models (Jiang and Wang,
2000) described as follows, the performances of the
HS are tested and some comparisons with simple GA
are carried out.
  Model 1 (Transfer function of 2-ordered system
with time-delay): parameters to be estimated are k ,

1T , 2T  and time-delay τ .

)1/()(/)( 2
2

1 ++= − sTsTkesusy sτ    (7)
  Model 2 (Nonlinear state space model): parameters
to be estimated are 1θ , 2θ , 3θ  and 4θ .
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  Model 3 (Hammerstein Model): parameters to be
estimated are 1a , 2a , 0b , 1b  and d .
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  Combining Matlab and C++ simulation
environment, and setting sizeP =20, rp =0.1,
λ =0.85, η =0.1, 1L =30, 2L =20, sampling time

0T =0.1, numerical simulations are carried out on
PIII/550 PC and the average results of 20 random
simulation are summarized as follows.

Table 1. Estimation results of Model 1
Parameter k 1T 2T τ

Actual 1 1 2 1
Estimated 1 1 1.9997 1

Table 2. Estimation results of Model 2
Parameter 1θ 2θ 3θ 4θ
Actual 0.5 0.3 1.8 0.9
Estimated 0.5069 0.3048 1.8095 0.9077
Results of Huang
and Wang (1996)

0.4916 0.3014 1.8432 0.9267

Table 3. Estimation results of Model 3
Parameter 1a 2a 0b 1b d
Actual -1.5 0.7 1 0.5 2
Estimated -1.5004 0.6984 0.9861 0.4516 2
Results of
Huang and
Wang (1996)

-1.4982 0.6970 1.3654 -0.0371 2

  The results demonstrate the effectiveness of the
HS, which is competent for the models with different
styles and properties, including nonlinear systems. In
addition, in the Hammerstein model there are some
parameters may affect the system output much less
than others, e.g. 1b , which are hard to estimate. The
estimation process of pure GA would lead to these
parameters far deviate from the true value, but by
incorporating SA into GA the hybrid strategy can
achieve good results. The system output of actual
model and the estimated one are shown on Fig. 3,
from which it can be seen that the two curves are so
adjacent each other. Compared with the results of
Jiang and Wang (2000), the results from hybrid
strategy are much better than those from pure GA.
The reason is that the hybrid strategy takes the
advantages of both GA and SA and improves the
potential of global optimization.

Fig. 3. Output of the actual and estimated Model 3

5.2 Simulations on PID tuning

Firstly based on the controlled plant
)12/(5.0 +− se s , the statistical performances of PID

controller tuned by hybrid strategy (HS) are
investigated, and some comparisons with GA and Z-
N methods are carried out. The parameter η  is set to
0.6 and the others are the same as before. The
statistical results of 20 random simulations are shown
in Table 4 (comparatively, the ITAE object value by



Z-N method is 12.6951). The closed loop step output
response using PID tuned by the three methods are
shown in Fig. 4, and the decreasing curves of
objective value are shown in Fig. 5.

Table 4. Average performances gained by the HS and GA

Algorithm Average
ITAE

ITAE
Variance

Average
overshoot

Average
generation

HS 4.1625 1.5974 1.2% 39.80
GA 7.3840 2.3001 18.5% 49.15

Fig. 4. The closed loop step output response

Fig. 5. Decent curves of objective value

  To further test the tuning performances of the
hybrid strategy, we study the plants as follows. The
average performances of 20 random simulations are
shown in Table 5, and the corresponding closed loop
step output response curves are shown in Fig. 6~10.

2
1 )1/(1)( += ssG            (10)

8.02.0],12/[1)( 2
2 orsssG =++= ξξ     (11)

3
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Table 5. Average control performances of PID
Overshoot(%) Average ITAE

Plant
GA HS GA HS

)(1 sG 26.1 4.8 6.83 3.17
2.0),(2 =τsG 15.1 3.5 5.18 3.13
8.0),(2 =τsG 6.2 2.4 4.86 2.77

)(3 sG 23 0 21.29 10.92
)(4 sG 20.1 4.3 10.15 6.92

Fig. 6. The closed loop step output response of )(1 sG

Fig. 7. The closed loop step output response of
2.0),(2 =ξsG

Fig. 8. The closed loop step output response of
8.0),(2 =ξsG

Fig. 9. The closed loop step output response of )(3 sG



Fig. 10. The closed loop step output response of )(4 sG

  Lastly, considering the water turbines plant
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 with a non-minimum

phase zero and taking η =0.1, 0T =0.04, the closed
loop step output response curves using PID tuned by
HS, GA and the simplex method (Liu and Mao, 1997)
are show in Fig. 11.

Fig. 11. The closed loop step output response

  From the simulation results, it can be concluded
that the HS can achieve good optimization
performances, such as high quality, rapid speed and
robustness on initial values. Secondly the controllers
tuned by the HS can achieve better control
performances than those of the controllers tuned by
GA and Z-N methods, in particular, the overshoot,
settling-time and error index are very small. In
addition, the HS is independent of plant and control
objective. So the HS is well fit for PID tuning.
  In brief, the features of the proposed method can
be summarized as followed. (1) The computation of
parameters is easy and simple. (2) The estimation
and tuning procedure is easy to understand and
accomplish. (3) Only a little pre-needed information
is required. (4) Hybrid global search can achieve
very satisfied and better performances than
traditional or pure GA methods. (5) The method is
general and has a wide range of applications.

6. Conclusion

This paper proposed an effective hybrid strategy
by combining SA and GA for parameter estimation
and PID tuning. Numerical simulation results
demonstrated the effectiveness, robustness on initial
states, and adaptability on models or plants. The

comparisons showed that the HS could achieve
performances greatly better than those obtained by
pure GA and traditional methods. The future work is
to apply the proposed HS or combining fuzzy logic
and neural networks in time-varying systems, some
advanced controllers, such as fuzzy controller and
neural network controllers, and online estimation and
tuning, especially in actual industry environments.
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INTEGRATION OF PRODUCT QUALITY
ESTIMATION AND OPERATING CONDITION
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Abstract: In this industry-university collaboration, a soft sensor for measuring a key
product quality and a monitoring system for testing the validity of the soft sensor were
developed to realize highly efficient operation of the ethylene production plant. To
estimate impurity concentrations in ethylene products from online measured process
variables, dynamic partial least squares (PLS) models were developed. The developed
soft sensor can estimate the product quality very well, but it does not function well
when the process is operated under unexperienced conditions. Therefore, a monitoring
system was developed to judge whether the soft sensor is reliable based on the dynamic
PLS model. In addition, simple rules were established for checking the performance of
a process gas chromatograph by combining the soft sensor and the monitoring system.
The soft sensor and the monitoring system have functioned successfully. Copyright
c©2003 IFAC

Keywords: soft sensor, partial least squares, statistical process control, monitoring,
inferential control, ethylene fractionator

1. INTRODUCTION

Soft sensors are key technologies for producing
high quality products when hard sensors of
product quality are either not available or too
expensive to install. Soft sensors are based on a
first principle model, a black-box model, or their
combination. Currently, a huge amount of process
data is stored in computers, and the effective use
of such data is anxiously expected. This situation
motivates us to develop a black-box model rather
than a first principle model.

Much research has been conducted to develop
data-based soft sensors for various processes. A
data-based soft sensor, however, does not always
function well, because a black-box model is not
valid when a process is operated outside certain

condition where operation data used for modeling
were obtained. The product quality and process
performance will deteriorate if the estimates of
the soft sensor are blindly believed by operators
and used in a control system. To avoid such a
situation, the validity of the soft sensor should be
monitored online. When a soft sensor is judged
to be invalid, the control system and operators
should not use the estimates for any purpose.

In this industry-university collaboration, soft
sensors for measuring key product qualities and
monitoring systems for testing the validity of
the soft sensors were developed to realize highly
efficient operation of two ethylene fractionators
at the SDK (Showa Denko K.K.) Oita plant
in Japan. To estimate ethane concentration
in ethylene products from online measured
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Fig. 1. Schematic diagram of the ethylene
fractionator T431/2 at SDK Oita plant.

process variables, dynamic partial least squares
(PLS) models were developed. Chemometric
techniques, such as principal component analysis
(PCA) and PLS, have been widely applied for
process modeling, monitoring, and control (for
example, Wise and Gallagher, 1996; Nomikos
and MacGregor, 1994; Lakshminarayanan, 1997).
The main advantage of those methods is that
they can cope with correlated input variables.
This characteristic is suitable for analyzing
data from chemical processes, because chemical
processes are multivariable systems and a great
number of variables are mutually correlated. The
soft sensors developed in the present work are
based on PLS. Therefore, in order to test the
validity of the soft sensor and judge whether the
current operating condition is normal or not, a
multivariate statistical process control (MSPC)
technique based on PLS is used. In addition, a
method is proposed for checking the performance
of process gas chromatographs by using the
developed soft sensors and monitoring systems.
A process gas chromatograph sometimes gives a
disturbed and incorrect measurement, which may
disturb the operation and deteriorate the process
performance. Therefore, it is very important to
detect the incorrect measurement and report it to
operators. In this article, application results of the
PLS-based soft sensor and monitoring system are
presented with real industrial data.

2. ETHYLENE FRACTIONATOR

The schematic diagram of the ethylene
fractionator, referred to as T431/2, at the
SDK Oita plant is shown in Fig. 1. This ethylene
fractionator consists of two columns: the bottom
column T431 and the top column T432. The
feed stream enters the bottom column, and the
product ethylene is drawn from the top column.

The main specification is ethane concentration in
the ethylene product. The ethane concentration
must not exceed its upper bound. In order to
keep the operation cost as low as possible, the
ethane concentration should be kept as high
as possible. This fractionator is controlled by
using multivariable model predictive control.
The number of controlled variables, manipulated
variables, and disturbance variables is seven,
four, and three, respectively. The controlled
variables are ethane concentration and methane
concentration in the ethylene product, T431 tray
#29 temperature (1), T431 differential pressure,
T432 differential pressure, condenser pot level,
and reboiler pot level. Manipulated variables
are T431 reboiler flow rate (7), T432 internal
reflux flow rate (10), T432 purge flow rate (11),
and T432 top pressure (13). The disturbance
variables are T431 feed flow rate, T431 feed ethane
concentration (14), and C351 #4 suction pressure
(17). Here, C351 is a propylene compressor. Its
#4 suction pressure affects propylene refrigerant
temperature and then reboiler heat duty. The
numbers in parentheses correspond to those
shown in Fig. 1.

3. SOFT SENSOR

Soft sensors are key technologies for producing
high quality products when quality hard-sensors
are either not available or too expensive to
install. Distillation compositions are such quality
variables. The compositions can be measured
by using, for example, gas chromatographs and
near-infrared analyzers, but gas chromatographs
suffer from large measurement delays, and
most analyzers suffer from high investment and
maintenance costs. Therefore, many researchers
have investigated soft sensors and inferential
control of distillation compositions.

3.1 Overview

In order to build a soft sensor by using
past operation data stored automatically in a
computer, linear or nonlinear black-box models
have been widely used. When many process
variables are used as input variables, the highly
correlated nature of process data must be
taken into account. In distillation processes,
for example, tray temperatures close to each
other change in nearly the same way. Applying
a statistical modeling method to such highly
correlated data causes a collinearity problem.

The simplest approach for tackling the collinearity
problem is to select a few variables, which are
mutually independent, from all process variables.
Many articles have been published on this matter,



for example, Weber and Brosilow (1972), Joseph
and Brosilow (1978), Morari and Stephanopoulos
(1980), and Moore et al. (1987). However,
this simple approach would not be optimal,
because additional measurements may improve
the performance of an estimator.

To solve the collinearity problem, composition
estimators using PLS have been widely used
(Kresta et al., 1994; Mejdell and Skogestad,
1991a, b). In their work, steady-state inferential
models of product compositions were built.
Mejdell and Skogestad (1993) compared three
different estimators using a linear model of a
binary distillation column. They concluded that
good control performance could be achieved
with the steady-state PCR (Principal Component
Regression) estimator, which was almost as
good as the dynamic Kalman filter, because
the steady-state estimator has an inherent
feedforward effect. The inherent feedforward
effect was investigated in more detail by Kano
et al. (2002). They suggested using predictive
inferential control with a dynamic inferential
model within the cascade control configuration
to achieve good performance without demanding
the iterative modeling approach. The proposed
control system is a feedback control system with
a feedforward control effect. An application of a
composition estimator to an industrial packed-bed
column was reported by Fujii et al. (1997).
Their inferential model is a static PLS model
based on pressure, flow rate, and temperature
measurements. Kano et al. (2000) further
investigated PLS-based inferential models, which
can estimate the product compositions of the
multicomponent distillation column from on-line
measured process variables. They compared
steady-state, static, and dynamic inferential
models and found that the estimation accuracy
could be greatly improved by using dynamic
models.

In the present work, dynamic PLS is used for
estimating the output variable, i.e., the ethane
concentration in the ethylene product, from
correlated process variables.

3.2 Dynamic PLS Model

Kano et al. (2000) thoroughly investigated the
selection of input variables and sampling intervals.
They concluded that the estimation accuracy was
improved by using not only tray temperatures
but also other process variables such as reflux
flow rate, reboiler heat duty, and pressure. In
addition, they strongly recommended using a
dynamic inferential model to improve estimation
accuracy and control performance. Based on these
results, almost all measured process variables

Table 1. Input variables of PLS model.

No. Variable

1. T431 tray #29 temperature
2. T431 bottom temperature
3. T431 top temperature
4. T431 tray #37 temperature

5. T432 tray #129 temperature
6. Flow rate from T432 to T431
7. T431 reboiler flow rate
8. Product ethylene flow rate
9. T432 reflux flow rate

10. T432 internal reflux flow rate (=9-8)
11. T432 purge flow rate
12. T432 reflux ratio
13. T432 top pressure
14. T431 feed ethane concentration
15. C351 #2 discharge pressure
16. C351 #2 discharge temperature
17. C351 #4 suction pressure

C351 is a propylene compressor.
Propylene is used for heating and
cooling at the reboiler and the condenser.

are considered as candidates for input variables.
Then, optimal selection of input variables and
sampling intervals was carried out by trial and
error. The selection was mainly based on the
correlation analysis, engineers’ knowledge, and
validation tests.

For building a dynamic PLS model, the operation
data obtained in the period from December
2001 to February 2002 were used. A part of
the operation data, which represents abnormal
operation or sensor malfunction, was excluded.
Although measurements of process variables are
stored in the computer every minute, moving
averages of five points are used for modeling
to reduce measurement noise. Therefore, the
minimum sampling interval, which is available
for modeling, is five minutes. All variables were
mean-centered and scaled to have unit variances.
The selected input variables are listed in Table 1.
A total of 17 process variables, including
temperatures, pressures, flows, and reflux ratio,
were selected. In addition, measurements at the
current sampling instant were used together with
those at 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 75, 100,
125, 150, 175, 200, 225, 250, 275 minutes before
when a dynamic PLS model was built. Therefore,
the total number of input variables is 340 (= 17×
20). The developed estimator has the form of

ŷ(t) =
17∑

i=1

20∑

j=1

αijxi(t − sj) (1)

where ŷ(t) and xi(t) denote the estimated product
concentration and the input variables at the time
t, respectively. sj is sampling instants and αij is
regression coefficients.

The number of latent variables was determined on
the basis of cross-validation tests. Twenty latent
variables are used in the final model. Furthermore,



no nonlinear transformation is used for dealing
with nonlinearity between input variables and the
output, i.e., the ethane concentration, because
a well-known logarithmic transformation of the
product quality did not improve the estimation
accuracy in this application.

3.3 Estimation Results

The developed soft sensor has been applied to
the ethylene fractionator T431/2. The estimation
results in three periods are shown in Fig. 2: (A)
Nov. 10 2001 through Nov. 30 2001, (B) May 1
2002 through June 13 2002, and (C) Aug. 1 2002
through Aug. 31 2002. Here, measurements and
estimates of ethane concentration (Ethane conc.)
and estimation errors (Error) are scaled. The soft
sensor functions very well. In Fig. 2(top), it is
difficult to distinguish between measurements and
estimates because estimation errors are so small.
The relative estimation error is less than 10 % at
almost all times except in the period from 1100 to
1200 hours. In this period, a trouble occurred and
thus operators changed the operating condition
considerably.

The product quality will deteriorate if estimates of
the soft sensor are blindly believed by the control
system and operators, while the soft sensor does
not function well. To avoid such a situation, an
operating condition should be monitored online
and the validity of the soft sensor should be tested.
The control system and operators should not use
the estimates for any purpose when the soft sensor
is judged to be invalid. In the next section, a
monitoring system for testing the validity of the
soft sensor is proposed.

4. MONITORING SYSTEM

A black-box model does not always function well.
Since it is a data-based model, a black-box model
is valid only when a process is operated within
a certain condition where operation data used for
modeling were obtained. Therefore, to successfully
apply a data-based soft sensor to an industrial
process, the validity of the soft sensor should be
tested. In other words, the operating condition
should be monitored online to judge whether the
estimated value is reliable or not.

The soft sensor developed in the present work is
based on PLS. Therefore, the operating condition,
where operation data used for modeling were
obtained, can be easily defined in the subspace
spanned by major latent variables retained in
the PLS model and its orthogonal complement
space. In order to test the validity of the soft
sensor, it is necessary to judge whether the current

operating condition is inside the defined operating
condition or outside. Such a monitoring system
can be realized by using a multivariate statistical
process control (MSPC) technique based on PLS.

4.1 Overview

Chemical processes are multivariable systems
consisting of a large number of mutually
correlated variables. MSPC was developed
to monitor such multivariable processes.
The original Shewhart-type control chart for
correlated variables is the Hotelling T 2 control
chart. Jackson (1959) used principal component
analysis (PCA) and proposed a T 2 control chart
for principal components. Later, Jackson and
Mudholkar (1979) investigated PCA as a tool
of MSPC and introduced a residual analysis.
The control chart was introduced for the sum of
squared residuals Q as well as T 2.

T 2 =
R∑

r=1

t2r
σ2

tr

(2)

Q =
P∑

p=1

(xp − x̂p)2 (3)

where tr is the r-th principal component score
and σ2

tr
is the variance of tr. xp and x̂p are

a measurement of the p-th variable and its
predicted (reconstructed) value, respectively. R
and P denote the number of principal components
retained in the PCA model and the number of
process variables, respectively. The T 2 statistic
is a measure of the variation within the PCA
model, and the Q statistic is a measure of the
amount of variation not captured by the PCA
model. These two statistics, T 2 and Q, can
be used for PLS-based MSPC by substituting
latent variables for principal components. Many
successful applications of PLS-based MSPC to
industrial data have shown its practicability
(Kourti et al., 1995; Macgregor and Kourti, 1995;
Kourti and MacGregor, 1995).

4.2 Monitoring System Design and Results

The monitoring system is based on the dynamic
PLS model designed for the soft sensor. The
number of input variables is 340, and the number
of latent variables is 20. That is, R = 20 and
P = 340 in Eqs. (2) and (3). The developed
monitoring system integrated with the soft sensor
has been applied to the ethylene fractionator
T431/2. The control limits of T 2 and Q are 200
and 100, respectively. These control limits were
determined so that they represent 99% confidence
limits. The monitoring results in three periods



500 1000 1500 2000 2500
0

50

100

E
th

an
e 

co
nc

.

0 500 1000 1500 2000 2500
−20

0

20
E

st
im

at
io

n
E

rr
or

0 500 1000 1500 2000 2500
0

500

T
2

0 500 1000 1500 2000 2500
0

100

200

300

Q

Time [hour]

measurements
estimates

(A) (B) (C) 

Fig. 2. Estimation and monitoring results of ethane concentration in the ethylene product.

are shown in Fig. 2. In the period from 1100
to 1200 hours, when the process was operated
under the abnormal operating condition and
the estimation error was crucial, both T 2 and
Q statistics considerably exceeded their control
limits. That is, the monitoring system indicates
that the operating condition is abnormal and the
soft sensor is not reliable in this period. It should
be noted here that “abnormality” in this context
does not necessarily mean the occurrence of faults.
It means that the current operating condition
is different from the past operating condition in
which data used for modeling were obtained. In
Fig. 2, estimation errors tend to become large
and exceed ±10 when T 2 or Q exceeds its control
limit. Spikes of T 2 or Q are observed when load
on the tower increases. These results demonstrate
that the developed monitoring system can judge
whether the soft sensor is reliable in the current
operating condition or not. The soft sensor
and the monitoring system have functioned
successfully.

Furthermore, the T 2 statistic indicates that the
operating condition in the period (C) differs from
that in (A). The operating condition in (A) is
quite similar to the normal operating condition,
where reference data were obtained. On the other
hand, an improved multivariable control system
was installed and the process has been operated
near the optimal condition in (C). Therefore, T 2

in (C) is larger than that in (A). Estimation
errors are quite small even when T 2 indicates
the significant operating condition change. That
is, the developed soft sensor is valid under a
sufficiently wide range of operating conditions.

Table 2. Rules for checking the
performance of a process gas

chromatograph.

Error of GC Operating condition Performance
and soft sensor (Reliability of GC

of soft sensor)

small good good
small bad good (unclear)
large good bad
large bad good

4.3 Validation of GC

The developed monitoring system can be used for
another purpose. A process gas chromatograph
(GC) sometimes gives a disturbed and incorrect
measurement, and such an incorrect measurement
disturbs the operation and deteriorates the
process performance. In addition, a GC needs to
be repaired if its measurements are not reliable.
Therefore, it is important to detect the incorrect
measurement and report it to operators. The
performance of a GC can be checked by comparing
its measured value with an estimated value of the
soft sensor. The rules summarized in Table 2 were
established in the present work. Here, an error
of GC and soft sensor is a difference between a
measured value of GC and an estimated value of
the soft sensor. The operating condition is judged
by the developed PLS-based monitoring system.
Estimates of the soft sensor are reliable when
operating conditions are good. Therefore, the soft
sensor and the GC function well, when an error is
small and the operating condition is good. On the
other hand, a GC measurement is judged to be
incorrect if an error is large while the operating
condition is good, because the soft sensor must be
reliable when the operating condition is good. In



such a situation, a large estimation error is caused
by malfunction of GC.

5. CONCLUSION

In this industry-university collaboration, a soft
sensor for measuring ethane concentrations in
ethylene products and a monitoring system for
testing the validity of the soft sensor were
developed to realize highly efficient operation of
two ethylene fractionators at the SDK Oita plant.

To estimate the ethane concentration from online
measured process variables, dynamic PLS models
were developed. The developed soft sensor can
estimate the product quality very well. The
relative estimation error is less than 10 %
at T431/2; however, the soft sensor does not
function well when the process is operated under
abnormal conditions. To test the validity of the
soft sensor, a monitoring system was developed
based on the dynamic PLS model designed for
the soft sensor. The monitoring system can
judge whether the soft sensor is reliable or
not. The usefulness of the developed monitoring
system was demonstrated with real operation
data. In addition, the performance of a process
gas chromatograph can be checked by using the
soft sensor and the monitoring system. Simple
rules were established for this purpose. The soft
sensor and the monitoring system have functioned
successfully in the SDK Oita plant.
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1. INTRODUCTION 
 
Many systems are represented mathematically by high 
order dynamics. However, a lower-order model is 
sufficient for controller tuning (Ashworth, 1982).  It is 
widely accepted that for the purpose of controller design, a 
First Order Plus Time Delay (FOPTD) model can 
approximate such systems adequately and hence facilitate 
controller design. In general, the parameters of this model, 
namely system gain, apparent time constant and apparent 
time delay can be used to tune a PID controller. There are 
many techniques to determine the parameters of FOPTD  
(Ziegler, 1942, Smith, 1967, 1997, Sundaresan, 1978). 
However, most of them are off-line approximating 
methods, for which the parameters are obtained from 
process reaction curve. In such cases, it is difficult to 
apply these methods to describe adequately the time-
varying characteristic of the plant. 
 
In recent years, there has been an unprecedented increase 
in applications of the so-called Soft-computing 
methodologies in identification and control of dynamic 

systems (Bha, 1990, Czogala, 1981, Lu, 1997, Narendra, 
1990). Soft-computing methods are referred to techniques 
that employ fuzzy systems, neural networks and genetic 
algorithms either alone or in hybrid form. 
 
In particular, fuzzy logic theory (Zadeh, 1965) has been 
the focus of much research in the areas of control and 
identification. Its integration with model-based systems 
theory has produced a unique approach entailing the 
human knowledge and heuristic methods with rigourous 
mathematical methods for stability and convergence 
analysis and several successful applications in control and 
identification have been reported (Chen, 1998, Wang, 
1996). Whereas majority of earlier efforts was focused in 
fuzzy controllers, the emerging area of fuzzy identification 
has become very important in fuzzy system theory in the 
last decade (Sugeno, 1986, Babuska 1996). Fuzzy 
identification methods fall into three categories, linguistic 
fuzzy model (Wang, 1996), fuzzy relational modelling 
(Wang, 1997) and Takagi and Sugeno (TS) modeling 
(Sugeno, 1986). It is interesting to note that not much 
attention has been paid to reduced order modeling. This  



may be due to the fact that fuzzy logic systems are 
essentially model free approaches. This has motivated the 
authors to develop an on-line approximation method to 
determine the parameters of FOPTD using fuzzy systems. 
    
This paper presents a simple and new approach to the on 
line lower-order model identification for unknown 
processes using fuzzy system. The idea is to integrate a 
fuzzy system with a model generator with known 
structure. The parameters learning task is performed using 
the gradient descent algorithm (Wang, 1997).  

 
The rest of this paper is organized as follow: Section 2 is 
devoted to the idea of approximating a high-order system 
with a FOPTD model using fuzzy system. The proposed 
method combined with PID controller is derived in 
Section 3. In Section 4 simulations studies are presented.  
Finally, the paper is concluded in Section 5. 
 
2. LOWER ORDER APPROXIMATION OF HIGHER-

ORDER SYSTEMS WITH FUZZY SYSTEM 
 
2.1 The On-line Approximating Approach  
 
It is well known that high-order processes dynamic can be 
described with sufficient accuracy by a first order plus 
time delay model (Sundersan, 1978). Consider: 
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where K is the system gain, T is the dominant time 
constant, τ is the apparent dead time and Y(s) and U(s) are 
the Laplace transformed output and input signals 
respectively. The proposed approach is conceptually 
simple and is realized by cascading a fuzzy system and 
model generator in parallel with the process to be 
identified as shown in Figure 1. The input signal u(t) is 
applied to the high-order system, the fuzzy system, and 
the FOPTD model generator at the same time. The fuzzy 
system has three parameters, namely, the gain K, the time 
constant T, the dead time τ . These three parameters are 
fed to the first-order plus dead time model generator to get 
the output of the model. The error between the output of 
the plant and the output of the model is used to train the 
consequent part of the fuzzy system. The training process 
tends to force the output of the FOPTD model generator 
to approximate the output of the system. Thus, the inputs 
of the FOPTD model generator are the approximating 
parameters of the first-order representation of the high-
order system. The output of the FOPTD model is expected 
to match the output of the high-order system after the 
model converges. 
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Fig. 1 Block Diagram of the proposed method 

 
The transfer function of the FOPTD model generator is 
rewritten below: 
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2.2 The Fuzzy System Structure and Training Algorithm 
 
In this paper, we apply the fuzzy identification techniques 
to obtain the process model directly. The ith rule of the 
fuzzy model is of the following form: 
 
Rule i: If x1 is Ai1 and …..and xn is Ain  then 

ip̂ is ci 

  
where nRx ∈ and Rpi ∈  are the input vector (process input 

u(t)) and output value (estimated model parameters) of the 
fuzzy system respectively, Aij ,i=1,2.,m, j=1…n, are the 
fuzzy sets. Given the input data x, by using a singleton 
fuzzifier, product fuzzy inference and weighted average 
defuzzifier, the output value of the fuzzy system is inferred 
as follows: 
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if we fix the µij (Membership value of x for Aij) and view 
the ci (Consequence of Rule i) as adjustable parameters, 
then equation (3) can be rewritten as: 
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To train the above fuzzy system, a direct learning the 
gradient descent algorithm (Wang, 1997) is employed. 
The consequent parameters are adjusted in each iteration is 
derived below. The error function E is define as: 
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where y and ym are the output of the plant and the output at 
the FOPDT model at any time instant t. Within each time 
interval from t to t+1, the gradient descent algorithm is 
used to update the consequent parameters according to the 
following relationship: 

i
iii c

E
tctc

∂
∂

⋅−=+ η)()1(     (7) 

where ηi is the learning rate. Using the chain rule, one has 
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p̂ =[K T τ] is a 3 1 input vector of the FOPDT model (the 

output of vector of the fuzzy system) 
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To find the partial derivatives of the output ym(t) of the 
model generator (FOPTD) w.r.t. gain (K), dominant time 
constant (T) and apparent dead-time (τ), respectively, 
please refer to Appendix A1. 
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From equations (7) and (8), we can rewrite the update rule 
as follows: 
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where 1,2 and 3 is the indication of the FOPTD model 
parameter gain, time constant and time delay and η1  ,η2 

and η3  are the learning rate of each fuzzy sub-system 
respectively. Figure 2 show the membership function of 
each sub-system .We have used the value of a equal to 1 
in the following simulations. Therefore the fuzzy system 

consists of three fuzzy sub-systems as shown in Figure 2 
and the output value can be obtained from equation 16.  
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where T

mcc ),,( 33
13 LL=ϕ , T

mcc ),,( 22
12 LL=ϕ  and 

T
mcc ),,( 11

11 LL=ϕ  are the regression vector of each sub-

system as given in equation (5). The three fuzzy sub-
systems have similar structures. In this paper, 2 fuzzy 
rules are used for each fuzzy sub-system. 
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3.  ON LINE PID TUNING METHOD USING FUZZY 

SYSTEM 
 
In order to show the effectiveness of the proposed method, 
we combine the fuzzy algorithm with a standard PID 
controller to make an adaptive control algorithm. The 
control structure is shown in Figure 3. There are two parts 
in the control structure of the on line PID tuning method. 
The first part, which was described in the previous section, 
is the approximation of high order systems with FOPTD 
using fuzzy system, and the second part is the design of 
the PID controller. The parameters of the PID controller 
can be obtained from the corresponding parameters of the 
estimated FOPTD by fuzzy system. We have used the 
Ziegler-Nichols ultimate cycle tuning method (17) to 
compute the parameters of the PID controller: 
 
Kp = 0.6 Ku TI = 0.5 Tu,,  Td = 0.125Tu  (17)  
 
Here, Kp, Ti, Td, Ku and Tu are the proportional gain, 
integral time constant, derivative time constant, the 
ultimate gain and the ultimate period respectively. The 
ultimate gain and the ultimate period are calculated from 
the FOPDT model of the high order plant (Rad, 1997) It 
should be emphasized that other control algorithms could 
also be used. The PID controller is implemented in the 
following form: 
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where u(t),y(t),r(t),y(t)and yf(t) are the controller output, 
process output, set-point and filtered derivative, 



respectively. The implementation of the adaptive PID is as 
follows: 

1. Approximate the first-order with time delay model 
(FOPTD) parameters by fuzzy system. 

2. Determine the ultimate gain (Ku) and ultimate period 
(Tu) by the FOPTD model.  

3. Find the PID controller parameters Kp,Ti and Td  
from equation (11) and calculate u(t.)    

4. Find the FOPTD model output ym(t) from the FOPTD 
Model Generator. 

5. Calculate error between the (FOPTD) model output 
and the process output. 

6. Update ci(t) by using equation(13-15) (Gradient 
descent algorithm). 

7. Update the error between the set-point and the 
process output. Go to step (1) 
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Fig. 3 On-line PID tuning using fuzzy system 
 

4. SIMULATION RESULTS 
 
To show the adaptive behaviour of the algorithm, let us 
consider three processes as:  
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The first process is a second order with time delay system, 
the second process is a non-minimum phase system and 
the third process is a fourth order time delay system. First, 
adaptive control of Process I was simulated for t =120s 
after which the system was changed from Process I to 
Process II. For t =320s the system was switched from 
process II to process III. Furthermore, it should be noted 
that the gain in systems 1,2 and 3,2 are different (1.5 and 
1.0). It is known that some adaptive controllers cannot 
cope with change in steady-state gain of the controlled 
system. However, as it is seen in Figure 5, the proposed 
method can successfully track the system change. Figure 4 
shows the overall performance of the proposed algorithm. 
In the simulation, the set-point was selected to be a square 

wave with amplitude 0.6 and a period of 80s. A Gaussian 
noise with mean zero and variance of 0.001 was injected 
at the output of the system. We employed a fourth order 
Runge Kutta numerical integration algorithm for all time 
responses and the integration interval was selected to be 
0.1s. The fuzzy system also used the same time interval 
for updating its parameters. The simulation proceeded as 
follows: the PID controller was initialized with Kp = 1, Ti 
=1000, Td = 0.0. The consequent values of fuzzy system 
were initialised with c1=1.0, c2=1.8, c3=3.5. The learning 
rates were chosen as η1=0.25, η2=0.8 and η3=0.8 
respectively. Figure 4 shows the overall performance of 
the three controlled systems. In this figure, the set point 
and the output, the controller signal and the estimated 
parameters of gain, apparent time delay and the dominant 
time constant are shown in top, middle and bottom curves 
respectively. In all these system changes, the fuzzy system 
converged and the estimated parameters of the FOPDT 
also converged to their steady state values. The proposed 
method is shown to provide stable and robust control 
under various conditions. Tables 1, 2 and 3 show the 
parameters of FOPTD model approximated by several 
other methods such as Smith's (Smith, 1967), minimized 
error (Sundersan, 1978), and the corresponding ultimate 
gain and the ultimate period for processes I, II and III 
respectively. It should be noted that the parameters from 
all other methods except the proposed one were obtained 
off-line, from open loop excitation with unit step and were 
noise free. Furthermore, the values quoted for the 
proposed algorithm is based on the last measurement 
before each system change and not the average value. 

Table 1  
Process I FOPTD Model Parameters 

 K T ττ Ku Tu 
Smith Method[11] 1.5 1.65 3.00 1.06 8.38 
Minimized-error[12] 1.5 1.46 3.11 0.98 8.44 
Proposed method  1.5 1.33 3.19 0.936 8.48 
Process I - - - 1.036 8.438 

 
Table 2 

Process II FOPTD Model Parameters  
 K T ττ Ku Tu 
Smith Method[11] 1.0 1.89 2.43 1.93 7.22 
Minimized-error[12] 1.0 1.67 2.55 1.74 7.35 
Proposed method  1.0 1.39 2.45 1.64 6.91 
Process II - - - 1.54 6.83 

 
Table 3  

Process III FOPTD Model Parameters 
 K T ττ Ku Tu 
Smith Method[11] 1.5 2.49 4.86 1.03 13.39 
Minimized-error[12] 1.5 2.057 5.1 0.923 13.49 
Proposed method  1.5 2.66 4.75 1.07 13.33 
Process III - - - 0.987 13.48 
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5. CONCLUSIONS 

 
In this paper, a new on-line FOPTD modelling method is 
proposed which is designed using fuzzy system theory. 
The proposed method is different from other fuzzy 
identification methods since it is integrated with a model 
generator to determine the parameters of FOPTD. The 
outputs of the fuzzy system are the three parameters of the 
FOPTD model. Combining with a PID controller, an on-
line adaptive control using fuzzy system is designed and 
tested. The simplicity of the scheme for model-based 
control provides a new approach for implementing fuzzy 
applications for a variety of industrial control problems. 
Results presented clearly demonstrate the adaptive 
property of the proposed method.  
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Assuming that all initial states are zeros and D=0, the 
output equation becomes: 
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where θ is the model time delay and h(t, p) =L-1[Gm(s)] is 
the impulse function of Gm(s). The vector is defined as p = 
[a1 a2 …an b0 b1 …bm ]. The partial derivatives of the model 
output with respect to the time delay and the model 
parameters are as follows. 
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For first order with time delay model 
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For second order with time delay model
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The control signal u(t) is filtered by the filter function in 
eq. (A9-A11) to find the partial derivatives of ym(t) with 
respect to various model parameters. 
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Abstract: Successful application of model based control depends on having good 
estimates for the system dynamic states and parameters. A multivariate dynamic 
linear model is developed for the estimation of the states from limited measurements 
in a non-linear system comprising model uncertainties. Since the noise statistics are 
rarely available a priori, the noise covariance matrix is treated as a tuning parameter 
and determined through repeated simulations. For non-linear, time varying processes, 
the assumption of a constant process noise covariance matrix does not realise accurate 
estimates. In this paper Monte Carlo simulations are used to obtain the time-varying 
noise covariance matrix.  The methodology is demonstrated on a benchmark 
polymerisation process. Copyright © 2002 IFAC 
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1. INTRODUCTION 

 
In batch polymerisation processes, the operating 
objectives require the satisfaction of complex 
property requirements for the final polymer whilst 
reducing production costs. Most mechanical and 
rheological properties of polymer products are 
directly, or indirectly, linked to the molecular 
structural properties of the polymer chains that are 
not usually measured on-line. Average polymer 
molecular weight properties (e.g. number and weight 
average molecular weight), and particle size 
distribution which can be inferred from on-line 
measurements, are often selected as the major 
controlled variables that need to be maintained within 
well-determined limits so that the desired product 
quality criteria can be achieved.  
 
Recursive stochastic state estimation techniques, 
such as the Extended Kalman filter have been 
traditionally used for state and parameter estimation 
especially for polymerization processes. The main 
bottleneck in the application of recursive stochastic 
state estimation techniques to real world situations is 
that the process noise statistics are rarely available a 
priori. In most applications, they serve as tuning 

parameters and are determined through a trial-and 
error procedure using repeated simulations. 
 
Few techniques for determining the process noise 
covariance matrix have been developed for chemical 
engineering applications. Zhou and Luecke (1995) 
used maximum-likelihood estimation with linear 
regression to obtain the diagonal elements of the 
covariance matrices for linear systems. For non-
linear systems, the use of innovation processes for 
estimating the noise statistics was proposed by Myers 
and Tapley (1976). However they assumed the 
covariance matrix to be constant. For batch processes 
with time-varying process dynamics that operate over 
a range of process conditions, this is not the case. 
The specification of a constant process noise 
covariance matrix may not be sufficient to provide 
sufficiently accurate estimation. Using a fixed value 
of noise statistic can lead to poor estimation or 
potentially result in filter divergence. 
 
Valappil and Georgakis (2000) introduced two 
approaches to systematically estimate the process 
noise covariance matrix. The first method was based 
on Taylor series expansion whereas the second 
method used Monte Carlo simulations to calculate 
the time-varying values of the process noise 



 

     

covariance matrix on-line. Both methods require 
information about the plant-model mismatch in the 
form of a parameter covariance matrix. The process 
noise covariance matrix is obtained from the 
parameter covariance matrix. If the user is not certain 
about the process-model mismatch, or the model 
uncertainty can not be represented by the parameter 
covariance matrix, it is difficult to apply these 
methods. 
. 
In this paper, a new approach is proposed where a 
multivariate dynamic model is constructed for the 
estimation of the states. Monte Carlo simulations are 
then used to calculate the time-varying process noise 
covariance matrix on-line from the prediction errors. 
 
 

2. BAYESIAN DYNAMIC MODEL 
 
2.1 Multivariate Dynamic Linear Model 
 
The dynamic linear model (DLM) is a Bayesian 
forecasting tool based on a state space model that 
allows a variety of adaptive linear and generalised 
linear models to be fitted iteratively to univariate or 
multivariate time series data. A DLM incorporates 
information from any relevant source, including 
subjective expert views, leading to amended and 
updated model structures. The general multivariate 
dynamic linear model developed by West and 
Harrison (1997), is given by the following system of 
equations: 
 
Observation equation: 
             

tttt vxFY +=         ],0[~ tt N Vv  (1) 

 
System equation: 
 

tttt wxGx += −1     ],0[~ tt N Ww  (2) 

 
Initial information: 
      

],[~)|( 0000 Cmx ND  (3) 

 
where tY  is the observed vector of the series at time 

point t , tx  is the state vector, tv  is the 

observational error, tw  is the vector of process noise 

that is assumed to be independent and normally 
distributed and 0D  is the initial prior information at 

0=t . At any future time point, t , the available 
information set is:  
                             

},{ 1−= ttt DD Y  (4) 

 
At time t-1, for some mean 1−tm  and variance matrix 

1−tC , the posterior is given by: 
                       

],[~)|( 1111 −−−− tttt ND Cmx  (5) 

and the prior for the state vector at time t can be 
derived from the system equation: 
 

],[~)|( 1 tttt ND Rax −  (6) 

 
where 
           

1−= ttt mGa   and   ttttt WGCGR +′= −1  (7) 

 
According to the observation equation, the one step 
ahead forecast can be given by: 
                       

],[~)|( 1 tttt ND QfY −  (8) 

 
where 
               

ttt aFf ′=   and   ttttt VFRFQ +′=  (9) 

 
The feedback of information obtained at time t from 
vector tx  is achieved through the application of 
linear Bayes methods. As stated previously, the 
model at time (t-1) requires only the mean vector and 
covariance matrix of the posterior for )|( 11 −− tt Dx . 
Thus at time t, the corresponding moments: 
                        

],[~)|( tttt ND Cmx  (10) 

 
are required in order to progress to time point, (t+1), 
and subsequent observations. The information 
obtained at time point, t, is used to update the prior 
moments to give: 
          

tttt eAam +=  and ttt AQARC tt
′−=  (11) 

 
where 
 

1−′= tttt QFRA   and  ttt fYe −=  (12) 

  
 
2.2 Multivariate Non-linear Dynamic Model 
 
For a non-linear model, the process can be expressed 
as:  
 

tttt f vxY += )(   ],0[~ tt N Vv  

ttt g wxx += − )( 1   ],0[~ tt N Ww  

(13) 

 
Before the usual DLM updating procedure is applied, 
the model requires to be linearized. The most 
straightforward and easily interpreted linearization 
technique is the Taylor series approximation. 
Applying Taylor series expansion to the updating 
function about the mean 1−tm : 
               

)()()( 111 −−− −+= ttttt mxGmgxg  

                sorder termhigher  and quadratic+  

(14) 

 



 

     

where tG  is the matrix derivative of the updating 

function evaluated at the estimate 1−tm : 
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)( 1−= ttt mga  and  ttttt WGCGR +′= −1  

(16) 

 
Proceeding to the observation equation, a similar 
approach applies. The non-linear regression function 

is linearized about the expected value ta  for tx , 

giving: 
                 

)()()( ttttttt axFafxf −′+=  

sorder termhigher  and quadratic+  

(16) 

 
where tF  is the matrix derivative of (.)tf  evaluated 

at the prior mean ta : 
                           

tt
t

tt
t

f

ax
x
x

F
=









∂

∂
=

)(
 

(17) 

 
The standard updating equations continue to apply. 
 
Most process models constructed from limited 
experimental observations involve significant 
uncertainties. For batch and semi-batch processes, 
this is especially true. Model accuracy is obtained by 
tuning the covariance matrix Q of the process noise 
using a repeated simulation procedure.  
 
If a covariance matrix whose entries are of small 
magnitude is selected, greater confidence will be 
expressed in the model and less on-line measurement 
information will be required to update the states. 
However, this may result in degraded estimates and 
possibly estimator divergence. Too much state 
compensation can cause the state estimates to be 
noisy and unreliable. 
 
The process noise w(t) is mainly due to uncertainties 
in the model and can be either parametric or 
structural. Monte Carlo simulations are utilized to 
estimate a time-varying covariance matrix Q on-line. 
 
 

3. ESTIMATION OF THE COVARIANCE 
MATRIX 

 
The concept of applying Monte Carlo simulation to 
estimate the process noise covariance matrix is to 
capture the effect of uncertainties in the model 
through the statistics of w(t). The key issue is how to 
derive the information from the measurements and 
model evolution to represent the process noise. In the 
algorithm described above, the prediction error 
vector te  gathers the information about the errors 

that caused by process disturbance and model 
uncertainties. The updating information from prior to 
the posterior for the states is obtained by multiplying 
the prediction errors te  with a gain tA . The idea in 
this paper is that, using the information drawn from 
the prediction errors te  and the updating information 
to estimate the process noise covariance matrix. 
 
At a desired time instance t-1, a set of samples }{ 1

k

t −x  
is randomly selected from the posterior distribution 
function, equation (5), of the state vector while the 
observation 1−tY  is given. For the kth Monte Carlo 
simulation, a non-linear model is used to generate 
random samples of 1| −ttx  

                             
)( 11|

k
tt

k
tt −− = xgx  (18) 

 
Because k

t 1−x  is randomly sampled directly from a 
probability distribution function, some samples may 
be located in the tails of the distribution. For non-
linear systems, the presence of such samples will 
seriously affect the performance of the estimate. One 
solution is to reject these samples. The simplest way 
is to set a rejection bound. Those samples that have a 
probability larger than the rejection bound will be 
accepted, otherwise they are discarded and new 
samples generated. Once the new measurement tY  is 
obtained, the prediction errors are calculated 
                           

)( 1|
k

tttt
k
t −−= xfYe  (19) 

 
and the information used to update the prior moments 
is calculated as follow: 
                                 

k

tt

k

t eA? =  (20) 

 
The process noise is also obtained from the samples 
of the updating information: 
                                

t

k

t

k

t ??w −=  (21) 

 

where t?  denotes the mean of the updating 
information. The process noise is normally 
distributed with zero mean. The process noise 
covariance matrix tQ  can be calculated from k

tw , 
and is a non-diagonal and time-varying matrix.  
Because the process measurements are available at 
discrete time instances, the preceding calculation of 

k

tw  and tQ  is performed for discrete time intervals. 
 
For the model development described in the previous 
section, the process noise is assumed to be a white, 
Gaussian random process. Thus the approximation of 
normally distributed process noise needs to be tested 
using the values of the process noise data set }{ k

tw  
that were obtained from the Monte Carlo simulations. 



 

     

For this, normal probability plots were used and the 
distribution was observed to be approximately 
normal.  For the simulation case presented, 500 
Monte Carlo simulations of the different state values 
were used, resulting in 500 evaluations of the process 
noise for each state.  
 
 

4. RESULTS 
 
4.1 MMA polymerization 
 
The process studied is the free radical polymerisation 
reactor of methyl-methacrylate (MMA) (Mourikas et 
al, 2001). A mathematical model describes the 
dynamic behaviour of an experimental pilot scale 
system (Fig 1). Heating and cooling of the reaction 
mixture is achieved by controlling the flows of hot 
and cold water stream, through the reactor jacket. 
The polymerisation temperature is controlled by a 
cascade control system consisting of a primary PID 
and two secondary PI controllers. The polymerisation 
is highly exothermic and exhibits a strong 
acceleration in polymerisation rate due to gel-effects.  
Batch duration is 120 minutes. 
 

Tmet

TR

TJ

TJi

PI

PID
Tsp

Hot

Cold

 
 

Fig. 1.  Plant polymerisation reactor 
 
The MMA system consists of 11 states, which are 
monomer conversion; three moments of dead 
polymer that are used to calculate the molecular 
weight distribution; reactor and metal wall 
temperatures; and four jacket zone temperatures. In 
polymerization, frequent measurements of the reactor 
and the jacket inlet and outlet temperatures are 
usually available along with possibly jacket flow. 
Monomer conversion measurements can also be 
obtained from an on-line densitometer. The 
measurements in a real process environment will be 
corrupted with measurement noise. In the following 
simulation, Gaussian white noise is added to the 
measurements. 
 
In this particular study, the process model mismatch 
is introduced in the form of time variation in a kinetic 
parameter. In practice important kinetic parameters 
such as pk , the propagation rate constant, cannot be 

determined accurately and may vary during the 
polymerisation. In this study, the propagation rate 

constant is represented by s
corrpppp ggkk ,0= , where 

0pk  is an intrinsic chemical rate constant, pg  is a 

diffusion controlled function which includes a 
number of parameters that are often unknown. The 

stochastic correction term s
corrpg ,  is used to account 

for the imprecise knowledge of pg . In the model, a 

random walk is assumed for the behaviour of the 
stochastic state.  In the process, the actual value of 

s
corrpg ,  is assumed to decrease linearly from an initial 

value of 1.0 to 0.76. 
 
4.2 Discussion 
 
The results of the estimation studies for the MMA 
polymerization reactor are shown in Fig. 2. It can be 
seen that the uncorrected model (dashed line), in 
which the stochastic correction term of the 
propagation rate constant is fixed at 1.0, differs 
significantly from the actual plant (dotted line), in 
which the propagation rate constant is time-varying. 
The estimates (solid line) closely match the actual 
process. These, results are compared with the 
estimation results from an EKF with fixed process 
noise covariance matrix, Fig. 3. The estimates of 
number average and weight average molecular 
weights in Fig. 2. match the actual process while the 
estimates in Fig. 3. show a discrepancy between the 
actual process and the estimates.   
 
Comparing Fig. 2(e) and Fig. 3(e), the estimator 
involving Monte Carlo simulation tracks the decrease 
in the rate constant more closely and faster. This 
results in better state estimation performance. The 
95% confidence bound (circle) of the estimate for the 
Bayesian approach is narrower than for the EKF, 
indicating that the estimates are more accurate and 
reliable. Since only a limited number of observation 
data can be used to update the estimate, the 
confidence bounds at the beginning are wide and 
hence the estimates are less reliable. As the 
observation data increases, the limits decrease in 
magnitude. Thus the structure of the confidence 
bounds for parameter estimation by the Bayesian 
approach are more reasonable than those of the EKF. 
 

 
 

(a)  Actual versus estimated (conversion) 



 

     

 
 

(b)  Actual versus estimated (MN) 
 

 
 
(c) Actual versus estimated (MW) 
 

 
 
(d) Actual versus estimated (polydispersity) 
 

 
 
(e) Actual versus estimated (rate constant KP) 

Fig.2. Multivariate DLM state and parameter 
estimation.  

  
 Key: Dotted line - actual plant; solid line - 

estimates; dashed line - process model with 
mismatch; circle - 95% confidence bounds 

 

 
 

(a)  Actual versus estimated (conversion) 
 

 
 
(b)  Actual versus estimated (MN) 
 

 
 

(c) Actual versus estimated (MW) 
 



 

     

 
 

(d) Actual versus estimated (polydispersity) 
 

 
 
(e) Actual versus estimated (rate constant KP) 
 
Fig.3. EKF state and parameter estimation with fixed 

process noise covariance matrix.  
 
 Key: Dotted line - actual plant; solid line - 

estimates; dashed line - process model with 
mismatch; circle - 95% confidence bounds 

 
 

5. CONCLUSIONS 
 
The feasibility of extending multivariate DLM to 
estimate the process states, monomer conversion and 
the molecular weights in MMA batch 
polymerizations has been demonstrated.  The 
methodology provides a new approach to state 
estimation for possible application in on-line model-
based optimising control. The estimator uses on-line 
measurements of key process variables including 
monomer conversion and reactor and jacket 
temperatures, to provide reliable estimates of the 
state variables. Monte Carlo simulation is used for 
the calculation of the process noise covariance matrix.  
 
The results show that the approach presented can 
improve the performance of the state and parameter 
estimation. It also makes the design and the 
application of dynamic Bayesian forecasting more 
robust, since the methodology proposed eliminates 
the need for the tuning of the process noise 
covariance matrix. The non-diagonal and time-
varying covariance matrix is obtained on-line in 

contrast to a diagonal and constant covariance matrix 
which is not able to adapt to non-linear systems with 
model uncertain. The algorithm can also be enhanced 
by Bayesian parameter estimation to provide a 
significantly enhanced overall state and parameter 
estimation methodology (Lu et al, 2001). 
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Abstract: In this work the dynamic heat transfer occurring in a cable penetration fire 
stop system built in the firewall of nuclear power plants is three-dimensionally 
investigated to develop a test-simulator that can be used to verify effectiveness of the 
sealants. The dynamic heat transfer can be described by a partial differential equation 
(PDE) and its initial and boundary conditions. For the shake of simplicity PDE is 
divided into two parts; one corresponding to the heat transfer in the axial direction 
and the other corresponding to the heat transfer on the vertical layers. Two numerical 
methods, SOR (Sequential Over-Relaxation) and FEM (Finite Element Method), are 
implemented to solve these equations respectively. The axial line is discretized, and 
SOR is applied. Similarly, all the layers are separated into finite elements, where the 
time and spatial functions are assumed to be of orthogonal collocation state at each 
element. The heat fluxes on the layers are calculated by FEM. It is shown that the 
penetration cable influences the temperature distribution of the fire stop system very 
significantly. The simulation results are shown in the three-dimensional graphics for 
the understanding of the transient temperature distribution in the fire stop system. 
Copyright © 2003 IFAC 
 
Keywords: Dynamic heat transfer, Finite element method, Sequential over-relaxation, 
Partial differential equation, Cable penetrated fire stop system. 
 
 
 

1. INTRODUCTION 
 
For a few decades a great number of nuclear power 
plants have been constructed and are operating 
worldwide to supply the industrial and household 
electricity. Now, 14 nuclear power plants are operating 
night and day in the republic of Korea, and 6 nuclear 
power plants are newly under construction. According 
to the long-term policy, about 20 additional nuclear 
power plants will be constructed in South Korea until 
2020. Due to the so rapid increase of the number of 
nuclear power plants, a great deal of social concern has 

been concentrated on the accidents risk of the nuclear 
power plant in recent times. The accidents risk is well 
known previously, and fires among the accidents are 
especially dangerous. Fires can critically affect the 
control systems of the nuclear power plant because of 
their quick spread. The fire penetration seal systems 
that prevent the passage of the fire, gas and heat 
between compartments so as to reduce the damage and 
to save lives are deeply associated with the products 
assembled in the field or pre-manufactured. Silicone 
and Latex sealant fire stop systems are usually 
employed in sealing around metal pipes, joints and gaps. 



     

All fire stop systems are tested under the same ASTM 
standard to ensure repeatability and suitability for the 
specific application. The Tennessee Valley Authority 
Browns Ferry nuclear power plant accident that was on 
March 22 in 1975 resulted in the change of ASTM E-
119 to ASTM E-814 or UL-1479, as a standard for 
testing the performance of fire penetration seal systems. 
According to the new testing method, previous fire stop 
systems were revaluated and safety was improved. The 
fire stop systems have a major responsibility in 
defense-in-depth.  
 
In this work a simplified fire stop system is considered, 
shown in Fig. I. The cable penetration fire stop systems 
built in a nuclear power plant is from 3,000 to 10,000 in 
number. Because of the great number of the fire stop 
systems constructed under the old standard of ASTM 
E-119, safety of all the systems did not verify with the 
new test method of ASTM E-814 up to now. 
Corresponding to ASTM E-814, not only the F-rating 
test but also the T-rating test should be carried out to 
verify the fire stop system. For that purpose the 
complementary use of a test-simulator is suitable. 
Especially, the unsteady-state heat conduction in the 
fire stop system should be investigated in order to 
develop the test-simulator that the T-rating test of the 
fire stop system can be carried out with.  
 
The dynamic heat transfer phenomenon occurring in 
the fire penetration seal system is formulated in a 
parabolic partial differential equation subjected to a set 
of boundary conditions. First, the PDE model is divided 
into two parts; one corresponding to the heat transfer in 
the axial direction and the other corresponding to the 
heat transfer on the vertical faces. The first partial 
differential equation is converted to a series of ordinary 
differential equations at finite discrete axial points for 
applying the numerical method of sequential over-
relaxation (SOR) to the problem. After that, we can 
solve the ordinary differential equations by using an 
integrator, such as an ODE (ordinary differential 
equation) solver. In such manner the axial heat flux can 
be calculated at least at the finite discrete points. For 
the shake of simplicity a few assumptions are given in 
this work. There is no heat transfer between the fire 
stop system and the firewall. The surface of fire site of 
the fire stop system is always at the temperature of the 
standard curve of ASTM-119, and the penetration cable 
is also at the same temperature of the surface. These 
assumptions are summarized as the boundary condition 
equations. According to the standard method of ASTM 
E-814, the fire stop system is exposed to a standard 
temperature-time fire, and to a subsequent application 
of cable streams for testing the cable penetration fire 
stop system. Ratings are established on the basis of the 
period of resistance to the fire exposure, prior to the 
first development of through openings, flaming on the 
unexposed surface, limiting thermal transmission 
criterion, and acceptable performance under application 
of the cable stream. This test method specifies that 
pressure in the furnace chamber with respect to the 
unexposed surface shall be that pressure which will be 
applicable to evaluate the fire stop system with respect 

to its field installation. This pressure shall be 
determined by a specific code requirement, by the 
special pressures in the building, in which the fire stop 
system is to be installed, or by the test sponsor 
requesting a special environment to evaluate the fire 
stop specimen (ASTM, 1993). The fire test is 
performed with the standard temperature-time curve, as 
shown in Fig. I.  
 

 
Fig. I: The standard temperature-time curve of ASTM 
E-119 and the experimental time-temperature curve.  
 
 

2. MATHEMATICAL MODEL 
 
It is assumed that heat transfer is constant against the 
change of temperature and pressure, and there is no 
additional heat generation in the cable penetration fire 
stop system. In this case the unsteady-state heat transfer 
in the fire stop system can be described by the parabolic 
partial differential equation, as follows: 
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The thermal diffusivity α represents the physical 
property of a sealing material of the fire stop system. 
The cable penetration fire stop system can be simplified 
as a cubic, in which several cables are through-passed, 
at Cartesian coordinate, as shown in Fig. II.  
 
For the shake of simplicity we assumed that the initial 
temperature of the cable penetration fire stop system 
and its surface are constant at the temperature of T0, and 
the temperature of the inner faces and the whole cables 
are constant at the temperature of Th.  
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Fig. II: Simplified cable penetration fire stop system. 
 
 
In addition it is assumed that there is no thermal 
exchange between the fire stop system and the firewall 
through the four interfaces – the bottom, up, left and 
right sides surrounding the sealant cubic, i.e. they are 
under the adiabatic condition. As a result, it can be 
described by following equations. 
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The last assumption is that the opposite surface (z=Z) is 
at a constant temperature of TZ, and the heat flux, which 
spreads from the solid surface, is proportional to the 
temperature difference between the solid surface and 
the bulk of air, as follows. 
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The unsteady-state heat transfer phenomena in the fire 
stop system can be modelled by a parabolic partial 
differential equation Eq. (1) subjected to an initial 
condition Eq. (2) and a series of boundary conditions 
Eqs. (3), (4), (5) and (6). 
 
 

3. NUMERICAL CALCULATION 
 
To solve the complex three-dimensional initial value 
partial differential equation, we used two numerical 
methods SOR (Sequential Over-Relaxation) and FEM 
(Finite Element Method) in turn. In this algorithm we 
calculated the z-axis components derived from the 
initial value partial differential equation at Cartesian 
coordinate, and several two-dimensional rectangular 
systems can be calculated with the results of the z-axis 
components iteratively. The heat transferred in the z-
axis can be calculated by the numerical method of SOR, 
and the heat transfer on the x-y-layers can be estimated 

with the numerical method of FEM. Originally, the 
SOR method is developed as a very sophisticated hand 
computation technique for solving large sets of 
simultaneous linear equations iteratively. The overall 
approach is not well suited to digital computer use 
because of the extensive logic required, but the original 
concepts are embodied in the simple but powerful 
computer-oriented method. Basically, SOR works by 
using an initial guess of the solution and then 
progressively improving guesses until an acceptable 
level of accuracy is reached (Southwell, 1940; Monte, 
2002).  
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Fig. III: Schematic figure of the fire stop system. 
 
 
Consider n+1 parallel layers in the fire stop system, as 
shown in Fig. III. First of all, One-dimensional (z-axis) 
heat conduction in the fire stop system is described as 
follows: 
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By using the numerical method of SOR the partial 
differential equation Eq.(7) is discretized to n ordinary 
differential equations. 
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For the first calculation the initial temperature is 
constant at the temperature of T0 for every finite 
element, but the next step temperature of finite element 
TP’s can be calculated by FEM (Finite Element 
Method). Often in the finite element approach, the 
partial differential equation describing the desired 



     

quantity (such as displacement) in the continuum is not 
dealt directly. Instead, the continuum is divided into a 
number of finite elements, which assumed to be joined 
at a discrete number of points along their boundaries. A 
functional form is then chosen to represent the variation 
of the desired quantity over each element in terms of 
the values of this quantity at the discrete boundary 
points of the element (Becker, et al., 1981; Feirweather, 
1978). By using the physical properties of the 
continuum and the appropriate physical laws, a set of 
simultaneous equations in the unknown quantities at the 
element boundary points can be obtained. The 
temperature of the front surface is constant at the 
hottest temperature Th. 
  
 00 T),z(T =   
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 hTtT =),0(      
   
On the assumption that the temperature of the back 
surface is constant at the initial temperature of T0, the 
initial temperature, the heat flux that passes through a 
layer is proportional to the temperature difference 
between the layer ( izz = ) and the next layer 

( 1+= izz ). Therefore, the equation Eq. (6) can be 
approximated to the following equation by using the 
forward difference method. 
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Moreover, the horizontal heat transfer of the back 
surface can be estimated and can be applied to p finite 
elements by the partial differential equation Eq. (11). 
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where the specific functions {Ф j(x)│j = 1,L, NP} and 
{Tj(t)│ j = 1,L, NP} are piecewise continuously 
differentiable (Golebiowski and Kwieckowsk, 2002; 
Alazmi and Vafai, 2002). The initial condition of each 
finite element can be obtained from the solution of 
Eq. (8) repeatedly. The whole cable temperature is 
always assumed to be constant at the temperature of Th. 
The temperature T(x, t) as a function of time t and space 
x can be expressed by the multiplication of the 
temperature function Tj(t) and the element function 
φj(x) at the state of orthogonal collation as follows: 
 

(a) Temperature distribution in 12 minutes. (b) Temperature distribution in 24 minutes. 

(c) Temperature distribution in 36 minutes. (d) Temperature distribution in 120 minutes. 

Fig. IV: Dynamic changes of the temperature distribution on the outer surface of the fire stop system. 
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The partial differential equation Eq. (11) subjected to 
the initial condition and the boundary conditions can be 
expressed as following ordinary differential equations. 
 

LKT
dt
dTM =+ ,   (13) 

where ( ){ }∑ ∫Ω ⋅=
i

ij dxM φφ ,  

 ( ) ( ){ }∑ ∫∫ Ω∂Ω
⋅+∇⋅∇=

i
ijij dsdxK φφφαφ , 

 ( ){ }∑ ∫ Ω∂
⋅=

i
i dslL φ .  

 
By solving these ordinary differential equations, we can 
obtain the nodal values as an approximate solution. The 
computations are performed on the computer Pentium 
IV-2.0 GHz. The program packet MATLAB is used for 
realizing the recommended algorithm. The initial 
temperature of T0 is fixed at the temperature of 20 , ℃
and the fire side wall temperature of Th follows the 
ASTM E-119 standard temperature-time curve, 
changing from the initial temperature of 20  to ℃ the 

final temperature of 1,200  for two hours. ℃ As a 
simple geometry, the fire stop system with two 
penetrated cables is simulated in this work. The 
temperature values of 2323 elements are estimated 
simultaneously. The result of the estimation is used as 
the initial temperature values for calculating the 
temperature values at the five discrete axial points on 
each node of the elements. The calculation is carried 
out by SOR. The result is used again for the initial 
temperature values of the FEM calculation. In this 
manner the temperature distribution in the fire stop 
system is computed repeatedly. 
 
 

4. RESULTS AND DISCUSSION 
 
Simulation results are shown in Fig. IV and in Fig. V. 
The temperature distributions on the surface outer wall 
of the cable penetration fire stop system, which was 
built between compartments of the nuclear power plant, 
were calculated and the simulation results were three-
dimensionally presented so as to show the dynamical 
heat conduction in the fire stop system. As shown in 
Fig. IV (a), the temperature around the cables reaches 
about 600 °C in 12 minutes. The temperature values 

(a) Temperature distribution in 12 minutes. (b) Temperature distribution in 24 minutes.

(c) Temperature distribution in 36 minutes. (d) Temperature distribution in 120 minutes.

Fig. V.  Dynamical changes of the temperature distribution on the inner face placed in the fire stop system. 



     

near the firewall are under 100 °C. The temperature of 
the system rises very quickly in keeping with the 
standard temperature-time curve, as shown in Fig. I. 
According to the temperature distribution shown in 
Fig. V (b), the fire heat is transferred along to the 
cables quickly at the start, while the heat conduction 
occurs on the layers slowly. On the other hand, it is 
over the temperature of 700 °C around the cables in 24 
minutes, and the temperature near the firewall is over 
the temperature of 680 °C. That means, the heat 
transfer on the layer is already progressed very much as 
well as the heat transfer along the penetrated cables. 
While the temperature rises in 36 minutes, the 
temperature difference becomes smaller with time. 
Furthermore, the temperature distribution in two hours 
is ranged from the temperature of 675 °C to the 
temperature of 1,000 °C, as shown in Fig. IV (d).  
 
Similarly, the temperature distribution of the inner site 
located at a quarter distance of the wall thickness is 
shown in Fig. V. It consists of four figures. These 
figures could be compared with each other. By 
comparing the figures we could get more information 
for understanding the temperature distribution in the 
cable penetration fire stop system. The temperature 
distribution shown in Fig. V (a) is ranged from the 
temperature of 325 °C to the temperature of 600 °C in 
12 minutes. In this case the temperature difference is 
much less than the case shown in Fig. IV (a). That 
means that the heat conduction is not working in a 
steady state, but is working dynamically. Fig. V (b) 
shows the results as follows. In 24 minutes the 
temperature variation around the penetrated cables is 
almost the same to the standard curve, and the 
difference between the maximum and minimum 
temperatures is about 20 °C. As shown in Fig. V (c), 
the temperature difference is decreased with time. The 
axial temperature difference near the firewall is more 
than 5 °C, as indicated in Fig. IV (d) and in Fig. V (d). 
Consequently, we can find the fact that the heat transfer 
through the cable stream is very significant and the heat 
conduction is not in a steady state. 
 
 

5. CONCLSION 
 
This work was aimed to know how the dynamics of 
heat conduction came about in the cable penetration fire 
stop system between compartments of nuclear power 
plants. Furthermore, the interest has focused on the 
thermal development around the penetration cables. 
The cable penetration fire stop system was modelled, 
simulated and analysed. The simulation results were 
illustrated in three-dimensional graphics. Through the 
simulations it was shown clearly that the temperature 
distribution was influenced very much by the number, 
the position and the temperature of the penetrated 
cables. Another significant contribution of this work is 
the development of an efficient numerical algorithm 
that consists of SOR and PEM for solving special 
partial differential equations. This numerical algorithm 
could be applied to the dynamic heat conduction 

problem successfully. At last, it was found that the 
dynamic heat transfer through the cable stream was one 
of the most dominant factors, and the feature of heat 
conduction could be understood as an unsteady-state 
and dynamic process.  
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Abstract: This paper considers the metabolic engineering problem of dynamic modeling
in complex biological systems. New areas under consideration include dynamic system
modeling of metabolic systems using a Generalized Mass Action (GMA) representation. The
modeling problem will be presented as a nonconvex global optimization problem to be solved
using deterministic optimization techniques. Advanced control and estimation methods can
be devised based on the input-output model of the nonlinear dynamic system. A five-state
fermentation pathway is considered using global optimization techniques for modeling and a
discrete-time GMA formulation.
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1. INTRODUCTION

The hallmark of biological systems is their orga-
nizational complexity, which is manifested in large
numbers of components and multitudes of intricate
nonlinear interactions. For instance, in a biochemical
system, various metabolites are consumed or created
through enzyme-catalyzed reactions. These reactions
are often modulated by regulatory components that
are produced and consumed by these same reactions
in the same pathway or may be constituents of
entirely different pathways. When such modulations
are present, intuitive analyses by cause-and-effect
reasoning are no longer sufficient for system analysis,
and systematic mathematical approaches are needed

to gain useful insight. These numerical approaches are
commonly based on systems of ordinary differential
equations.

In metabolic engineering, the analysis of biochemical
systems is often directed toward manipulation and
optimization. For instance, one goal may be the
improvement of metabolic yield in a microorganism.
Two structured approaches currently dominate the
field. One is a linear analysis of the flux distribution
within the system, where the key concept is the well-
known stoichiometric matrix. The other approach is a
convenient nonlinear representation of the individual
reactions. Over the past three decades, several groups
around the world have developed and furthered a



mathematical framework specifically dealing with this
latter approach.

The basis of this framework, known in the field
as Biochemical Systems Theory (BST) is the
representation of reaction rates with products of
power-law functions that include those and only those
metabolites and modulators that directly affect a given
rate. See Savageau (1969) and Voit (2000). As an
example, if enzyme E catalyzes a bimolecular reaction
between A and B, and if this reaction is inhibited by
end product P, the power-law term for the rate v in BST
may be written as:

v = αAγA BγB EγE PγP (1)

where α is the rate constant of the reaction, the
concentrations of the biochemical species are A, B, E,
and P, and γA, γB, γE , γP are apparent kinetic orders.

Under some assumptions which have been discussed
extensively in the literature, the nonlinear BST
models (in the so-called S-system form) can be
effectively optimized. See Voit (1992). However, in
the alternative representation of a Generalized Mass
Action (GMA) system, which is more intuitive to
most biochemists, such optimization falls into the
realm of NonLinear Programming (NLP) problems,
which are notoriously difficult to handle. Preliminary
work by Torres and Voit (2002) indicates that the
special power-law structure of GMA systems might
be amenable to streamlined, efficient methods of
optimization. The development and refinement of
such methods is a long-term goal. Achieving this
goal would have great reward because GMA systems
are the simplest systems that contain both the
stoichiometric approach and the S-system approach
as immediate special cases. Furthermore, GMA
systems contain mixtures of linear and S-systems
and have been shown by Savageau and Voit (1987)
to provide mathematically equivalent representations
for essentially all smooth, nonlinear phenomena.
If all GMA rates that determine the dynamics of
variable Xi (i = 1..n) are symbolically coded as
φi(X1, X2, ...Xn, ....Xm), the dynamic response of a
GMA system can be modeled as follows:

dX1
dt

= φ1(X1, X2, ...Xn, ...Xm) (2)

...
dXn

dt
= φn(X1, X2, ...Xn, ...Xm)

Note that variables X1 through Xn are time dependent,
while variables Xn+1 to Xm may be independent of
time for a given experiment.

One method to modify the rate of change of dependent
variables is to over-express a gene. This changes the
activity of an enzyme, which is usually modeled as an
independent variable in a GMA model. Additionally,
other independent variables, such as the substrate
concentration or some inhibitor or cofactor, could be

manipulated to different degrees, thereby evoking a
dynamic response in the system.

In the presented case study, which is adapted from
the work of Galazzo and Bailey (1990) and Curto
et al. (1995), the external glucose concentration will
be manipulated for the system, forcing changes in the
dependent variables as glucose is absorbed into the
cell at different rates. The metabolic pathway under
consideration for this work is shown in Figure 1.
Solid arrows represent reactions and dotted arrows
show modulations. State variables in the model are:
X1 = cytosolic glucose; X2 = glucose-6-phosphate; X3
= fructose-1,6-diphosphate; X4 phosphoenol pyruvate;
X5 = ATP. Independent variables with constant
values are: X6 = effective hexose transport; X7 =
hexokinase/glucokinase; X8 = phosphofructokinase;
X9 = glyceraldehyde dehydrogenase; X10 = pyruvate
kinase; X11 = glycogen and trehalose production;
X12 = glycerol production; X13 = ATPase; X14 =
NADH/NAD+ ratio.
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Fig. 1. Simplified model of anaerobic fermentation of
glucose to ethanol, glycerol, and polysaccharides
in Saccharomyces cerevisiae.

In general, a metabolic network may become quite
complex for system involving many species. There
may be many uses of such a model. Typically, a
fully parameterized model is used for simulation,
prediction, or optimizations. However, one might also
have available measured concentrations at different
points in time and attempt to deduce the structure
of the pathway from these “metabolic profiles”.
See Voit and Almeida (2003). In general, this is a



formidable task, but in the case of a well-structured
model such as a S-system or GMA model within
BST, the task reduces to the simpler, yet challenging
determination of parameter values that best describe
the system and the measured profiles. The parameter
estimation problem may be formulated as a nonconvex
optimization problem to be solved using global
optimization techniques. Due to the complexity of
metabolic systems, a single set of model parameters
not be readily apparent. Deterministic numerical
methods may be used to approach this type of problem
and determine the best model given the data.

2. MODELING FORMULATION

Given a system at steady state, a small perturbation
in a metabolite concentration or in external conditions
may cause significant transient response in metabolite
concentrations, which provide insight into the struc-
ture of the metabolic network and the existence and
magnitudes of the fluxes. In the GMA formulation,
each flux representation requires determination of
values for the rate constant α and the kinetic orders
γi. The following global optimization scheme, based
on system discretization and dynamic programming,
can be used to determine the optimal values for these
parameters. Here, X̂i(k) is the metabolic concentration
of species i in the model at time k. P is the number of
measurement time points.

min
α,γ

P

∑
k=1

|ei(k)| ∀i = 1..n (3)

s. t. X̂1(k +1) = X̂1(k)+ p1(X̂1(k), X̂2(k), ... X̂m(k))

∀k = 1..P
...

X̂n(k +1) = X̂n(k)+ pn(X̂1(k), X̂2(k), ... X̂m(k))

∀k = 1..P

X̂i(k)−Xi(k) = ei(k)

∀i = 1..n, k = 1..P

X̂i(k) > 0

∀i = 1..n, k = 1..P

This formulation minimizes the total sum of absolute
errors for the nonlinear discrete-time system. Note
that the concentrations are constrained to take only
positive values. Also note that the nonlinear functions
pi in the formulation take the form of a sum of GMA
reaction terms, as represented in the general GMA
model reaction rate in Equation 1. The optimization
problem can be seen as a nonconvex optimization
problem in the general form:

min
x

f (x) (4)

s.t. g1(x) = 0

...

gm(x) = 0

LB ≤ x ≤UB

Here, the functions f (x) and gi(x) may be nonconvex.
In the original formulation of Equation 3 the
objective function is a convex function but the model
constraint equations are nonconvex nonlinear equality
constraints. A nonconvex optimization problem in
this form can be solved using standard branch-and-
bound techniques. Deterministic branch-and-bound
methods similar to those used in Mixed-Integer
Linear Programming algorithms can be used to
solve nonconvex NLP problems as in Soland (1971),
Adjiman et al. (1998), and Tawarmalani and Sahinidis
(2000). These methods rely on derivation of a
convex relaxed lower bounding problem as described
in McCormick (1976), Adjiman et al. (1996),
Tawarmalani and Sahinidis (2000), and Gatzke et al.
(2002). Recent range-reduction techniques have been
shown to play a vital role in rendering more problems
tractable as seen in Ryoo and Sahinidis (1995). As
in all combinatorial optimization problems, reducing
the problem dimension and solution space can lead
to large improvements in solution efficiency. In this
problem, the actual formulation may contain many
variables (variables for α values , γi values, and model
concentration values X̂i(k)). However, for estimation
purposes, the actual solution space is significantly
reduces, because branching only applies to α and γi.

Given a general nonconvex problem with continuous
variables, x ∈ R

n, any local solution using existing
NLP methods will possibly provide an upper bound.
The upper bounding problem can be expressed as
described in Problem 4, where f and / or g may
be nonconvex. After reformulation and introduction
of new variables w ∈ R

o, z ∈ R
n+o. See McCormick

(1976), Smith (1996), Tawarmalani and Sahinidis
(2000), and Gatzke et al. (2002). An equivalent
nonconvex problem can be expressed as:

min
z

cT
1 z (5)

A1z ≤ b1

h(z) = 0

zL ≤ z ≤ zU

Here, the nonconvex constraints h(z) are simple
nonlinear expressions involving two or three variables
where one variable is explicitly defined using a single
nonlinear operation, e.g. z1 = z2z3 or z4 = ez5 . This
reformulation is required so that the simple nonconvex
expressions can be relaxed using known convex
envelopes, and outer approximation of the nonlinear
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Fig. 2. Left: A single branch-and-bound step for a nonconvex function of a continuous variable. Right:
Demonstration of implicit enumeration search for a branch-and-bound tree.

convex expressions described in Tawarmalani and
Sahinidis (2000) and Gatzke et al. (2002) leads
to convex lower bounding problem for a partition
expressed as a Linear Programming (LP) problem:

min
z

cT
2 z (6)

A2z ≤ b2

zL ≤ z ≤ zU

In this problem, c2, A2, b2, zL, and zU depend on the
current variable bounds for the variables in the original
problem: xL and xU . This lower bounding LP problem
can be solved using any valid LP technique.

The deterministic NLP solution proceeds according to
the branch-and-bound algorithm illustrated in Figure
2. The original region is partitioned, and lower bounds
are determined for each new partition. A partition
is discarded if its lower bound exceeds the current
upper bound for the problem, or if the lower bounding
problem is infeasible. Once a feasible solution to
Problem 4 is found, it serves as an upper bound
for the global solution. The algorithm attempts to
verify that the solution is the true global solution
by systematically fathoming the remaining solution
space. Range reduction methods can also be used
to reduce portions of the solution space, possibly
speeding convergence, Ryoo and Sahinidis (1995).

Range reduction techniques play a pivotal role in
efficient solutions of nonconvex NLP problems.
Reduction methods attempt to shrink the variable
space without removing a region that may possibly
contain the global solution of the problem. Interval
analysis methods of Moore (1979) can be used to
analyze the constraints in Problem 5 in order to modify
the upper and lower bounds on z, reducing the possible
solution space. Solution of Problem 6 provides a
lower bound on the solution for a given partition. The
Lagrange multipliers at the solution of the convex
lower bounding problem can also be used to reduce

the solution space, Ryoo and Sahinidis (1995). These
bounds-tightening procedures may be repeated for a
single partition, producing new variable bounds and
a new lower bound for the partition while avoiding
branching a partition. This may in some cases avoid
the combinatorial growth of active subproblems.

In the formulation described by Problem 3, the
only nonconvexity arises from the power-law rate
terms of each GMA reaction. Each of these terms
can be reformulated by introducing a logarithmic
transformation as follows:

v = αAγA BγB EγE PγP (7)
1
α

ln(v) = γA ln(A)+ γB ln(B)+ γE ln(E)+ γP ln(P)

Each logarithmic term is then replaced by a new
variable, wi as described by Torres and Voit (2002).
After introducing these new variables, almost all
constraints in the original formulation are linear.
The only nonconvex relationships are the simple
constraints of the form wi = γi ln(Xi). As illustrated
in Figure 3, XL

i and XU
i are known for a given

partition and a secant can be used as a convex lower
bound for this nonlinear function, while multiple
linear first-order approximations may serve as linear
upper bounding constrains for the nonlinear function.
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Fig. 3. Convex relaxation using linear constratins.



3. EXAMPLE SYSTEM

For this system, we consider the fermentation pathway
in Saccharomyces cerevisiae described in Curto et al.
(1995). This is a relatively simple metabolic pathway
system with five time-dependent states and, thus, five
differential equations. The metabolic pathway map is
given in Figure 1. Each reaction is modeled separately
in the GMA formulation. For illustration, this GMA
model is used as the allegedly “true” model for
the generation of data and testing the optimization
algorithm. The model equations are given in Figure
4. While this is a nonlinear continuous time dynamic
model, it can also be represented with a discrete-time
nonlinear model. For this illustration, we use a discrete
time sampling rate of 0.001. Slower sampling rates
for the discrete time model may result in unstable or
inaccurate dynamic systems. This rapid sampling time
is an obvious limitation, which is to be considered in
future work.
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Fig. 5. Dynamic response for metabolite concen-
trations given step changes in external glucose
concentration.

A typical response for the continuous time model,
given the initial conditions and changes in the
external glucose is shown in Figure 5. Data from
a five-hour simulation were used to develop initial
parameter estimates for the system. The model system
was parameterized, resulting in 22 total parameters
to be considered. Using a multistart unconstrained
nonlinear optimization algorithm, these parameters
were found using Matlab / Simulink, MathWorks
(2000), to evaluate the objective function for the
system for a given set of parameter values. The error
terms for each species were scaled by the expected
maximum deviation from the normal steady state
operation. The scaling values used were:

[
0.0025 0.05 0.3 0.0005 0.1

]

The resulting parameter values serve as an upper
bound on the global solution. A comparison of the
dynamic response of the continuous time process and
the resulting discrete time model is given in Figure
6. The objective function (sum absolute error) at the
resulting solution was 9.8479. It is the goal of the
global optimization procedure to guarantee that the
upper bound value is the global solution.

A branch-and-reduce algorithm was developed to
determine optimal parameter values for this system.
The lower bounding problems are posed as linear
programming relaxations of the convex lower bound-
ing problem for each partition. Each LP problem
is solved using OSL from IBM, I. B. M. (1997).
The branch-and-reduce procedure includes range
reduction techniques that can be used to reduce
the total number of nodes visited. The problem
formulation was developed using a general purpose
Maple script, Maplesoft (2000), that automatically
generates code that can be automatically translated
using DAEPACK. See Tolsma and Barton (2000)
and Gatzke et al. (2002). DAEPACK generates
convexification subroutines and gradient information
for a given problem.
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Fig. 6. Comparison of process and dynamic model
response for changes in external glucose concen-
tration.

For a given modeling problem with horizon length P
with n dependent variables, n(P − 1) equations can
be written. These equations serve as the nonlinear
equality constraints for the prediction of the model
concentrations over the data set of interest. The model
equations include variables expressing explicitly the
concentration of the n species at the P − 1 points
in the horizon of interest. The model equations also
include variables representing the GMA reaction rate
parameters for each mode flux (α and γ values).
The number of new variables and constraints in the
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Ẋ2 = 2.8632X
0.7464

1
X

0.0243

5
X7 − 0.5232X

0.7318

2
X

−0.3941

5
X8 − 0.0009X

8.6107

2
X11
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Ẋ5 = 0.022X
0.6159

3
X

0.1308

5
X9X

−0.6088

14
+ 0.0945X

0.05

3
X

0.533

4
X

−0.0822

5
X10 − 2.8632X

0.7464

1
X

0.0243

5
X7

−0.0009X
8.6107

2
X11 − 0.5232X

0.7318

2
X

−0.3941

5
X8 − X5X13

Fig. 4. GMA model equations for continuous time system

resulting convex reformulation will depend on the
complexity of each term in the GMA formulation and
the total number of terms. Linear equations are written
to explicitly express the error for each species at each
point in time.

For a horizon of 6 samples, the resulting optimization
formulation required 68 variables and 41 constraints.
The lowerbounding problem resulted in 292 total
variables and 688 total constraints. Given initial
bounds on the parameter values, the branch-and-
reduce algorithm was able to reduce the initial
partition size, tightening the lower bound on the
partition. The algorithm only considers parameter
value (α and γ) variables for branching. These values
were constrained to ±5% of their original values. The
algorithm was able to guarantee within ε = 0.1 that the
initially found upper bound was the global solution.

4. CONCLUSIONS

A nonconvex optimization formulation has been
presented for determination of metabolic pathway
parameters using a GMA representation of the
metabolic system. This formulation can then be
solved using branch-and-bound methods to global
optimality. The branch-and-bound method proceeds
in a deterministic manner, providing lower and
upper bounds on the quality of the solution as
the solution proceeds. The proposed problem can
be reduced significantly by only considering a
subset of variables for branching. This reduction in
problem dimensionality can significantly improve the
convergence aspects of the algorithm.
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A STATE-SHARED MODELING APPROACH

TO TRANSITION CONTROL
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Abstract: A rigorous theoretical derivation of a state-shared model structure for
multiple-input multiple-output (MIMO) systems is proposed. When a nonlinear
system transitions in a large operating space, this state-shared modeling approach
can be used to approximate the nonlinear system, such that effective model-
based controllers can be applied. A MIMO nonlinear reactor system illustrates
the proposed approach.

Keywords: Adaptive identifier, reduced-order model, multiple models, parameter
adaptation, nonlinear reactor

1. INTRODUCTION

In the chemical industry, it has become quite com-
mon for plants to produce more than one grade
of product, the choice being dictated by mar-
ket forces. This is particularly true for polymer
industries, where product and grade transitions
occur frequently. This necessitates the use of a
controller that can successfully regulate the plant
not only at the operating points, but also during
the transition.

Useful measures to evaluate a transition control
strategy are no violation of constraints, speed of
response, satisfactory performance, and closed-
loop stability (Narendra et al., 1995).

Nonlinear behavior is not an uncommon charac-
teristic during the transition. This feature serves
to not only heighten the control problem but
also to require a nonlinear dynamic model of the
process for control studies. However, due to a
lack of available high fidelity nonlinear models,
because nonlinear control methods are not well-
understood, and closed-loop stability arguments
are difficult to prove, nonlinear strategies are very

1 author to whom all inquires should be addressed,

khoo@coe.ttu.edu

difficult to implement (Tian and Hoo, 2002b).
Additionally, the maintenance costs of nonlinear
control algorithms are usually substantially higher
than those of linear control algorithms for the
same process (Eker and Nikolaou, 2002).

A popular option is to use multiple linear mod-
els that together represent the nonlinear system.
Thus, many transition control strategies are based
on linear models with fixed parameters so that
linear control theory can be applied. For large
operating spaces, the issue of how many fixed
model/controller pairs are needed remains unan-
swered. A variety of the multiple model strategies
employ a conditional probability to determine how
to combine a set of fixed models to generate a new
model that better represents the plant outputs
(Aufderheide and Bequette, 2001). Others adapt
the existing models and controller parameters us-
ing a model reference adaptive control (MRAC)
framework (Narendra et al., 1995; Gundala et

al., 2000).

It is well known that different control strategies
can be attempted once the estimation model is
chosen. Whether a more robust controller can
be used to assure stability and improved perfor-



mance, is an intriguing question. Sun and Hoo
(1999a, 1999b) presented a robust dynamic tran-
sition control structure for time-delayed systems
using a set of fixed models and controllers. Tian
and Hoo (2000b) used H∞ controllers based on
fixed and adaptive models.

In this work, a state-shared model framework rep-
resents multiple fixed and adaptive models. The
state-shared model consists of a non-minimal re-
alization and a non-minimal identifier. The former
is developed at the known operating points, while
the latter is used at any other point. The param-
eters in the measurement equation are adapted.
Thus, all models, adaptive and fixed, can be cast
into such a structure, in which all the models share
the same states but the parameters in the mea-
surement equation represent different operating
points.

The rationale for using adaptive and fixed mod-
els is to ensure that there is at least one model
with parameters sufficiently close to those of
the unknown plant to provide accurate controller
response. The fixed models together with sta-
ble switching provide speed, while the intelligent
adaptive models and tuning provide accuracy.

From a system identification point of view, the
state-shared model has attractive properties such
as the uniqueness of the identified parameteriza-
tion and convergence of the adaptable parameters.

The coefficient matrices in the state-shared model
are selected to be controllable by the designer.
The existence and uniqueness criteria for this type
of parameterized model are based on a uniquely
identifiable parameterization known as a matrix
fraction description (MFD) (Kailath, 1980). The
convergence of the parameter adaptation is also
proven. For an m-input m-output linear MIMO
system, the total number of identified parameters
is derived to be Nθ = n(m2 + 1), where n is
the upper bound of the McMillan degree of all
nominal linear models.

The organization of the paper is as follows. Section
two begins with a brief review of some relevant
results and properties of linear MIMO systems.
Section three develops the state-shared model and
presents the existence and uniqueness criteria.
The convergence of the identifier is also analyzed.
Section four demonstrates the construction of the
state-shared model on a MIMO nonlinear system
studied by (Gundala et al., 2000) that undergoes
a production rate transition. Lastly, section five
summarizes the findings.

2. PRELIMINARIES

An m-input p-output linear time-invariant (LTI)
system has a transfer function H(s) ∈ Rp×m(s),

the set of (p × m) matrices with polynomial
elements (Antsaklis and Michel, 1997; Kailath,
1980).

Definition 1. A rational transfer function matrix
H(s) is said to be proper if

lim
s→∞

H(s) < ∞

and strictly proper if

lim
s→∞

H(s) = 0

Theorem 1. (Antsaklis and Michel, 1997) H(s) is
realizable as the transfer function matrix of a
linear time-invariant system given by

ẋ = Ax + Bu
y = Cx + V u

if and only if H(s) is a proper rational matrix. If
V is the null matrix, then H(s) is a strictly proper
rational matrix.

Rewrite H(s) as

H(s) =
N(s)

d(s)
d(s) = sn + d1s

n−1 + · · · + dn

where d(s) is the least common multiple of the
denominators of H(s) and deg d(s) = n. Thus,

H(s) = D−1(s)N(s), D(s) = d(s)Ip (1)

and define the degree of the denominator matrix
as

degD(s) ≡ deg det(D(s)) = np

The pair {N(s), D(s)} is called a left matrix
fraction description (left MFD) (Kailath, 1980).

Proposition 1. Given any left MFD of H(s) =
D−1(s)N(s), a state-space realization of order

deg det(D(s)) ≡ deg left MFD

can always be found.

Kailath (1980) provides a procedure to obtain the
realization from the left MFD.

Lemma 1. If H(s) is a strictly proper (proper)
transfer function and the left MFD is given by
Eq (1), then every row of N(s) has degree strictly
< (≤) that of the corresponding row of D(s).

The proof is similar to that of Kailath (1980).

3. MIMO STATE-SHARED MODEL

The aim is to achieve a non-minimal realization/non-
minimal identifier, such that while all the models
share the same state space representation, each
model has unique input/output parameter set.



3.1 A non-minimal realization

Theorem 2. Any controllable and observable m-
input m-output LTI system given by

Yp(s) = H(s)U(s) = D−1(s)N(s)U(s) (2)

with D(s) = d(s)Im and d(s), a polynomial of
degree n, is input-output equivalent to the LTI
system described by the differential equations

ω̇1 = Fω1 + GU ω1 ∈ Rnm×1

ω̇2 = Fω2 + GYp ω2 ∈ Rnm×1

Yp = ΘTω
(3)

by suitable choice of the parameter vector Θ ∈
R2nm×m, and Θ is uniquely determined by the
given H(s). The pair (F,G) should be controllable
with F ∈ Rnm×nm, an asymptotically stable
matrix, and G ∈ Rnm×m. The (F,G) can be
arbitrarily chosen under the given restrictions.

Proof
Consider Figure 1. The transfer functions from
U(s) to v1 and Yp to v2 are given by

ΘT
1
(sI − F )−1G Θ1 ∈ Rnm×m

ΘT
2
(sI − F )−1G Θ2 ∈ Rnm×m

respectively. Define, ΦI ≡ (sI−F )−1G. Then, the
transfer function from the input U to the output
Yp can be expressed as

H(s) =
(

I − ΘT
2
ΦI

)−1 (

ΘT
1
ΦI

)

≡ D−1(s)N(s)

= (D(s)/ΩI(s))
−1(N(s)/ΩI(s))

(4)

where, ΩI(s) ≡ det(sI−F ) = sn+ans
n−1 + · · ·+

a2s + a1. From Eq (4), the following equivalent
relations can be obtained

I − ΘT
2
ΦI =

D(s)

ΩI(s)
ΘT

1
ΦI =

N(s)

ΩI(s)
(5)

Eq (5) includes n(m2 + 1) linear equations with
the same number of unknown variables. It is not
difficult to show that the coefficient matrix of
this system of linear equations is nonsingular,
which means that Θ1 and Θ2 can be determined
uniquely. It then follows that any linear time-
invariant plant can be parameterized as shown in
Eq (3). QED

Remark 1: Theorem 2 implies the existence
of parameter vector Θ such that the transfer
function of the state-space model, given in Eq (3),
is equivalent to H(s), given in Eq (2).

Remark 2: The value of Θ depends on the pair
(F, G) and the coefficients of H(s). Since (F, G)
are under the influence of the designer, Θ is
uniquely determined.

Remark 3: D(s) is block diagonal with the same
elements in each block. As a result, there are only
n elements to be identified to determine Θ2; the
others are zeros. There are nm2 elements in Θ1,
the total number of parameters to be identified is
n(m2 + 1).

It is assumed that the space of operating condi-
tions is large such that there are many possible
operating states. At known operating states, a
suitable linear model can be developed or identi-
fied and such a model will have fixed parameters
in its input/output form.

3.2 A non-minimal identifier

At any unknown operating point, it is not dif-
ficult to construct a non-minimal identifier (not
interpolation). Assume the non-minimal identifier
has the same form as the non-minimal realization.
Because the operating point is not known a priori,
let the parameters in the measurement equation
be adapted to obtain an accurate representation.
The state-space equation of the non-minimal iden-
tifier will be driven by the measured signals, U and
Yp.

The non-minimal identifier is given by (3)

ω̇1 = Fω1 + GU ω1 ∈ Rnm×1

ω̇2 = Fω2 + GYp ω2 ∈ Rnm×1

Ŷ = Θ̂Tω

(6)

3.2.1. Parameter adaptation The adaptation of
the parameters must be done in a stable fashion.
In this work, a normalized least-squares for an m-
input m-output system is proposed. For details see
(Tian and Hoo, 2002a).

Let the model-plant mismatch be given by Ỹ ≡
Ŷ − Yp. It can be shown that

lim
t→∞

Ỹ (t) = 0, lim
t→∞

Θ̂(t) = Θ

It is understood that the state-shared model is
both the non-minimal realization of the plant
and the adaptive non-minimal identifier. From
the procedure described in the previous section,
it can be concluded that the parameters of the
state-shared model are uniquely determined by
the transfer functions of the input/output models.
Note that any such realization necessarily fulfills
the requirement that the output of model j, Yj
be an asymptotically correct estimate of output of
the plant Yp if the process model transfer function
were H(s), i.e. Yj → Yp.

3.3 Model reduction

For control implementable solutions, it is desir-
able to use low-order controllers whenever pos-
sible. One means of reducing the order of the



controller is to generate a reduced-order approx-
imation of the plant before designing the con-
troller (Mahadevan and Hoo, 2000; Zheng and
Hoo, 2002).

Reduced-order approximation of plant dynam-
ics is not an uncommon engineering practice. In
general, mathematical models are reduced-order
approximations of the true system generated by
ignoring minor effects during modeling. Clearly,
the number of parameters to be adapted affects
the rate of convergence and the computational
burden.

From the previous section, it is known that the
order of state-shared model for a MIMO system
is 2nm. The input/output number, m, cannot be
changed. To reduce the order of the state-shared
model, the order of d(s) (n) must be reduced. In
this work, a balanced truncation approach is used
(Burl, 1999).

4. EXAMPLE: NONLINEAR REACTOR

The chemical reactor consists of a continuous-
stirred tank reactor in which a single, isothermal,
irreversible reaction given as A(g) + C(g) →
D(l), occurs in the vapor phase (Ricker, 1993).
Components A and C are non-condensible gases
and component D, the product, is a non-volatile
liquid.

The molar balance of each component in the
system is given by,

dNA

dt
= yA1F1 + F2 −

NA

N3

F3 − rD

dNB

dt
= yB1F1 −

NB

N3

F3

dNC

dt
= yC1F1 −

NC

N3

F3 − rD

dVL
dt

= (rD − F4)/ρL

(7)

Nk =

C
∑

i=A

Nik k = 1, . . . , 4

pi =
Ni

∑C

j=ANjk

P i = A,B,C

rD = k0p
v1

A pv2

C

F4 = (χ4 + u4)cv4
√

P − Pr

u4 = Kc(V
∗

L −
VL

VL,max
100%)

where rD is the reaction rate (kmol/h) that de-
pends on the partial pressures of components A
and C, Ni is the number of moles of component
i, and yij is the mole fraction of component i in
stream j. There are two feed streams (F1, F2) a
purge (F3), and a product stream (F4) with units
of kmol/h. The ideal gas law is assumed to be valid

and the liquid density (ρL) is constant. Measured
outputs include the reactor pressure (P), the liq-
uid volume (VL), and the mol% of unreacted A in
F3 (yA3).

For economic, safety, and operational considera-
tions, F4, P , and yA3 should be controlled. The
three manipulated variables are F1, F2 and F3.
The product rate is adjusted by a proportional
feedback controller in response to variations in
the liquid inventory. The control signal from a
liquid inventory controller is u4. There are safety
and production constraints. The reactor pressure
must be maintained below the shutdown limit of
3000 kPa, and F1 and F2 cannot be larger than
their maximum values of 330.46 kmol/h and 22.46
kmol/h, respectively. More details can be found in
(Tian and Hoo, 2002a).

It is desired to transition the reactor between two
production rates, OPI: 100 and OPII: 130 kmol
h−1. An analysis of the model shows that both
states are feasible, stable operating states.

4.1 Modeling

Linearization at the known operating states yields
a linear model in the form,

ẋ = Ax + Bu
y = Cx
x = xp − x̄ y = yp − ȳp

(8)

where x̄ and ȳp are the steady state values of
xp and yp, respectively; A = ∇xpf, B = ∇upf ,
and C is found from the measurement equation.
An eigenvalue analysis shows that the matrix A,
at both OPI and OPII, is asymptotically stable.
Additionally, the linear systems at both operating
states are stable and output controllable imply-
ing that the nonlinear system at these operating
states are at least locally stable. The system is
also observable.

At each operating point, a 2-state, 3-input 3-
output reduced-order model corresponding to the
4-state, 3-input 3-output full-order linear model
is obtained by the model reduction method of
balance truncation.

Assume that at any point in the operating space,
the nonlinear system can be approximated by a
reduced-order linear model of order 2 (the up-
per bound of the McMillan degree), but each
model may be different at each operating state.
The aim of the state-shared model structure is
to represent all the linear models by one state-
shared framework. Their measurement equations
represent their differences. From the theory pre-
sented in §3, the state-shared model will have
order nm = 6, with n(m2 + 1) = 20 adaptable
parameters. Let the pair (F,G) be given by,



Fj =





0 1

−a1 −a2



 Gj =





0

1



 j = 1, 2, 3

with a1 = a2 = 1 such that the pair (F,G) are
controllable. It then follows that,

F =





F1 0 0

0 F2 0

0 0 F3





6×6

G =





G1 0 0

0 G2 0

0 0 G3





6×3

At any operating point, given N(s) and D(s), the
measurement equation parameters, (Θ1,Θ2), can
be calculated.

4.2 Model validation

In a neighborhood of OPI, random input distur-
bance signals (zero mean and standard deviations
of 15% of their nominal values at OPI) is intro-
duced to both the nonlinear system and linear
models. To quantify the differences between the
model responses, define the Average Relative Er-
ror (ARE) of the jth measurement after k sample
points by,

ARE(j) = k−1

k
∑

i=1

∣

∣

∣

∣

yp(i, j) − ȳp(j) − y(i, j)

yp(i, j)

∣

∣

∣

∣

(9)

Here, yp(i, j) is the jth output of the nonlinear
system, ȳp(j) is the jth nominal value of the
nonlinear model, and y(i, j) is the jth model
response.

Table 1 lists the AREs among the different mod-
els. The largest errors are associated with F4 but
they are ≤ 1%. Similar results were obtained at
OPII.

4.3 Transition control

The system is forced to transition from 100
kmol/h to 130 kmol/h, while satisfying all other
constraints. First order reference trajectories (dot-
ted lines in the figures) are selected for the three
outputs. A model predictive controller is used
with the state-shared model and measurement
equations to achieve the transition. A controller
horizon of 4 and a prediction horizon of 10 are
selected. To represent a preference among the
controlled variables, output weights of 3, 1, and
10 for P, yA3, and F4, respectively are selected.
Equal weighting of the rate of change in the inputs
is used. The system has constraints on the outputs
and inputs. No special attempts were used to
determine optimal values for these parameters.

Figure 3 shows the closed-loop responses of F4

and P . The production rate achieves its set point
in about 10 hours. There is no violation of the
pressure constraint. The production rate can be

made to reach its the set point within 5 hours
without violation of any constraint, but the con-
troller action is more aggressive.

Figure 4 shows the the closed-loop responses of F4

and P when the system has unmeasured distur-
bances as it transitions. Here, unmeasured output
disturbances, with a signal noise ratio of 10:1,
are introduced into the system. A first order fil-
ter is used to filter out any noise. There are no
constraint violations, and although F4 does not
track closely the reference trajectory, the set point
change is achieved within 8 hours.

In practice, the composition measurement can not
always be obtained in a timely fashion. Assume
yA3 must be inferred from the other measures sig-
nals. Closed-loop performance based on estimates
of yA3 are shown in Figure 5. The transition is
achieved within 8 hours. There is no violation of
the pressure constraint (not shown).

5. SUMMARY

In this work, a method to construct a state-shared
model for MIMO systems is developed and its
properties analyzed. This approach can represent
the plant in such a fashion that all the unknown
parameters of the plant appear as the elements of
a single matrix in the measurement equation of
the state-shared model. A solution of the param-
eter vector is obtained when the transfer function
is known. Existence and uniqueness for the pa-
rameterization are proven. The parameter vector
can be adapted by least-squares, such that the
adaptive model can be obtained with the same
state-space representation.

A nonlinear chemical reactor system that tran-
sitions from one production rate to another was
used to demonstrate the concept of the state-
shared model in a model predictive control frame-
work. Satisfactory closed-loop performance was
achieved even in the face of unmeasured out-
put disturbances and when composition was es-
timated. Future work will be to apply the state-
shared model framework to a plant wide problem
such as the Tennessee Eastman challenge problem.
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Table 1. AREs (%).

P yA3 F4

Nonlinear-Full linear 0.02 0.01 0.07

Nonlinear-Reduced linear 0.02 0.29 0.93

Nonlinear-State Shared 0.25 0.32 0.93

Full linear-Reduced linear 0.01 0.30 0.83

State Shared-Reduced linear 0.01 0.04 0.18
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Fig. 3. Transition: ideal conditions.
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Fig. 4. Transition: unmeasured output distur-
bances.
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Fig. 5. Transition: estimate composition in the
purge.


